
insulin resistance, dyslipidemia, β-cell dysfunction, 
impaired glucose tolerance and ultimately leading to 
T2DM. Chronic oxidative stress, hyperglycemia and 
dyslipidemia are particularly dangerous for β-cells from 
lowest levels of antioxidant, have high oxidative energy 
requirements, decrease the gene expression of key 
β-cell genes and induce cell death. If β-cell functioning 
is impaired, it results in an under production of insulin, 
impairs glucose stimulated insulin secretion, fasting 
hyperglycemia and eventually the development of 
T2DM.
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Core tip: Oxidative stress is underling in the development 
of cardiovascular disease, type 2 diabetes mellitus (T2DM) 
and diabetic complications. Increased oxidative stress 
appears to be a deleterious factor leading to insulin 
resistance, dyslipidemia, β-cell dysfunction, impaired 
glucose tolerance and ultimately leading to T2DM.
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INTRODUCTION
Aerobic life uses oxygen to oxidize (metabolism) food 
substrates (carbon- and hydrogen-rich) to obtain the 
heat energy and chemical essential for life. When we 
oxidize molecules with oxygen, the oxygen molecule 
itself becomes reduced and forms intermediates. 
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Abstract
Oxidative stress is increased in metabolic syndrome 
and type 2 diabetes mellitus (T2DM) and this appears 
to underlie the development of cardiovascular disease, 
T2DM and diabetic complications. Increased oxidative 
stress appears to be a deleterious factor leading to 
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In eukaryotic cells, reactive oxygen species (ROS) 
are always produced as the consequence of regular 
physiological metabolism[1]. These ROS (pro-oxidants) 
productions are counter-balanced by cellular antioxidant 
defense mechanisms in the normal physiological 
conditions. ROS define as diverse chemical that have 
reactive properties are capable to accommodate or 
donate electrons (e-) to the broad range of biological 
molecules. Normally, the production and neutralization 
of ROS are balance with antioxidants in a living system 
and does not cause any oxidative damage, determines 
as physiological state[2]. The imbalance between these 
prooxidants and antioxidants in the living organism 
system to determine as oxidative stress state, brings 
to cellular disruption and damage[3]. The free-radical 
can attack polyunsaturated fatty acids oxidation in 
physiological systems known as lipid peroxidation. Lipid 
peroxidation is an autocatalytic free radical mediated 
destructive process whereby poly-unsaturated fatty 
acids in cell membranes undergo degradation to form 
lipid hydroperoxides[4,5]. By-products of lipid peroxidation 
such as conjugated dienes and malondialdehyde (MDA) 
are increased in the patients with obesity, metabolic 
syndrome and type 2 diabetes mellitus (T2DM). Car
bohydrates, lipids, proteins and DNA are the targets 
of oxidative stress modification biomolecules generally 
as the principal of ROS induced cellular damage. 
Therefore, these ROS modified biomolecules are used 
as oxidative stress markers both in vivo and in vitro 
measurement. Recent study suggests that ROS may 
act as the mechanical link of salt sensitive hypertension, 
over nutrition and high fat diet, metabolic syndrome 
and T2DM animal models[6]. ROS levels are increased 
in obesity, especially in abdominal obesity which is the 
major component of metabolic syndrome and it can be 
reduced by weight loss[7]. Many studies demonstrated 
that increased oxidative stress is associated with 
insulin resistance pathogenesis by insulin signals 
inhibition and adipokines dysregulation[8,9]. In animal 
studies, oxidative stress enhances insulin resistance. 
The evidence suggested that angiotensin Ⅱ (Ang Ⅱ) 
infused rats required the increased glucose load to 
maintain normal glucose levels during hyperinsulinemic 
clamp to stimulate ROS production[10]. Thus, ROS may 
also contribute and accelerate the insulin resistance 
development in insulin-targeted organs of the over 
nutrition and the excess salt individuals.

In the large general population studies demonstrated 
that insulin resistance is multifactorial[11,12] and the 
genetic component[11,13,14]. Insulin resistance most often 
precedes in many years before the onset of T2DM. 
Insulin resistance and the consequence of declined of 
insulin secretion are the principle of the T2DM patho
genesis[11,12,15,16]. The late complications of diabetes have 
been associated and implicated in their etiology with 
oxidative stress[17-19]. The influence of oxidative stress 
on insulin resistance, dyslipidemia, abnormal lipoprotein 
production and the pathophysiology of T2DM by using 
in vivo, in vitro and animal models data on these effects 

were also included in this review.

ROS
Oxygen exists in air known as oxygen molecule (O2) or 
dioxygen. Oxygen on the surface of earth appeared in 
significant amounts approximately 2.5 × 109 years ago. 
It was created by the photosynthetic activity of plants 
and microorganisms (blue green algae). Increased 
atmospheric oxygen concentration was followed by 
the ozone layer formation in the stratosphere. Both 
oxygen and ozone layer were filters against the solar 
ultraviolet radiation reaching surface of the Earth. In 
eukaryotic cells, ROS is produced as the consequence 
of the normal aerobic physiological metabolism[1]. 
These ROS levels are counter-balanced with the cellular 
antioxidants in the normal physiological conditions. ROS 
define as diverse chemical that have reactive properties 
are capable to accommodate or donate electrons (e-) to 
the broad range of biological molecules. These species 
includeinstability radicals arise from an unpaired e-. 
Existence of the presence of oxygen and the aerobic 
organisms on the earth is possible[20]. 

O2 + e + H+  →  HO2
•            (hydroperoxyl radical)

HO2
•   →  H+ + O2•

-                 (superoxide radical)
O2•

- + 2H+ + e  →  H2O2        (hydrogen peroxide)
H2O2 + e  →  OH- + OH•       (hydroxyl radical)

However, these molecules are also played an 
adverse role in the biological systems as oxidative 
stress. At the steady state of the living systems, oxygen 
metabolism always produce oxygen-derived free 
radicals such as superoxide O2

•-, hydroxyl OH•, alkoxyl 
RO•, peroxyl RO2

•, peroxynitrite ONOO- and oxygen-
derived non-radicals such as hydrogen peroxide H2O2, 
hypochlorous acid HOCl and hypobromous acid HOBr. 
Both free radicals and non-radicals groups are the 
important factors of the oxidative stress mediated 
cellular damages[21]. Normally, the neutralization of ROS 
productions by cellular antioxidant defense mechanisms 
are determine as the physiological state and do not 
cause any oxidative damage[2]. The imbalance of the 
ROS production and antioxidants defense system in the 
living systems caused oxidative stress brings to cellular 
function disruption and damage[3]. 

This imbalance occurs due to over production of ROS 
and reduction of the antioxidant defense mechanisms. 
The electron transport chain in mitochondrial, peroxisomes 
and cytochrome P450 system are the most important 
sources of ROS production (involves in O2

•- production)[22]. 
Moreover, various enzymes can be accelerated ROS 
production such as cyclooxygenases[23,24], xanthine 
oxidase[25], uncoupled nitric oxide synthases (NOS)[26-28] 
and NADPH oxidases[29]. Drugs such as doxorubicin[30,31], 
cisplatin, acetaminophen[32-34] and nimesulide[35]. Heavy 
metals (Fe, Cd, Pb, Hg) as the toxic substances [36-39], 
acrolein, chloroform, carbon tetrachloride[40], tertiary butyl 
hydroperoxide[41-44], environmental pollutants (oxides of 
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nitrogen, SO2, CO2), xenobiotics, UV irradiation and the 
other factors induce ROS overproduction.

In metabolic disorders assist the increased ROS 
production in the physiological system such as obesity, 
insulin resistance and diabetes mellitus[45-48]. In Figure 1 
summarized of obesity and metabolic syndrome elevate 
in oxidative stress. Superoxide radical (O2

•-), hydroxyl 
radical (OH•) and hydrogen peroxide (H2O2) are the three 
major ROS in physiological organisms[49]. Superoxide 
radical (O2

•-) acts as the parent ROS molecules caused 
from the one electron reduction of oxygen molecule by 
electron transport chain enzymes in mitochondrial such 
as enzymes in cytochrome P450, cyclooxygenase and 
NADPH oxidase. Various reactions of enzymes and non-
enzymes system further convert these ROS molecules 
to hydroxyl radical (OH•), peroxynitrite ion (ONOO-) 
and hyperchlorous acid (HOCl). For example superoxide 
dismutase converts O2

•- to H2O2 by the dismutase 
reaction[50,51].

Elevated ROS molecules caused the cellular ma
cromolecules damage such as lipids[52], proteins[53] and 
nucleic acids[54]. In the anti-oxidants system of the living 
system, possess own antioxidant defense mechanisms[55] 
includes enzymes and non-enzyme molecules such as 
SOD, catalase (CAT) and glutathione peroxidases (GPx). 
Enzyme SOD catalyzes O2

•- conversion to H2O2, while 
CAT converts H2O2 to H2O and O2. For reduction of two 
peroxide molecules use non-enzymatic glutathione (GSH; 
reduced and oxidized forms), reduced glutathione (GSH) 
and GPx catalyze to produce oxidized glutathione (GSSG) 
and water[56]. Various enzymes play the important 
combination roles in the series of antioxidant defense 
systems such as glutathione reductase, glutathione 
S-transferase, and glutathione disulfide (GSSG).

ROS production is identified as endogenous and 
exogenous source. UV exposure and xenobiotic agents 
has been shown to generate these ROS[57]. In fact, 
dietary is the major source of these oxidant compounds, 
especially in animal fat as the source of high lipid 
peroxides[58]. ROS may also be derived from the general 
biochemical reactions in living organism to generate 
ROS as by-products or end products. In the transition 
heavy metals such as iron (Fe2+) and copper (Cu+) 
are pose the oxidative stress production, especially in 

Fe2+ may cause autooxidation to cause O2
•- generation 

and/or interaction with H2O2 can generate OH• via the 
Fenton and Harber Weiss reactions[59]. Fenton chemical 
reaction may also causes lipid peroxides generation and 
propagation[60].
Auto oxidation of Fe2+:

Fe2+ + O2    →  Fe3+ + O2•
-

Fenton reaction:
H2O2 + Fe2+    → Fe3+ + OH- + OH•

Haber-Weiss reaction:

The major cellular oxidative stress is come from 
mitochondrial respiration. Heart, brain, kidney, liver and 
skeletal muscle are the effective oxygen consumption 
organs is converted oxygen to O2

•-, approximate 
releasing 0.1%-0.2% while the liver is converted 
oxygen to O2

•-, approximately releasing 2%[61]. Electron 
transport chain complex of the mitochondrial has been 
sourced to O2

•- generation and have been estimated 
upto 107 ROS molecules per mitochondria per day[62].

In the enzymatic systems of xanthine oxidase 
generated via xanthine dehydrogenase, which utilize 
oxygen molecule as e- acceptor during catabolism of 
xanthine. Xanthine oxidase is the generator of O2

•-, 
H2O2

[63] and OH• producer[64], highly expressed in 
epithelial, injured and diseased tissues as shown in Figure 
2. Xanthine oxidase has been involved to peroxynitrite 
(OONO-) and nitric oxide (NO) productions through nitrite 
reduction[65,66]. Intracellular nitric oxide synthases (NOS) 
catalyze L-arginine to form citrulline and NO. Endothelial 
NOS and neuronal NOS are activated by calcium-induced 
calmodulin binding to produce NO levels[67]. Inducible 
NOS (iNOS) has also calmodulin bound molecule. It may 
rapid and chronic expression in many cell types such as 
smooth muscle cells, hepatocytes and macrophages. 
INOS is induced by the many inflammatory cytokines 
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Figure 1  Summarized of obesity and metabolic syndrome elevate in 
oxidative stress. T2DM: Type 2 diabetes mellitus; MetS: Metabolic syndrome.
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the chain-breaking antioxidant (vitamin E) agent is 
added to terminate the chain reaction. The three stages 
of lipid peroxidation are initiation, propagation and 
termination. Hydroxyl radical (•OH), alkoxyl radical (RO•), 
peroxyl radical (ROO•), and HO2

• species can abstract 
the first hydrogen atom of polyunsaturated fatty acid 
but not H2O2 or O2

•-[70]. Variety of lipid hydroperoxides 
and cyclic peroxides are the end products of the 
chain reaction. Lipid peroxides are stable molecules 
in the physiological temperatures. Lipid peroxides 
decomposition is catalyzed by transition heavy metals. 
For example, iron ion-active complexes present in 
circulating can participate in the Fenton reaction to 
promote lipid peroxide decomposition. Hemoglobin 
and the cytochromes molecules can also facilitate 
peroxide decomposition, although they do not directly 
catalyze Fenton chemistry. However, hemeproteins can 
release chelatable iron that can participate in Fenton 
chemistry[71]. Ferritin and hemosiderin are effective at 
stimulating lipid peroxidation and catalase is weakly 
effective, caused problems to use catalase as a probe 
for H2O2 in lipid peroxidation systems[72]. 

Reduced heavy metal [Fe+2, Cu+] react with lipid 
peroxides (LOOH) to alkoxyl radical or Cu+ react with 
LOOH to alkoxyl radical.

        LOOH + Mn+  →  LO• + M(n+1)+ + OH-

In the reaction oxidized-heavy metals [Fe+3, Cu+2] 
slowly react with LOOH to produce alkoxyl and peroxyl 
radicals. Both peroxyl and alkoxyl radicals initiate the 
chain reaction by reducing hydrogen atoms (Figure 3). 
The fixed oxidation metals ions can affect the rate of lipid 
peroxidation (Ca2+, Pb2+ and Al3+ ions). Lipid peroxidation 
accelerates by the iron salts stimulation result in the 
membrane structure changes and important implications 
for environmental toxicology[73].

Rawls et al[74] demonstrated that singlet O2
• is 

formed during the lipid peroxidation degradation and 
might contribute to cause more initiation in the chain 

[tumor necrosis factor-α (TNF-α), interleukin-6 and 
growth factors] regulation at the transcriptional level, 
results in micromolar NO production[67]. INOS can poduce 
O2

•- and OONO- when lower in L-arginine substrate[68].

LIPID PEROXIDATION
Fats and oils oxidized with characteristic changes in 
texture, color, taste and odor. This process, known 
as rancidity, was chemically defined in the 1940s as 
an autoxidative free-radical chain reaction[69]. The 
most powerful oxidant formed in biological systems is 
hydroxyl radical. It can attack any biological molecule. 
The initiation step of lipid peroxidation occurred when 
hydroxyl radicals attack to polyunsaturated fatty acids, 
to cause the free-radical polyunsaturated fatty acids 
oxidation in biological systems. Lipid peroxidation is 
autocatalytic lipid hydroperoxides radical production 
mediated poly-unsaturated fatty acids in cell membranes 
destruction and degradation process[4,5]. Conjugated 
dienes and MDA, by-products of lipid peroxidation 
are increased in the circulation of obesity, metabolic 
syndrome and T2DM patients.

First-peroxidation chain initiation, results from the 
attack by any species to reduce a hydrogen atom from 
methylene (-CH2-) group of polyunsaturated fatty acid 
or membrane. Because one hydrogen atom contains 
one electron, reduction leaves an unpaired electron 
on the carbon of -CH-, double bond in the fatty acid 
weakens the C-H bonds on the carbon atom adjacent 
to the other double bond and facilitates it removal. 
Then, the polyunsaturated fattyacid chains in lipids 
membrane are sensitive to cause lipid peroxidation. 
The carbon-centered radical forms a conjugated diene 
by the molecular rearrangement (Figure 3), which 
combines with oxygen to form a peroxyl radical that 
able to reduce a hydrogen atom from another fatty 
acid to start a chain reaction. Peroxidation continues to 
use up the polyunsaturated fatty acid substrate unless 
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Figure 3  The chain reaction of lipid peroxidation.
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reaction. Initiation in the first-chain initiation should be 
used as lipid peroxide decomposition reactions to start 
the new chain reaction. Iron ions and ferrous ions are 
free radicals[55], can act in electron transfer reactions 
with oxygen molecule. Then, the presence of iron 
ions can promote the hydroxyl radicals formation by 
Fenton reaction. Bielski et al[75] demonstrated that the 
•OH radical production in any source can initiate lipid 
peroxidation reaction.

                   LH + OH•  →  L• + H2O

Superoxide-dependent Fenton reaction (superoxide 
resulting H2O2 and reducing Fe3+ to Fe2+) did not 
demonstrate any substantial involvement of the hydroxyl 
radical in liposomal peroxidation systems as detected by 
the scavengers action[76]. Hydroxyl radicals in the systems 
can be measured by spin trapping[77] or deoxyribose 
degradation measurements[76] but do not contribute to 
the lipid peroxidation rate[76]. The addition of iron ion in 
any preparations can stimulate peroxidation reaction by 
lipid hydroperoxide degradation to generate peroxyl (LO2

•) 
and alkoxyl (LO•) radicals. 

The rate constant of the reaction when ferrous ions 
are reacted as 1.5 × 103 /mol/L per second[78], which 
is higher than the rate reaction constant of ferrous ions 
with H2O2 reaction (76 /mol/L per second)[79]. The iron 
ions stimulate lipid peroxidation by the lipid degradation 
reactions from the present of abundant hydroperoxide.

Iron or copper in a biological system attach to 
biological molecules at the specific location of OH radicals 
formation to cause lipid, protein and DNA damage. On 
lipid membrane, the propagation step of lipid peroxidation 
reactions does not proceedes further until the reaction 
reach the protein portion. Thus, lipid peroxidation in 
vivo causes proteins membrane damage[80,81]. This 
damage has more biologically important than those lipids 
membrane damage. Cells also contain mechanisms 
for recognizing and removing oxidative modified 
proteins[80,81]. 

OXIDATIVE STRESS
Oxidative stress occurs at the molecular level as the 
cellular event when increased ROS overwhelm the 
antioxidant defense capabilities systems. Oxidative 
stress was defines as the increasing ROS production, 
vary in intensities, the different cellular locations and 
may be occurred either acutely or chronically[82]. 
Oxidative damage to macromolecules including carbo
hydrates, proteins, lipids and DNA typically viewed as 
increased ROS induced cellular damage to cause the 
irreversible macromolecules modifications. Therefore, 
the by-products of these oxidative modified biomo
lecules are used as oxidative stress biomarkers in vivo 
and in vitro. Many research studies demonstrated the 
association of oxidative stress and the pathogenesis 

of insulin resistance via insulin signals inhibition and 
adipocytokines dysregulation[8,9]. Oxidative stress 
biomarkers included MDA[83], 4-hydroxy-2-nonenal and 
isoprostanes species[84], protein carbonyls, 3-nitrotyrosine, 
hydroperoxides, protein oxidation products[85], glycation 
end products, carbohydrate modifications[86] and 
8-hydroxy-2′-deoxyguanosine (8-OH-dG), an oxidized 
DNA product[84].

Assaying lipid peroxidation
The lipid peroxidation contributes to the pathogenesis 
of atherosclerosis. It is occurred in the blood vessel 
walls and does not occur from low density lipoproteins 
(LDL) in circulation[87,88]. LDL can enter to the blood 
vessel walls. The modified LDL (oxidized LDL) may 
escape from the scavenger recognition receptors and 
back to the circulation. Therefore, this circulating LDL 
peroxidation is a potentially useful biomarker of lipid 
peroxidation in circulation. Indeed, this assay is used 
for the demonstration of in vivo antioxidants inhibit the 
effects of lipid peroxidation[89,90].

Thiobarbituric acid-reactive substance
MDA from the oxidative polyunsaturated fatty acids 
(PUFA) degradation is determined by the reaction of 
thiobarbituric acid (TBA) with MDA to generate the 
stable end product of MDA-TBA adduct[91-95]. This MDA 
free radical has been demonstrated as a causative of the 
atherosclerosis pathogenesis[96,97], aging[98], cancer[99] 
and Alzheimer’s disease[100,101]. Serum MDA levels 
have been used as the lipid peroxidation biomarker 
and indicator of free radical damage[37,83,102]. MDA, the 
three-carbon dialdehyde, can exist in many forms in the 
aqueous circulation. This method was used the reaction 
of MDA with TBA and heated under acidic conditions 
but the TBA can react with many chemical species such 
as proteins, phospholipids, aldehydes, amino acid and 
nucleic acids[103,104]. One MDA molecule reacts with TBA 
two molecules to form a stable pink to red chromophore 
that absorbs maximally at 532 nm[105] or fluorescence 
detection. This chromophore is termed thiobarbituric 
acid reacting substances. Elevated MDA levels in T2DM 
patients are associated with cardiovascular disease 
risk[83].

Isoprostanes
The most valuable of lipid peroxidation biomarker in 
the biological system is the isoprostanes, elevated from 
the PUFA peroxidation[106-113]. Isoprostanes identified 
as free form and the most are esterified to lipids in 
circulation. Isoprostanes can be analyzed by mass 
spectrometry techniques, so that can easily be detected 
in human body fluids[108,109,112,113]. Isoprostanes appear 
to turn over rapidly in metabolized and excreted[108,109]. 
Isoprostanes and their metabolites detection in urine 
may be the useful biomarker for lipid peroxidation[113]. 
Isoprostanes assay have focused on the F2-isoprostanes 
measurement, which elevate from the arachidonic acid 
peroxidation[109]. Elevation of F2-isoprostanes levels have 
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been shown in conditions of the cardiovascular disease, 
diabetes development[114,115], cigarette smoking[111,116,

117], hyperhomocysteinaemia[118] and hypercholestero
laemia[110,119]. F2-isoprostane levels have also been 
shown to decrease by antioxidants supplementation 
both in animal models and humans subjects[120-124]. 

Oxidative stress in metabolic syndrome
The components of metabolic syndrome consist with 
abdominal obesity, dyslipidemia, hypertension and 
diabetes[125,126]. It is the major modern lifestyle com
plication cause from physical inactivity and overeating 
and associated with the increased risk of cardiovascular 
diseases, hypertension and T2DM that summarized in 
Figure 4.

Over nutrition and oxidative stress: In metabolism 
of glucose through glycolysis and tricarboxylic acid (TCA) 
cycle to generate nicotinamide adenine dinucleotide 
(NADH) and flavin adenine dinucleotide (FADH2) as 
the electron donors. In over nutrition, the excessive 
glucose occur and a large amount of glucose is oxidized 
in the glycolysis and TCA cycle to increase NADH 
and FADH2 generation in electron transport chain of 
mitochondrial and increased superoxide generation[127]. 
The excessive of free fatty acids (FFAs) leads to increase 
FFA-oxidation and acetyl coenzyme A (CoA) oxidation 
in TCA cycle generate the NADH and FADH2 electron 
donors as glucose oxidation results in mitochondrial 
ROS overproduction[127]. Furthermore, NADPH oxidase 
in the plasma membrane can convert oxygen molecule 
to superoxide radical and involve in ROS nutrient-based 
generation. In adipocytes, ROS is generated by in fused 

with FFAs, treatment with NADPH oxidase inhibitor can 
block this ROS generation. This indicates that NADPH 
oxidase involves in fatty acids ROS generation[8]. 
Palmitate can activate diacylglycerol synthesis and 
protein kinase C (PKC) leading to activate NADPH 
oxidase[128]. Thus, over accumulated fat result in the 
increased fatty acids oxidation and lead to activate 
NADPH oxidase (in local or remotely cells) to cause ROS 
over production in over nutrition or obesity (Figure 4). 
Conversely, calorie restriction may be associated with 
normal physiological system[129] and may involve in 
normal cellular redox state[130]. In aged animals models 
treated with antioxidant agents or hypocaloric diets 
led to ameliorate in oxidative stress status and tissue 
function[131,132]. Treatment with resveratrol, a polyphenol 
reduced atherosclerosis and diabetes development[133]. 
These studies demonstrate that nutrition is associated 
with increased or decreased redox status and over 
nutrition result to increase oxidative stress to contribute 
pathogenesis of atherosclerosis, cancer and other 
diseases.

Oxidative stress in adipose tissue: Increased fat 
accumulation in human has been associated with 
oxidative stress biomarkers[134]. Similarly, obese mice 
were significantly higher oxidative stress levels in 
circulation[8]. Moreover, lipid peroxidation and H2O2 
levels were increased in adipose tissue[8]. These mean 
that adipose tissue may the major source of ROS 
production and can be released to the circulation 
potentially affecting various distance organs functions 
and damage (Figure 4).

Increased NADPH oxidase expression in adipose 
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Figure 4  Summarized the increasing reactive oxygen species in obesity, metabolic syndrome and salt sensitive hypertension. FFA: Free fatty acid; MetS: 
Metabolic syndrome; HT: Hypertension; IGT: Impaired glucose tolerance.
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tissue associated with increased oxidative stress levels. 
Increased mRNA expression was found in adipose 
tissue of obese mice[8]. Increased ROS generation in 
lipid accumulation and further elevating ROS generation 
with FFA treatment were found in 3T3-L1 adipocytes 
cultured[8]. These ROS generation processes can be 
blocked by NADPH oxidase inhibitors, apocynin or 
diphenyleneiodonium. Many studies suggest that 
NADPH oxidase induces adipocytes ROS production[8]. 
Moreover, obese mice ameliorated hyperinsulinemia, 
hypertriglyceridemia, hyperglycemia and hepatic 
steatosis by supplementation with apocynin[8]. These 
data demonstrate that NADPH oxidase increase ROS 
production in obesity and metabolic syndrome may play 
the important roles in the atherosclerosis, T2DM and 
cancer pathogenesis. Adipose tissue tries to increase 
antioxidant enzymes levels to against ROS over 
production. However, these antioxidant enzymes activity 
and expression are decreased in adipose tissue[8,135-137]. 
Then, increased ROS-production enzymes and decreased 
antioxidant enzymes may cause oxidative stress in 
obese and metabolic syndrome. 

Oxidative stress and salt-sensitive hypertension: 
As in mention above, ROS levels are increased in obesity 
and can be ameliorated by weight loss[7]. Obese rats 
induced by refined sugar or high fat diet leading to ROS 
overproduction and increase oxidative stress[6,138]. Many 
research evidences suggest that metabolic syndrome 
was associated with the salt-sensitive hypertension. 
ROS play the roles as mechanical link of metabolic 
syndrome and salt-sensitive hypertension[125,126], 
which itself leads to ROS overproduction[139-142]. Salt 
restriction in hypertensive obesity was more effective 
reduction in blood pressure than in hypertensive non-
obesity patients, and weight loss in obesity and salt 
sensitive hypertensive patients caused the successful 
of blood pressure reduction[143]. Salt-sensitive hyper
tensive patients were significantly more prevalent in 
metabolic syndrome patients than without metabolic 
syndrome[144]. Oxidative stress in abdominal adipocytes 
due to increase adipocytokines secretion such as 
TNF-α, angiotensinogen, non-esterified fatty acids[126]. 
Interestingly, infused Ang Ⅱ-rats disturbed sodium 
balance to cause ROS overproduction in salt-sensitive 
rats[139-141]. Moreover, in salt-sensitive hypertensive 
patients are also increased 8-isoprostane levels[142]. 
Thus, ROS may the underling pathogenesis of diseases 
in metabolic syndrome, obese and non-obese intake 
excessive salt as the salt-sensitive hypertensive patients.

In high-renin patients (non-modulating salt sensitive 
hypertension) had elevated the homeostasis model 
assessment of insulin resistance (HOMA-IR) levels[145]. 
Insalt-sensitive hypertensive non-obesity patients had 
significantly lower insulin sensitivity than in non-salt-
sensitive hypertensive patients[146]. Insulin resistance 
caused salt-sensitive hypertensive obesity and/or 
metabolic syndrome patients[125]. Increased renal 
ROS overproduction may increase the salt sensitive 

hypertension[147]. Then, increased renal oxidative stress 
may contribute to cause salt-sensitive hypertension 
development. Moreover, ROS overproduction in vascular 
endothelial cells suppresses the NO-dependent vaso
dilation[148] and may play the role in the salt-sensitive 
hypertension development.

Oxidative stress in type 2 diabetes
Many research studies demonstrated that T2DM patients 
have increased ROS production-induced higher oxidative 
damage in the circulation and also have reduced 
antioxidant defenses mechanisms[149-152]. Increased 
ROS production in T2DM patients is thought to activate 
many detrimental pathways including hexosamine 
pathways, advanced glycation end-products (AGEs) 
formation, and PKCβ1/2[127]. Hyperglycemia condition 
can induce oxidative stress by several mechanisms such 
as glucose autoxidation, polyol pathway, AGE formation 
and PKCβ1/2 kinase. Elevated free fatty acids, leptin 
and other circulating factors in T2DM patients may 
also contribute to cause ROS overproduction. Figure 
5 demonstrates the association of increased ROS 
production with atherosclerosis and sources of ROS 
generations in T2DM patients. 

Glucose autoxidation
Hyperglycemia due to cause increased glucose metabolism 
leading to increase NADH and FADH2 overproduction, 
which are used by the electron transport chain of 
mitochondria to generate ATP[153]. NADH overproduction 
can cause the higher proton gradient production in 
mitochondria. These electrons are transferred to oxygen to 
produce higher superoxide[154]. The NADH dehydrogenase 
of the complex Ⅰ ubiquinone oxidoreductase and complex 
Ⅲ cytochrome c reductase are the two main site of 
superoxide production via the electron transport chain[155].

The polyol pathway
Oxidative stress increased in circulation of T2DM patients 
from the polyol pathway. ROS was generated by two 
enzymes: (1) Aldose reductase in the reaction use 
NADPH to change glucose to sorbitol. Sorbitol production 
is a minor reaction in normal physiological conditions. 
However, 30%-35% of glucose in T2DM conditions is 
metabolized by polyol pathway[156]. In the condition 
of sorbitol overproduction, the availability of NADPH is 
reduced this reflect to reduce glutathione regeneration 
and NOS synthase activity to cause increased oxidative
stress[153]; and (2) Sorbitol dehydrogenase in the second 
step oxidizes sorbitol to fructose concomitant with 
NADH overproduction. Increased NADH may be used 
by NADH oxidases to increase superoxide production[157] 
include in mitochondrial over superoxide production.

PKCβ1/2
Many structures and biochemical components changed 
in the circulation of T2DM patients were caused from 
PKCβ1/2 activation via diacylglycerol leading to cause 
dysfunction in endothelial contractility and permeability, 
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hemodynamics (retinal blood flow) changes, extra
cellular matrix protein synthesis, VEGF production and 
intracellular signaling in the vascular[128,158,159].

Non-enzymatic glycation
Glycation end-product is the binding of ketone or 
aldehyde groups of glucose with the free amino groups of 
proteins leading Schiff bases formation without enzymes, 
then to form the Amadori product and rearrangements 
of the structure to the irreversible AGEs in the final[160,161]. 
AGEs has been demonstrated in atherosclerotic lesions 
and their tissue of T2DM patients and increased AGEs 
levels associated with severity of the diseases[162]. 
Moreover, binding of AGEs to specific cell surface receptor 
for AGE can activate intracellular redox signaling and 
subsequent to activate the expression of redox-sensitive 
transcription factors and inflammatory mediator[163-165].

Inflammation
Oxidative stress is the major factor underlying in the 
CVD, insulin resistance and T2DM pathogenesis. These 
may explain by the presence of the inflammation 
conditions. Now, inflammation recognized as the one
manifestation of oxidative stress[166] and can be gene
rate the inflammatory mediators including adhesion 
molecules and interleukins to induce oxidative stress[166]. 
The concept of atherosclerosis is an inflammatory 
disease now well established. This chronic inflammation 
may be involved in the insulin resistance and T2DM 
pathogenesis[167]. Recent clinical research indicates that 
sub-clinical inflammation may impact in the development 
and progression of diabetic complications[165,168]. Moreover, 
excessive FFA and glucose induce inflammation effect 
through oxidative stress and reduced antioxidants[169]. 
Interestingly, the subclinical pro-inflammatory state 

observed in many pathogenesis conditions such as 
atherosclerosis, aging, T2DM and cancer, is caused from 
mitochondrial ROS overgeneration[170]. 

Other sources of oxidative stress in diabetes
Non-esterified FFAs are elevated in T2DM patients[171]. 
These excessive FFAs enter the citric acid cycle to 
generate acetyl-CoA to receive NADH overproduction 
to cause mitochondrial superoxide over production. 
In humans, infused FFA has been shown increased 
lipid peroxidation by elevated isoprostanes marker 
levels[172,173]. Adipocytokine, leptin is secreted from the 
adipocytes to act on the central nervous system to 
decrease food intake. It reflects all effects on the vascular 
smooth muscle cells, endothelial cells, macrophages and 
monocytes[174]. Leptin levels are increased and associated 
with cardiovascular disease in T2DM patients[175-177]. In 
culture of endothelial cells incubated with leptin to cause 
ROS production[178,179].

Antioxidants
Regulation of the cellular redox status is depends on 
the rate of ROS counterbalance and elimination from 
the enzymatic and/or non-enzymatic antioxidants. 
Superoxide is converted by SOD to H2O2 and O2 molecule. 
There are 3 isoforms of SOD such as cytosolic Cu/Zn SOD 
(SOD1), mitochondrial Mn-SOD (SOD2) and extracellular 
SOD (SOD3). Catalase, the heme metalloenzyme is 
expressed in peroxisomes, mitochondria, cytoplasm and 
nucleus. H2O2 is catalyzed by catalase to oxygen and 
water[180]. While glutathione peroxidase the selenoprotein, 
was found in both intracellular and extracellular. Gluta
thione peroxidase has a highly sensitive function for 
lipid peroxides degradation, converses H2O2 to water 
by using the thiol group of glutathione[181]. Their H2O2 
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detoxification plays the important roles to prevent lipid 
peroxidation production and regulation of the cellular 
redox status[182]. The glutathione system, thioredoxin 
peroxidase is key enzyme to regulate the cellular levels of 
thiol/disulfide while the production of antioxidant enzymes 
is regulated by the redox-cellular transcription factors[183]. 
For example, the expressed transcription factor NF-E2 
related factor in the cytosolic is interrupted binding with 
Keap-1 as the responsible to increase oxidative stress and 
translocate to the nucleus for initiation of the transcription 
of the various antioxidant enzymes[184] as the strategy 
to develop many class of antioxidant, anti-inflammatory, 
and anticancer agents. Reduction in non-enzymatic 
antioxidants, thiol glutathione and thioredoxin are the 
major dysregulation of the cellular redox status[185]. 
The cellular redox status is reflected by the reduction 
of glutathione (GSH), oxidized glutathione (GSSG) 
ratio (or GSH:GSSG ratio), ascorbic acid, tocopherols 
and methionine and cysteine amino acids. Exogenous 
herbal antioxidants compounds in dietary foods include 
flavanoids, anthocyanins and polyphenolics act as ROS 
scavenging[186,187]. The direct interaction of ROS with non-
enzymatic antioxidants is based on chemical structure 
properties. In free radicals participate in 1e- oxidation 
while non-radical species was 2e- oxidation. For example, 
O2

•- and OH• radicals react with the ascorbic acid and 
thiols. While the OH• more activity and instability react 
with methionine and tocopherols. H2O2 and the non-
radical may react with thiols and methionine, and the 
OONO- discriminate to react with thiols, ascorbic acid, 
tocopherols and methionine[188].

Oxidative stress induces insulin resistance
Oxidative stress plays the major role in the association 
with the insulin resistance pathogenesis by insulin signals 
disruption and adipocytokines dysregulation[8,9]. In rat 
models, oxidative stress enhances insulin resistance. 
The evidence suggested that Ang Ⅱ infused rats 
required the increased glucose infusion to maintain 
euglycemia during hyperinsulinemic clamp to stimulate 
ROS production[10]. For this example, Ang Ⅱ-infused 
rats were caused insulin resistance from the suppression 
on insulin-induced glucose uptake in skeletal muscle 
and increased in oxidative stress biomarkers in this 
animal experiment. In experimental model, superoxide 
dismutase and tempol can reduce the insulin resistance. 
Many evidences indicated that ROS overproduction 
may induce insulin resistance and confirmed by the 
supplementation of antioxidant tempol to cause insulin 
resistance amelioration in Ren-2 transgenic rats[189]. 
Insulin-target organs of the obese and diabetic KKAy 
mice were stimulated and caused ROS over production 
(skeletal muscle, liver and adipose tissue)[8] and to cause 
insulin resistance in these organs. High fat-fed mice 
found ROS overproduction in liver and adipose tissue 
of these obese mices to induce insulin resistance[190]. 
Many research studies suggested that antioxidant 
agents decreased plasma insulin, glucose, triglycerides 
levels and ameliorate insulin resistance in KKAy mice 

with no weight loss[8]. Antioxidant coenzyme Q10 
supplementation can ameliorate the increased insulin 
levels in circulation of SHR/cp rats[191]. As mention above, 
in over nutrition, the excessive glucose occur and a 
large amount of glucose is metabolized in the glycolysis 
and TCA cycle leading to increased NADH and FADH2 
production in electron transport chain of mitochondrial 
and increased superoxide production[127]. In aged animals 
models treated with antioxidant agents or hypocaloric 
diets led to ameliorate in oxidative stress status and 
tissue function[131,132].

Insulin resistance
In general population, insulin resistance precede in 
many years before onset of T2DM and it is also multi
factorial[11,12] such as genetic component[11,13]. Insulin 
resistance and reduction in insulin production are the 
major characteristics of the T2DM pathogenesis[11,12,14-16]. 
Modern lifestyle, physical inactivity, abdominal obesity and 
excessive of adipokines can cause insulin resistance[11,15]. 
In early stage, normal glucose tolerance is preserved 
by compensation hyperinsulinemia. About 25% of non-
diabetic subject cause insulin resistance in the same 
ranges that found in T2DM patients[12]. Insulin resistance 
continuous increases and/or decreases in insulin secretory 
compensation responses, the deterioration into impaired 
glucose tolerance occurred. Increased glucose, FFA and 
insulin levels lead to ROS overproduction, increased 
oxidative stress and activate stress transduction factor 
pathways. This can cause insulin activity inhibition and 
secretion to accelerate the onset of T2DM as shown in 
Figure 6.

Oxidative stress has been demonstrated the 
implication and association in the late complications of 
diabetes mellitus[17,18] as in the schematic of Figure 5. 
Many studies have demonstrated ROS overproduction 
and increased oxidative stress to insulin resistance[192-194]. 
Both in vitro studies and in animal models demonstrated 
that α-lipoic acid (LA), antioxidant agent increase insulin 
sensitivity[194-196]. In clinical trials, supplementation 
with vitamin C, vitamin E, glutathione increases insulin 
sensitivity in both insulin-resistance and T2DM pa
tients[197,198]. LA act as insulin sensitizer agent, it 
increased insulin sensitivity about approximately 25% 
and approximately 20% higher than metformin and 
rosiglitazone, respectively[199,200]. Oral supplementation 
with LA formulation for 6 wk decreased circulating 
fructosamine levels[201] and increase insulin sensitivity[202] 
in T2DM patients and the other studies have confirmed 
2.5 mmol/L of LA to cause GLUT4 activation and 
translocation[203-205]. 

Because insulin resistance occurred before chronic 
hyperglycemia development[12], that difference from 
insulin resistance in the pre-diabetic state result from 
oxidative stress activation by increased glucose levels. 
However, obesity demonstrated the strong association 
with insulin resistance. In this regard, the mediator of 
oxidative stress-induced insulin resistance of the pre-
diabetic state might be from the adipocyte-derived 
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factor such as TNF-α[206], leptin[207], FFAs[208-210] and 
resistin[211]. However, the FFAs elevations are associated 
with insulin resistance and obesity[208,209,212]. Many 
studies found that increased FFA levels decrease insulin 
sensitivity, as in the Randle hypothesis[210] and insulin-
signaling inhibition[212]. The increased fasting FFA levels 
are significantly correlated with decreased reduced/
oxidized glutathione ratio in T2DM patients[190]. Elevated 
FFA concentrations cause mitochondrial dysfunction 
such as uncouplers of oxidative phosphorylation in 
mitochondria[213] and increased superoxide produc
tion[214]. These caused the exacerbated situation from 
FFAs induce oxidative stress and reduce intracellular 
glutathione caused impaired endogenous antioxidant 
defenses[190,215,216]. Supplementation with glutathione 
improves insulin sensitivity and β-cell function by 
the restoration of redox status in T2DM patients and 
healthy subjects[217]. 

FFA mediated the nuclear factor-κB (NF-κB) 
activation, as the consequence of FFAs increased ROS 
overproduction and glutathione reduction[216,218-220] and 
also linked to FFA-activated PKC-θ [221] to caused NF-κB 
activation[222]. Vitamin E supplementation inhibits the 
FFA-induced NF-κB activation[216] indicated that FFAs 
act as pro-inflammatory agent effects the alteration of 
the cellular redox status.

The HOMA-IR was proposed by Matthews et al[223] 
that can be used to estimate insulin resistance and 
insulin sensitivity in individuals. HOMA-IR is easy to 
calculate and no more laborious technique. HOMA-IR 
method derives from the mathematic calculation from 
fasting plasma insulin and glucose concentrations.

Oxidative stress and β-cells dysfunction
Increased circulating glucose levels stimulate the β-Cells 

function by sensing and secreting of insulin in appropriate 
amount[224] and as the target of oxidative stress. The 
processes are complex and depend on many factors[16]. 
The critical glucose metabolism in mitochondrial is the 
importance linking stimulus the insulin secretion[224-226]. 
Therefore, mitochondria damage and markedly blunt 
insulin secretion is also occur by the ability of oxidative 
stress (H2O2)[226]. Many studies in T2DM patients have 
suggested that chronic exposure to high glucose and/
or high FFA levels impaired β-cells function and β-cells 
dysfunction[16,227]. Because β-Cells are lower in antioxidant 
enzymes levels (superoxide dismutase, catalase and 
glutathione peroxidase) and higher sensitive to oxidative 
stress[228]. Oxidative stress exposure to β-cells activated 
the increased p21 cyclin-dependent kinase inhibitor 
production, decreased insulin mRNA, ATP and calcium 
flux reductions in mitochondria and cytosol to cause 
apoptosis[226]. Glucose or methyl succinate can stimulate 
insulin secretion and inhibit by response to K+ within 30 
min[226]. The results indicate that mitochondria in β-cells 
involved in the processes of glucose induced insulin 
secretion are affected by increased oxidative stress. 
Lipid peroxidation, oxidative stress products exposed to 
islets, inhibited insulin secretion and also caused glucose 
oxidation[229]. Conversely, antioxidants can protect 
β-cell against the toxicity of oxidative stress, AGEs 
production and inhibit NF-κB activation[230-234]. These 
antioxidants are N-acetyl cysteine (NAC), α-phenyl-tert 
butylnitrone, aminoguanidine and zinc. Recent research 
study evaluated β-cells function after over expression 
of glutamine. Hexosamine over production resulted 
from the deterioration of insulin signaling of glucose-
stimulated insulin secretion. Fructose-6-phosphate 
amidotransferase is the rate-limiting enzyme increase 
in hexosamine pathway[235], coincident with increased 
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H2O2 production[235] that can ameliorate by NAC 
supplementation.

β-cells glucose-induced toxicity
West[19] demonstrated that insulin secretion in T2DM 
patients improved by the reduction of hyperglycemia 
with diet, insulin or sulfonylureas. On the other hand, in 
healthy normal, high glucose infused as a clamp reduces 
insulin secretion[236]. In the study of long term culture of 
HIT-T15 and/or βTC-6 cells demonstrated that increased 
glucose levels cause decreased insulin secretion, 
insulin mRNA and decreased binding of transcription 
factors[237,238]. Thus, glucose toxicity, the concept of the 
condition of hyperglycaemia itself can decrease insulin 
secretion which implies the irreversible damage to cellular 
components of β-cells[239]. Generally in β-cells, excessive 
glucose oxidation and metabolism will always cause to 
ROS over production. Superoxide dismutase and catalase 
are normally as the detoxified antioxidant enzymes. 
β-Cells are low amount of these antioxidant enzymes and 
also low in glutathione peroxidase, a redox-regulating 
enzyme[240]. Then, hyperglycaemia condition leads to 
increase ROS production and accumulation in β-cells and 
subsequent of cellular components damage. Pancreas 
duodenum homeobox-1 is an insulin promoter activity 
regulator was loss leading to β-cell dysfunction[240]. 
Supplementation with NAC and/or aminoguanidine 
can ameliorate the glucotoxic effects on insulin gene 
activity[230], reduced insulin levels and increased insulin 
mRNA and insulin sensitivity[230].

β-cells lipid-induced toxicity
Lipotoxicity to β-cells concept, elevation of non-
esterified fatty acids concentrations in diabetic and 
non-diabetic obese patients, result of the enhanced 
adipocyte lipolysis. In the presence of the excessive 
fatty acid oxidation in β-cells is caused increased long-
chain acyl CoA accumulation leading to inhibite β-cells 
function[241]. This process is as an integral part of the 
normal insulin secretory function. This long-chain 
acyl CoA can inhibit the insulin secretory function by 
opening β-cell K+-sensitive ATP channels. In the second 
mechanism, in long-term culture of β-cells formulas with 
FFAs can effect the potential reduction on mitochondrial 
membrane and uncoupler proteins-2 over expression to 
cause the K+-sensitive ATP channels opening which lead 
to decreased ATP production and insulin secretion[242,243]. 
Third mechanism, β-cells apoptosis might possess from 
triglyceride or fatty acid induced ceramide synthesis 
and/or nitric oxide production. Thus, impaired insulin 
secretion and β-cell dysfunction strongly associated with 
the FFA-stimulated ROS overproduction[244].

β-cells combined glucose/lipid toxicity
Elevation of glucose and FFA levels are the major 
characteristic of T2DM patients. This combination is 
the major β-cells toxicity and require the maximize 
protection. In culture cells of islets or HIT cells were 

exposed to high concentrations of glucose and FFA 
levels. There was decrease in insulin-gene activity and 
insulin mRNA[245]. In the study of islets co-culture with 
high glucose and palmitate levels caused impaired 
insulin signaling of the glucose-stimulated insulin 
secretion[244]. Recent studies have confirmed that β-cells 
lipotoxicity is the concurrent status as the amplifying 
effect mediated by glucose toxicity in hyperglycemia 
condition[246,247].

Dyslipidemia
Insulin resistance and T2DM are characterized by 
dyslipidemia one major risk factor for cardiovascular 
disease. Lipid triad is the complex metabolic milieu 
associated with dyslipidaemia[248] comprise with hyper
triglyceridemia, low levels of high-density lipoprotein 
cholesterol (HDL-C) and the appearance of small, 
dense, LDL (sdLDL) - and caused excessive post 
prandial lipemia[249,250]. Diabetic dyslipidemia caused 
from the disturbance of lipid metabolism, an early 
event cardiovascular complications development and 
was preceded in T2DM patients by several years[249-253]. 
Indeed, insulin resistance status in both with and 
without T2DM patients was display qualitatively similar 
lipid abnormalities[250]. The different components of 
diabetic dyslipidemia are closely linked to each other 
metabolically[249-253] and are initiated by the elevation 
of triglyceriderich very LDL (VLDL) from hepatic over 
production[249,251]. It is the key importance mechanisms to 
elucidate the over production of VLDL involved in diabetic 
dyslipidemia[249].

In insulin resistance state, decrease insulin function 
and lack of insulin inhibits lipolysis leads to increase FFAs 
generation of and lower lipoprotein lipase activity. This 
occurs after meal consumption, generates a chylomicron 
remnant rich in TG[254], caused elevated hepatic FFAs 
and VLDL TG-rich particles secretion. These processes 
affects HDL-C metabolism through the interchange 
with TG-rich lipoproteins via cholesteryl ester transfer 
protein to produce HDL particles containing high TG 
concentrations. These HDL-TG particles were hydrolyzed 
with hepatic lipase to TG and HDL. This HDL becomes 
smaller and less antiatherogenic activity, easily to 
remove from the circulation by the kidneys. Moreover, 
insulin resistance in T2DM patients associated with 
endothelial dysfunction led to increase risk of CVD[255]. 
The most atherogenic subfractions of sdLDL are 
elevated in circulation of obesity individuals, as a key 
feature in association with elevated triglyceride and 
low HDL cholesterol. Elevated sdLDL concentrations 
are also founded in abdominal obesity subjects and 
demonstrated greater myocardial risk.The mechanisms 
are related to excess accumulation of abdominal 
adipose tissues, elevated total cholesterol and LDL-C 
and related to high saturated-fat consumption, weight 
gain and obesity.

Dyslipidemia is commonly occurred in T2DM 
patients and might play the major role in accelerated 
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HDL-C can be used as markers of insulin levels, insulin 
resistance and CVD risk factor[258,263]. The highest % 
sensitivity and % specificity cut-off points corresponding 
to the TC/HDL-C, TG/HDL-C ratios and non-HDL-C 
are 3.58, 2.48 and 130.4, respectively[258]. Because of 
TC/HDL-C, TG/HDL-C ratios and non-HDL-C are easily 
calculated and ordered with every lipid profiles available 
to the clinician and no costs addition. The cut-off value 
of these ratios in Tangvarasittichai et al[258] study was 
lower than the results from Western populations[266-268]. 
Then, insulin resistance was significantly predicted by 
these markers. For atherosclerotic risk assessment 
in obesity, metabolic syndrome and T2DM patients 
requires more attention to lipid screening.

Development of T2DM from insulin resistance
Insulin resistance often occurs with T2DM but is 
insufficient for the T2DM development. β-cells dysfunction 
are important event for the T2DM development and 
progression. In early stage of insulin resistance, β-cells 
increase the secretory function try to compensate and 
control hyperglycemia. In Pima Indian population study 
caused acute insulin response dysfunction or decreased 
β-cell responses was found during the normal glucose 
tolerance state in individuals who eventually progressed 
from normal glucose tolerance to impaired glucose 
tolerance or T2DM when compared with individuals who 
persisted in the state of normal glucose tolerance[269]. 
There was evidence of early defects in glucose disposal 
by decreased insulin sensitivity before the develop
ment of glucose intolerance state, although output of 
circulating glucose did not increase until the progression 
from impaired glucose tolerance to T2DM revealed. 
Interestingly, individuals who demonstrated transient 
glucose intolerance but were able to recover and to reach 
normal glucose tolerance and did not show the early 
secretory defect observed in progressed individuals[269]. 
β-cells failure or dysfunction occurred as the results of 
the combination of increased oxidative stress, glucose 
and lipids accumulation to cause glucotoxicity and 
lipotoxicity to β-cells to progress increased apoptosis 
and loss of the insulin granule secretory components 
expression[270].

T2DM
The World Health Organization updated the prevalence 
of T2DM estimated by the year 2025 those 30.3 million 
people in the United States and total of 380 million 
people worldwide will be diagnosed as DM[271]. By 
the year 2050, those 45.6 million Americans will be 
diagnosed as DM[272]. T2DM is associated with obesity, 
sedentary lifestyle and lack of exercise in the aging 
population. There are a number of gene abnormalities 
related to T2DM, that showed significant differences 
exist in the abnormalities gene associated with T2DM 
among the various ethnic populations, such as African 
Americans, Asians and Europids[273,274]. The contribution 
of any one of these genes to T2DM is small and total 

macrovascular atherosclerotic disease and increased 
CVD risk in T2DM patients[256]. Dyslipidemia in T2DM 
patients as lipids triad is characterized by increased 
insulin levels, hypertriglyceridemia, low HDL-C levels 
and increased sdLDL-particles (independent of LDL-
cholesterol) and increased TG-rich remnant lipoprotein 
(TGRLs) concentrations[257,258]. In this manner, low 
HDL-C levels associated with hyperinsulinemia or insulin 
resistance and insulin signaling for insulin-mediated 
glucose disposal[259] characterized by higher fasting 
plasma glucose and insulin levels. Then, these major 
changes associated with the insulin resistance syndrome 
are increased TGRLs and decreased HDL-C levels. Thus, 
in dyslipidemia, using the lipoprotein concentration ratios 
are associated with insulin resistance and increased 
CVD risk conditions. Lipoprotein ratios might be useful 
to identify insulin resistance individuals even different 
in fasting glucose or insulin levels. Obesity, metabolic 
syndrome, and T2DM may also show the same dysli
pidemia characteristic[12,257,259] and measuring TG, 
HDL-C, TC/HDL-C and TG/HDL-C ratio in circulation may 
also use as insulin resistance estimation. For example, 
these TG, HDL-C, TC/HDL-C and TG/HDL-C ratio are 
independently associated with insulin levels, insulin 
resistance and CVD risk[258,260,261]. 

Lipoprotein ratios: In description above, the major 
change is increased TGRLs and decreased HDL-C 
levels are associated with insulin resistance syndrome. 
Insulin plays the important role in TG metabolism, in 
normal condition TGRLs particles reduces synthesis 
by the distinct pathways when compared with VLDL 
particles synthesis[249,258]. Insulin fails to suppress VLDL 
particles synthesis[262]. Insulin resistance is significantly 
associated with increased lipid synthesis in the liver, 
increased FFAs flow to the liver and decreased VLDL 
particles clearance resulting in increased VLDL levels 
in the circulation[251]. Thus, dyslipidemia (as lipoprotein 
ratios) may associate with insulin resistance and 
increased CVD risk. On this basis, waist circumference, 
LDL-C, TG levels, insulin resistance and the CVD risk 
are estimated[263]. The major features of dyslipidemia 
are determined by hypertriglyceridemia, low HDL-C 
levels and slightly high or normal LDL-C levels with 
altered composition. Hypertriglyceridemia is indicate as 
elevated atherogenic chylomicron and VLDL remnant 
and associated with increased CVD risk[264,265]. These 
phenomenons demonstrated the problems of VLDL 
and HDL levels but not the LDL levels and concurrent 
with increased insulin levels. Low HDL-C level is 
associated with the hyperinsulinemia and/or insulin 
resistance and insulin signaling for insulin-mediated 
glucose disposal[259]. All of these features are associated 
with coronary heart disease risk in obesity, metabolic 
syndrome and T2DM patients. The TC/HDL-C, TG/
HDL-C ratios and non-HDL-C (as TC - HDL-C) were 
used as surrogate markers for insulin levels and insulin 
resistance estimation. In Tangvarasittichai et al[258] study 
suggests that TC/HDL-C, TG/HDL-C ratios and non-
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aggregate of all described genes accounts for < 15% 
of the predisposition[273,275]. It is typically diagnosed in 
patients older than 30 years with overweight or obesity 
and positive in family history of T2DM. However, insulin 
resistance may occur and develop in many years before 
diagnosed as T2DM[276]. Figure 7 summarized the 
etiology of the T2DM pathogenesis.

Patients are diagnosed as T2DM when plasma 
glucose levels reach at the diagnostic criteria (Table 1). 
These T2DM patients are at high risk for microvascular 
complications (e.g., nephropathy, retinopathy and 
neuropathy) and macrovascular complications (e.g., 
peripheral vascular disease, cerebrovascular disease 
and cardiovascular disease). T2DM patients with good 
controlled plasma glucose levels demonstrated to delay 
the progression of microvascular and macrovascular 
complications[271,277].

MANAGEMENT OF DYSLIPIDEMIA AND 
HYPERGLYCEMIA IN T2DM PATIENTS
Fasting serum lipids profile should be determined 
annually in T2DM patients as in the recommendation 
by the American Diabetes Association (ADA)[278]. ADA 
recommended for the satisfied lipids profile level 
as low-risk by LDL-C < 100 mg/dL (2.6 mmol/L), 
triglycerides < 150 mg/dL (1.7 mmol/L) and HDL-C > 
50 mg/dL (1.3 mmol/L)[276].

Treatment
Lifestyle interventions: The American Diabetes Asso
ciation and the American Heart Association recommend 
that increased physical activity and lifestyle modifications 
should be advised for all T2DM patients[278,279]. Combination 
with such interventions included nutrition therapy or 
supplementation, weight loss and non-smoking. These 
have been help T2DM patients to receive better controlled 
their lipid concentrations. Nutrition interventions and 
supplementations should be designed according to the 
condition of T2DM individuals such as diabetes status, 

age, other comorbidities and avoidance to intake transfat, 
saturated fat, cholesterol and should increase intake of 
fiber (fiber in oats, legumes, citrus), omega-3 fatty acids 
and plant stanols/sterols[278]. Glycemic control can also 
modify circulating triglycerides levels, especially in T2DM 
patients with hypertriglyceridemia and poor glycemic 
control[278].

Pharmacological interventions of dyslipidemia
There are many pharmacological classes available for 
dyslipidemia treatment.

Statins: Statins inhibit enzyme 3-hydroxy-3-methyl
glutaryl CoA reductase suppress cholesterol synthesis 
and increase number and activity of LDL-receptor. 
Statins are effective drug for lowering LDL-cholesterol, 
raising HDL-C and reducing TG levels. There are seven 
pharmaceutical forms of statins including lovastatin, 
simvastatin, pravastatin, fluvastatin, atorvastatin, 
rosuvastatin and pitavastatin available in the market. 
Statins also have the other pharmacodynamic actions 
such as vascular inflammation reduction, immune 
suppression, improved endothelial function, platelet 
aggregability, enhanced fibrinolysis, antithrombotic 
action, increase neovascularization in ischemic tissue and 
stabilization of atherosclerotic plaques[280].

Fibrates
Fibrates control the lipid metabolism by mediated 
through peroxisome proliferator-activated receptors-α 
activation, stimulation of β-oxidation of fatty acids in 
peroxisomes and mitochondria to cause lowering fatty 
acid and triglycerides levels in circulation. The first drug 
of this class is Clofibrate. Eventually, the revolution in 
lipid-lowering drugs research discover of many other 
fibrate drugs such as fenofibrate, bezafibrate, gemfibrozil 
and ciprofibrate. These drugs demonstrated the adverse 
effect to cause hepatomegaly and tumor formation in the 
liver of rodents. Then, they had restricted for the widely 
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Figure 7  Summarized the etiology of the type 2 diabetes mellitus patho
genesis. FFA: Free fatty acid; NF-κB: Nuclear factor-κB; TNF-α: Tumor necrosis 
factor α.

Table 1  Type 2 diabetes mellitus and glucose levels for 
diagnostic criteria1

Glucose management test Range Diagnosis

Fasting plasma glucose (mg/dL) 
(at least 8 h fast)

 ≥ 126  Diabetes mellitus

100-125 Impaired fasting glucose 
≤ 99 Normal

2-h oral glucose tolerance test of 
75 g glucose load (mg/dL) WITH

 ≥ 200 Diabetes

Random screening with common 
symptoms of diabetes (polyuria, 

140-199 Impaired glucose tolerance 

polydipsia, weight loss, etc.)  ≤ 139 Normal
Hemoglobin A1c (%)  ≥ 6.5 Diabetes

5.7-6.4 Prediabetes/high risk
 ≤ 5.7 Normal

1All tests in diabetes range must be repeated after 24 h, to be confirmed 
diagnosis.
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use in humans. Gemfibrozil and fenofibrate are Food and 
Drug Administration (FDA)-approved for lipid lowering 
drugs due to milder effect on peroxisome proliferation.

Nicotinic acid
Long term study of the coronary drug project demon
strated that niacin is the effective drug to increase 
HDL-C levels and reduced CVD events[281] in a non-
diabetic subjects. Niacin cause adverse effects on the 
glycemic control levels in T2DM patients. In high doses 
treatment with niacin may increase blood glucose 
levels. The modest doses of 750-2000 mg/d of niacin 
are significantly increased HDL-C levels and decreased 
LDL-C, triglyceride levels and accompanied with modest 
changes in glucose levels for diabetes therapy[282,283]. 
However, there is no evidence for the CVD outcomes 
reduction with niacin supplementation in T2DM patients.

Antihyperglycemic drugs: The standard care for 
T2DM patients is mainly in controlled blood glucose 
levels by using glycemic lowering drugs and concomitant 
with controlled diet and increased physical activity. With 
proper controlled and managed these contributors such 
as circulating glucose levels, hemoglobin A1c, lifestyle 
modifications, these can be effectively controlled and 
reduced the progression and complications disease. 
In general, only approximately 50% to 60% of T2DM 
patients have achieved their glycemic goals[284]. There 
are many reasons for poor control of T2DM including
medication efficacy, adverse effects, access to medi
cations and health care education, poor adherence, 
lack of lifestyle changes and no physical activity. Now a 
day, more pharmacologicals for T2DM treatment have 
been approved for use. There are 12 classes of antihy
perglycemic drugs FDA-approved in the United States[285]

such as sulfonylureas, meglitinides, thiazolidinediones, 
dipeptidyl peptidase-4 (DPP-4) inhibitors, biguanides, 
sodium glucose transporter 2 inhibitors, α-gluco
sidase inhibitors, amylin analogues and glucagon-like 
peptide-1 (GLP-1) receptor agonists. These are insulin 
analogues. Metformin is one of the most commonly 
prescribed medications for T2DM management. Met
formin treatment ameliorate the insulin resistance 
especially in liver and skeletal muscle but less effect in 
adipose tissue[286,287], decreased inflammatory response, 
improved glycemic control[288,289] and enhance β-cell 
function in T2DM patients by increased insulin sensitivity 
and glucotoxicity reduction[290]. Metformin reduces 
fatty acid oxidation in adipose tissue[291], increased 
GLUT4 translocation in muscle and adipose tissues by 
activated enzyme adenosine monophosphate kinase 
and reduced gluconeogenesis in liver[292-295]. There are 
many developed non-conventional drugs to improve 
glycemic control such as Cycloset is used together with 
diet and exercise to treat type 2 diabetes. Cycloset is not 
for treating type 1 diabetes. Welchol is a non-absorbed, 
polymeric form, lipid-lowering and glucose-lowering 
agent for oral administration. Welchol is a high-capacity 
bile acid-binding molecule. Afrezza Inhalation Powder is 

the FDA approved the inhalation form of insulin. The new 
drug is not a substitute for long-acting insulin and use 
as the combination with conventional long-acting insulin 
drug for both types of diabetes and many drugs are in 
the late clinical trials state.

There are new medications and treatments were 
identified from the FDA, they are in the clinical trials or 
waiting for approval treatment in dyslipidemia, obesity 
and T2DM[296]. Recent research study reports that 
metformin treatment cause metabolic effects to increase 
GLP-1 concentration in the circulation[297,298]. GLP-1 is an 
incretin generated from the transcription product of the 
proglucagon gene. Incretin is a signaling polypeptide 
contained with 30-amino acid. GLP-1 secretion by 
ileal L-cells is not depend on the presence of nutrients 
in the small intestine and responsible for stimulated 
insulin secretion to limit glucose elevations with the 
higher efficacy at high glucose levels[276,299]. Elevated 
GLP-1 secretion might possibly cause increased glucose 
absorption in the distal segments of small intestine.

Incretins are the gastrointestinal hormone secreted 
from the intestine and stomach responsible for oral 
food intake and stimulated the secretion of insulin 
during meals in healthy peoples[276]. Two major incretin 
molecules are (1) GLP-1; and (2) Glucose-dependent 
insulinotopic peptide knows as gastric inhibitory 
polypeptide (GIP) and to neutralize stomach acid to 
protect the small intestine and no therapeutic efficacy 
in T2DM. GLP-1 has lower glucose levels by stimulated 
insulinproduction and increased glucose metabolism in 
adipose tissue and muscle. GLP-1 promote the pancreatic 
β-cells proliferation, reduce apoptosis, increase cardiac 
chronotropic, inotropic activity, decreases glucagon 
secretion, reduces glucose production, increase appetite 
suppression for food intake reduction and slow gastric 
emptying[271,276,299]. GLP-1 is degraded by enzyme DPP-4 
and this enzyme does not inhibit by metformin[298]. The 
prevention of GLP-1degradation by DPP-4 is one method 
to increase the effects of GLP-1. DPP-4 inhibitor drugs 
inhibit the glucagon secretion which in turn increases 
secretion of insulin to decrease blood glucose levels 
and decreases gastric emptying. The FDA-approved 
the DPP-4 inhibitor drugs including sitagliptin (Januvia), 
alogliptin (Nesina), saxagliptin (Onglyza), linagliptin 
(Tradjenta), anagliptin, vildagliptin, teneligliptin, 
gemigliptin and dutogliptin. The adverse effects are 
dose-dependent to cause headache, vomiting, nausea, 
nasopharyngitis, hypersensitivity and other conditions. 
Other side effects of exenatide (GLP-1 agonist) note for 
abdominal pain, acid stomach, diarrhea, altered renal 
function, weight loss, dysgeusia, belching and cause 
pruritus, urticaria and rash reactions at the injection site. 

CONCLUSION
In this present review has described the detrimental 
effects from chemicals and biochemicals reaction, 
metals, medications, over nutrition, obesity and diseases 
in oxidative stress, insulin resistance development and 
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the progression of T2DM and the progression of diabetic 
complications and organ dysfunctions. Oxidative stress 
played underling associated with the pathogenesis of 
diseases, leading to increases risk of insulin resistance, 
dyslipidemia, elevated blood pressure, metabolic 
syndrome, inflammation and endothelial dysfunction. 
This reviewed support the oxidative stress contribution 
of the multifactorial etiology of oxidative stress and 
insulin resistance in the whole body. ROS act as the 
signal transduction factor and plays the important role 
in oxidative stress-mediated downstream signaling 
pathways and enhances the cell death. Furthermore, 
risk for several chronic diseases development associated 
with oxidative stress and metabolic syndrome including 
T2DM, hypertension, arthritis, congestive heart failure, 
chronic renal failure, cancer and Alzheimer’s. These 
diseases may be substantially reduced by dietary 
modifications, increased physical activity and antioxidant 
drugs ameliorated oxidative stress. The therapeutic 
approaches target on oxidative stress may delay or 
prevent the progression and onset of diseases. Then, 
antioxidants supplementation may curtail the progression 
and onset of the metabolic disease complications. 
Antioxidant interventions, an importance goal of future 
clinical investigations should be implementation and 
to improve oral bioavailability targeted to the oxidant 
overproduction site. Lifestyle change remains the best 
prevention and therapeutic approach to oppose the 
increasing epidemic of cardiovascular diseases, obesity, 
hypertension, dyslipidemia and T2DM. Finally, the 
connection between oxidative stress, insulin resistance, 
dyslipidemia, inflammation, life style, atherosclerosis 
and diabetes as demonstrated in the schematic in Figure 
8.
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