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Abstract

We present and characterize a multi-host epidemic model of Rift Valley fever (RVF) virus in East 

Africa with geographic spread on a network, rule-based mitigation measures, and mosquito 

infection and population dynamics. Susceptible populations are depleted by disease and 

vaccination and are replenished with the birth of new animals. We observe that the severity of the 

epidemics is strongly correlated with the duration of the rainy season and that even severe 

epidemics are abruptly terminated when the rain stops. Because naturally acquired herd immunity 

is established, total mortality across 25 years is relatively insensitive to many mitigation 

approaches. Strong reductions in cattle mortality are expected, however, with sufficient reduction 

in population densities of either vectors or susceptible (ie. unvaccinated) hosts. A better 

understanding of RVF epidemiology would result from serology surveys to quantify the 

importance of herd immunity in epidemic control, and sequencing of virus from representative 

animals to quantify the realative importance of transportation and local reservoirs in nucleating 

yearly epidemics. Our results suggest that an effective multi-layered mitigation strategy would 

include vector control, movement control, and vaccination of young animals yearly, even in the 

absence of expected rainfall.
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1. Introduction

Vector-borne diseases cause significant human and animal morbidity and mortality. Their 

complex, multi-host disease transmission cycle makes predicting their spread and 

assessment of control mechanisms complex. Mathematical models can account for this 

complexity and assess the effectiveness of control measures, including vector control, 

vaccination, culling, quarantine, and movement control of animal hosts. Non-uniformity of 

control measures and natural fluctuations in the density of vectors and susceptible hosts can 

lead to complicated variations in both the temporal and geographic distribution of epidemic 

severity. A comprehensive model can reproduce patterns of change of epidemic severity and 

provide understanding of transmission mechanisms, the impact of changes in the host-range 

of a reservoir species or vector, and the value of various mitigation strategies. As the 

fraction of animals that are not susceptible to disease changes, either from vaccination or 

infection, a model can account for the importance of herd immunity in keeping the disease 

in check. A validated model can predict the extent that a newly introduced disease will 

penetrate a geographical area.

Rift Valley fever (RVF) is a significant cause of animal mortality and is capable of causing 

severe disease in humans [6, 47]. Recent large epidemics have raised concerns of the disease 

significantly expanding its geographic range. Treatment for illness caused by RVF virus 

consists primarily of supportive care for both infected humans and animals [5]. Although 

vaccination of cattle can control epidemics, the live vaccine causes spontaneous abortions 

while the inactivated vaccine requires multiple inoculations to provide protection from 

disease. In both cases, disease can be inadvertently spread from animal to animal during 

vaccination through multiple usages of needles [47].

Models of RVF have been aimed at addressing two primary concerns [34]. First, what is the 

risk of disease resurgence and spread in endemic regions? Second, what is the risk of RVF 

introduction into disease-free regions? Anyamba et al. [2] used GIS and weather data to 

create risk maps that change with time. Hightower et al. [25] also use geography and climate 

data to model outbreaks, predicting that RVF is more likely in lower elevations, on the 

plains, and in the bush. They point out that although geography and climate can be good 

predictors, other factors such as susceptibility and availability of hosts could also be 

important. Gaff et al. [19] designed a compartmental SIR differential equation model for 

RVF with one host species and two mosquito species. This model was later extended to 

include mitigation strategies [19, 28]. Mpeshe et al. [36] analyzed an SIR model for RVF 

with one mosquito species, livestock, and humans [36]. Xue et al. [49] extended the SIR 

models to include spatial heterogeneity via patch models, using data from South African 

outbreaks to parameterize and validate the model. Chitnis et al. [10] modeled RVF with 

vertical transmission in mosquitoes including marked seasonality and storage of infected 

eggs during the dry season to explore the role of vertical transmission in interepidemic 

persistence. Manore and Beechler [16] extended this work to model RVF spread and 

persistence in buffalo herds in Kruger National Park, South Africa. Soti et al. observed that 

while RVF prevalence correlated well with rainfall in East Africa, it was necessary to 

examine ground water hydrology and incorporate a more detailed model of Aedes and Culex 

mosquito lifecycles to reproduce observations in West Africa [41].
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RVF prevalence data are sparse and contain numerous systematic biases which can 

discourage construction of more realistic and detailed models. For example, the models 

described above that focus on spatial aspects of RVF epidemiology (climate and geography) 

are coupled with host susceptibility and availability while models that focus on temporal 

aspects of RVF epidemiology, account for vaccines, transmission chains, and immune 

history, but do not explicitly include climate and geography. Long-range transport of 

infected animals requires details of both spatial and temporal aspects that are difficult to 

treat when either effect is approximated. Technical innovations in sequencing and high 

throughput characterization systems have raised the possibility of new types of global 

biosurveillance data. Many aspects of infectious disease monitoring, such as presence in a 

particular host or diversity of strains present in a particular region could be addressed with 

such technologies [29]. For example, sequence data was used during the avian influenza 

outbreaks in Nigeria in 2007 to show that multiple introductions, rather than intra-country 

transport, was responsible for introduction of the disease in Lagos [13, 37]. Detailed studies 

of such well-known pathogens as HIV or influenza also show that it is possible to utilize 

phylogenetic analyses of pathogen sequences to quantitatively relate disease correlates and 

transmission modalities to observed patterns in pathogen spread [23]. Such considerations 

motivate us in the daunting task of constructing a realistic model of RVF spread. In this 

modality, a detailed epidemiology model is not constructed by fitting detailed prevalence 

data, but rather by systematically examining mechanisms and observing trends, with a goal 

of shedding insight into how better practices can reduce the disease burden from RVF and 

other emerging zoonotic infections.

In this work, we explore and combine aspects of both spatial and temporal models using 

geography and weather together with temporal models that track mosquito, livestock, 

wildlife, and human populations with rule-based mitigations. This hybrid model allows us to 

incorporate rainfall, land use, animal and human populations, susceptibility via changes in 

herd immunity, the mosquito life cycle (including vertical transmission), and movement of 

hosts between regions. Although we still find empirical data lacking to constrain such a 

complex model, we are still able to identify numerous threshhold points, where each of the 

complexities becomes qualitatively important. The network aspect of the problem 

(geography), in particular, greatly increases the demands upon both validation and constraint 

of epidemiological modes, since distinct effects are often at work in different areas. 

Identifying and understanding these complexities, however, will be essential to effectively 

control these diseases and optimize resource allocation [38]. This point was particularly 

emphasized in Fenner’s book about the eradication of smallpox [18].

2. Methods

Careful observation of how a disease progresses through different populations and the 

effectiveness of mitigation strategies at minimizing impact are essential components of 

successful disease control programs. Our hybrid deterministic and stochastic multi-host RVF 

epidemiological model with explicit geography as a network of locations and mitigation 

measures is an expanded version of our Multi-Scale Epidemiological model (MuSE), 

developed to describe rinderpest spreading across livestock in the United States [32]. 

Geographic spread across the network was modeled with a deterministic, SIR-like model of 
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the epidemic spread within counties (nodes) and a stochastic spread between counties 

(across edges). Although country-level data does exist for long-range transport of livestock 

[46], in this work we relied on spatially-defined short-range geographic spread between 

nodes. Our hybrid model retains much of the computational rapidity of homogeneously 

mixed (SIR) models, while allowing for explicit, rule-based mitigations and explicit 

incorporation of any geographically dependent variable, such as population density, rainfall, 

income, or a locally defined replicative number, often denoted as R0. We assume that within 

the determined regions (40 km squares for these simulations), transmission in animals, 

humans, and mosquitoes can be represented by standard SIR differential equations. 

Tildesely et al. [43] have described the appropriateness of such ‘coarse-grained’ models for 

agricultural diseases.

Multiple mitigations of RVF have occurred in East Africa, including vaccination, vector 

control, and movement restrictions. We assumed quarantine and culling of susceptible cattle 

and wildlife did not occur, and implemented vaccination and movement controls by 

specifying how long after detection in a particular grid square such measures became 

effective. We did not explicitly include vector control, but instead investigated the 

dependence of epidemic severity on the density of susceptible hosts and vectors.

2.1. Mathematical Model

The disease states for the animals are shown in Figure 1a, and are similar to those in our 

previous studies, except that birth and death rates are added, replenishing the supply of 

susceptible hosts over time. Each species category has a constant per-capita birth rate and 

death rate based on the average lifespan of each category and a carrying capacity for each 

category assigned to each region based on population data for cattle, and inferred from land 

use for wildlife.

Our model of RVF disease progression and mitigation used three different animal hosts: 

cattle or livestock, wildlife, and humans. Cattle provide an important economic concern 

(consequence metric) during RVF outbreaks, while wildlife are likely the major portion of 

the viral reservoir. Even though humans serve as a dead-end host in the epidemiology of 

RVF, they are included in the model to predict the impact of mitigation strategies on 

protecting humans from disease. The disease progression and transition probabilities for the 

three representative hosts, cattle and other livestock, wildlife, and humans, are shown in Fig. 

1a. To the standard Susceptible, Infected, and Recovered states, we add Dead to track 

consequence, Latent and Carrier to describe asymptomatic disease states, and two 

Vaccinated states to account for the imperfect aspects of vaccines. The Quarantined state, 

defined as a way to protect susceptible populations, is shown in Fig. 1a, but considered 

ineffective for combating RVF in East Africa.

Vector dynamics are essential determinants of the time and place of RVF outbreaks, and we 

include both Aedes mosquitoes and Culex mosquitoes. Mosquitoes can become infected by 

biting an infected animal; humans and animals can become infected by being bitten by an 

infected mosquito, and humans can also become infected, at a reduced rate, by direct contact 

with infected animals. While it is possible to model human RVF by simply changing the 

parameters of the animal model, incorporation of mosquitoes into MuSE required adding a 
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mosquito lifecycle model coupling hatching of eggs to rainfall data and including vertical 

transmission of RVF virus by Aedes mosquitoes. The assumed lifecycle of the mosquito is 

shown in Figure 1b, including a larval state by forcing a minimum stay in the egg state 

before hatching is allowed (similar to the mosquito portion of the RVF larvae models of 

Chitnis et al. [10] or Soti et al. [41]). The hatching process requires the presence of rainfall 

in our model, and Figure 2 shows monthly totals for ten years of rainfall from the Serengeti 

wildlife reserve, taken from Holdo et al [26]. Although rainfall data are available across East 

Africa at high spatial resolution in 10-day intervals [48], we chose to stochastically generate 

rainfall patterns with a time-course similar to that in Figure 2. These dynamics generate the 

rapid expansion and contraction of the mosquito populations with the coming and going of 

the rainy season, from November to May of each year, and illustrate the non-trivial problem 

of how RVF emerges at the begining of each rainy season. We explicitly include the egg → 

larvae → mosquito → death cycle illustrated in Fig. 1b in the model. The time-course of 

yearly epidemics is affected by incubation times and vertical transmission rates. These are 

shown in Fig. 1b and parameters are provided in Table I, below for two representative 

genera of mosquitoes, Aedes and Culex. We assume that only Aedes mosquitoes transmit 

RVF virus transovarially.

Explicit, rule-based models of surveillance, quarantine, culling, vaccination, and movement 

control are implemented as in the rinderpest study [32], although only to the applicable 

hosts, and quarantine, culling, and long-range transport were not explored. We assume once 

a region has more than 50 infectious livestock or humans, an alarm will be raised and 

mitigation strategies will begin with appropriate delays. Vaccination, the primary mitigation 

strategy considered here, has a lag time after detection ranging from days to weeks in our 

model. Regions immediately surrounding an infected region were assumed to implement 

surveillance, resulting in faster response time when disease is detected in the simulation, and 

disease spread to regions adjacent to infected areas was implemented.

The geography was defined by conditions in each cell of a 100 by 60 grid of well-mixed 

compartments 40 kilometers on a side. This resolution was chosen by our estimate of the 

spatial extent of isolated outbreaks, balanced by our desire to enable thousands of decade-

long simulations to be run overnight on a desktop computer. While all of the parameters 

listed in Table 1 could be made explicit functions of geography, we chose to allow only the 

density of hosts and vectors in the various disease compartments, rainfall, and the status of 

the various mitigation measures to vary. The importance of GIS correlates is emphasized in 

Reference [2]. The geographic spread of RVF was assumed to occur through a short-range 

mechanism with an exponential dependence on distance.

Short range movement rates are based on Euclidean distance with probability of movement 

and infection of a nearby area governed by an exponential distribution in distance from the 

infected region. Long range transportation would be governed by a matrix specifying 

movement rates between regions based on known livestock trade, wildlife migrations, or 

human movement, as in our rinderpest study [32]. We assume that mosquitoes do not move 

from their home region. For each run of the model, we choose randomly from a distribution 

of the parameters outlined in Table 1. During a particular run, the chosen parameters remain 

the same, while probability of spreading the infection due to movement of infected hosts is 
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implemented stochastically, changing with density of infected organisms, movement 

control, vaccination, and availability of susceptible hosts during the run [32]. We ran the 

mitigation scenarios 75 times each, sampling along the range of possible parameter values in 

order to understand the full spectrum of possible outcomes and the uncertainty inherent in 

such models.

The differential equations used to model within-patch spread of the disease are:

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

where

and

(2.9)
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(2.10)

are the force of infection terms, and with a constant per-capita death rate, , for every 

compartment except the death due to disease compartment  and a birth rate, , 

increasing occupation of susceptible compartments (except for Aedes mosquitoes which 

exhibit vertical transmission). Transmission within a patch, x, depends on density of animals 

and mosquitoes within the patch. The contact rate is denoted e−r(x)/a where 

, Nx is to total number of animals and mosquitoes in the patch, Ax is the 

area of the patch, and a is the characteristic length of local spread (about 5 miles). In this 

case, the transmission rates are  where  is the infectiousness of species i 

at stage n and  is the susceptibility of species i at stage m. Susceptibility at stages where 

the virus is already incubating, shedding, or cleared is assumed to be zero (i.e. complete 

immunity). At low host and vector density, transmission is density-dependent and at high 

density it is constant, while for mid ranges of host and vector density, transmission rates fall 

between the two. For species categories where particular mitigation strategies are not 

appropriate, we set the corresponding parameter to zero (e.g. we set εq = 0 since animal 

quarantine is not considered effective for vector-borne diseases). See Reference [32] for a 

full description of the model and parameters.

For the mosquito categories, an extra compartment for egg and larvae aquatic stages was 

added and the mosquito birth term is directed into this compartment before hatching at a 

weather-dependent percapita hatch rate into the susceptible adult compartment. For Aedes 

mosquitoes, it is possible for a certain fraction (ϕ) of eggs laid by infected mosquitoes to be 

infected, so some Aedes mosquitoes in the aquatic compartment hatch directly into the 

infected adult mosquito category and only progress through the latent incubation and 

infectious stages. Mosquitoes do not recover once infected.

Between-patch disease transmission occurs at rate depending on Euclidean distance and on 

long range transport. Long range transport would determined by the user and entered as a 

matrix indicating rates of movement between patches or regions; it was not modeled in the 

present work. The probability that a susceptible patch X will be infected is

(2.11)

(2.12)

where κs is a short range distance kernel and κL is a long range distance kernel determined 

by the matrix entry corresponding to transport for patch y to patch x. The terms χS and χL 

represent short and long distance movement control implemented after detection. Similar 

long/short range transmission terms are used for a model of foot and mouth spread in the 

U.K. [42] and are described in detail in Manore et al. [32].
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2.2. Parameters and their Variation in the Model

Exploring the interplay of herd immunity, pathogen variability, host and vector population 

density, rainfall patterns, disease progression parameters, and mitigation strategies can be 

complex. Simplified model systems can lack elements necessary to capture realism, yet the 

simultaneous treatment of all sources of variability in epidemic progression can make it 

difficult to quantify sensitivities and characterize and visualize results. In this work, we 

present historical rainfall data [26,48] and produce a minimal model of how this couples to 

mosquito density. Similarly, we present actual cattle [17], human [7], and land use data [24], 

and infer wildlife and vector carrying capacities from land use data. In keeping with the 

observed usefulness of patch-models of disease, we explore fluctuations of epidemic 

severity and the dependence of epidemic severity on host and vector population density, 

rainfall, and movement and vaccination control measures on a simplified 30 × 30 square 

patch with uniform initial host and vector populations, driven by stochastically generated 

rainfall data derived from observations at the Serengeti wildlife reserve. Since one important 

goal of this study is to characterize the importance and potential coupling of the 

effectiveness of various mitigation strategies, we used uniform distributions across plausible 

ranges for these parameters, as indicated in Table 1.

Considerable uncertainty surrounds the parameters describing disease progression and 

transmission as well as population movements and dynamics. These uncertainties reflect 

both a lack of knowledge and intrinsic variability among outbreaks. To capture these 

uncertainties and enable the above sensitivities to be more robustly computed, we 

judiciously used uniform distributions for several of the parameters describing our disease 

progression and transmission.

Table 1 lists all of the parameters necessary to define the model. Some parameters were 

taken from observations of disease progression ([10,16] and references therin), while others 

were taken by identifying attributes from isolated historical epidemics (e.g. [5,35,38]), and 

comparing to overall system dynamics in the present model simulations. Vertical 

transmission of RVF virus in mosquitos is discussed in Refs. [8,9,33]

3. Results

We consider the results in the order of multi-host dynamics, population density, saturation, 

herd immunity, and mitigations.

3.1. Multi-host dynamics

An important aspect of our model is the mosquito population dynamics, which have been 

observed to depend on temperature, photoperiod, and rainfall (among other environmental 

factors) [3,12]. Rainfall can lead to mosquito population increases which can lead to 

increased biting intensities. More mosquitoes successfully feeding on blood can lead to more 

eggs and an increase in immature stages of mosquitoes [30,40]. Temperature can affect the 

development of the immature stages of mosquito growth (egg, larva, pupae). Among the 

dependencies on temperature, the virus incubation period for mosquitoes tends to decrease 

with increases in temperature (up to a point) [44] and the mosquito life span is longer in 

temperate regions compared to very hot or cold regions [11,30]. We are modeling an 
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African region close to the equator with nearly constant temperature and daylight so rainfall 

is the dominant environmental forcing term for our model (as in Schaeffer et al. [39]). 

Figure 2 shows a time-series of rainfall amounts in the middle of our simulation region. An 

additional sensitivity of the epidemic progression on the rainfall history occurs because 

subsequent generations of RVF require alternating incubation times in the host and the 

vector, which slows the establishment of RVF virus in the host and vector populations.

Figure 3 shows a typical time-series from the RVF model showing the appearance of disease 

in a naive population on a 30×30 grid with 100,000 cattle in each of the 900 46×46 km grid 

squares. The dynamics of a single epidemic are shown with an expanded temporal scale, 

while the recurrent epidemics over 25 years are shown to the right. Displayed populations 

are aggregated across the geographic region. Susceptible populations are in the tens of 

millions, and are thus at the top of Figure 3, while infected populations are much smaller, 

and thus at the bottom. Rainfall is indicated by the magenta squares in arbitrary units. Note 

that since only a small portion of the entire region is, in general, infected, an epidemic can 

be saturating one region while the ratio of infected to total population in Figure 3 is only a 

few percent. Although the 900 geographic regions have uniform initial communities and 

applied rainfall patterns, the strong inhibition of disease provided by prior exposure (herd 

immunity) creates a strong and enduring spatial heterogeniety in disease prevalence.

The rapid rise of susceptible Aedes mosquitoes and slower rise of Culex mosquitoes is in 

keeping with the hatch rates in Table 1, and is readily visible at the left of Figure 3 starting 

promptly at the beginning of each rainy season. A short time later, the populations of 

infected mosquitoes and cattle begin to increase. This increase is much slower than that of 

mosquito populations, as it requires alternate incbuation times in hosts and vectors to 

establish the epidemic. The mosquito populations track closely with rain, and when the rain 

stops, there is a rapid exponential decline in the Aedes mosquito population. In addition to 

the rainfall, the epidemic is most sensitive to the incubation time for the virus in the 

mosquitoes. Later we examine in more detail how rainfall, vaccination, and movement 

control are important in determining the severity of the epidemics.

The recurring epidemic predictions shown on the right half of Figure 3 are correlated with 

the mosquito population and the seasonal rainfall. Year-to-year fluctuations in mosquito 

populations vary by approximately a factor of three, while the peak number of infected 

animals fluctuates by almost an order of magnitude. It takes approximately ten years for the 

epidemics to equilibrate in scale across the geographic area. This happens when a rainy 

season is long enough for a large epidemic to spread across the entire geographic region. It 

is likely that long-range transport of animals, which we do not consider, will significantly 

impact the details of how epidemics spread across East Africa, although in our uniform 

patch, short range transport is fully capable of spreading RVF across the entire region. 

Another significant time-scale observed in the simulations is the replenishment of 

susceptible cattle, which occurs with a rate of 33 % per year in our simulations. Because we 

assume that the cattle do not migrate between the regions, the herd immunity can be 

analyzed locally. When we remove the variability in duration of rainfall (without changing 

the overall amplitude), the epidemic eventually extinguishes itself.
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3.2. Population density, saturation, and herd immunity

We next examine the geographic dependence of our inputs. Figure 4 shows four inputs 

needed for our model as a contour map overlaid on East Africa, with country borders in 

black and rivers in cyan. The Indian Ocean and Lake Victoria are white in all four maps. 

Cattle density [17], land use [24] (from which initial mosquito populations are linearly 

estimaed), human population density [7], and cumulative rainfall over the first ten days of 

2007 [48], are each indicated in coutour maps in Figure 4. The data were aggregated to 40 

km × 40 km squares, and the 25 × 15 degree area is covered by a 100 × 60 grid of squares. 

Color range scales for the four plots are logarithmic, and correspond to factor three changes 

between adjacent colors for each figure, with specific values for all four plots provided in 

the caption.

Two salient features in Figure 4 inform our choice of simulations to investigate. First, our 

choice of 40 km squares are large enough to cover several large countries with a few 

thousand regions, while small enough to capture spatial dependencies of host populations, 

changes in land-use, and regional rainfall patterns. While there are undoutably numerous 

important local variations of importance to disease progression, such as contact terms 

between people and animals, the presence of standing water, and local concentrations of 

animals, it appeares that even a hundred-fold increase in the number of geographic regions 

would fail to capture these changes. Additionally, the data in Figure 4 derived from sources 

which are largely available for regions throughout the world, while the more local data 

would require significantly more effort to obtain. Secondly, regions of high human and 

cattle populations largely cooccur, around Lake Victoria and at the north of this area, in 

southern Ethiopia. The land use data, from which mosquito and wildlife carrying capacities 

were inferred, shows a relatively smooth progression from rainforest on the west side of our 

region to desert to the east. The spatial and temporal patterns of the weather are only hinted 

at in Figures 2 and 4, but clearly contain important aspects on the regional length scale and 

yearly time scales, respectively.

Although we have run simulations using the actual inputs shown in Figure 4, more insight 

into the disease dynamics can be obtained by considering a simpler patch, 30 squares on a 

side, with uniform initial host and mosquito populations, and rainfall data. Even in such a 

system, the role of the spatial network enters in a non-trivial manner and important insights 

into the real-world impacts of population density, duration of the rainy season, and the 

impacts of vaccination and movement controls can be understood.

To illustrate the role of population density (and thus also transmissibility) in determining 

epidemic severity, we plot the total number of cattle dying from RVF as a function of both 

mosquito population and cattle population in Figure 5a. For simplicity, we used identical 

parameters for cattle and wildlife distributions in these simulations. For our choice of 

epidemic parameters, epidemics are capable of spreading across the entire 1380 km region 

in a (particularly lengthy) single rainy season, if they are broadly seeded with infected 

animals and mosquitoes at the start of the season. In the typical example shown in Figure 3, 

it took a full decade for this to occur. Eventually, herd immunity limits the spread of the 

virus. Consequently, increases in the transmissibility do not greatly increase the 

consequence, when averaged across a 25-year period.
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The transmissibility is lower in regions with either lower mosquito or cattle densities. These 

low population regions can create geographic barriers that the epidemics are unable to 

propagate across in the timescale of animal lifetimes and cattle in the protected regions have 

a significant likelihood of never encountering the disease during their lifetimes. 

Nevertheless, increasing the density of susceptible hosts above the baseline case does not 

lead to a similar order-of-magnitude increase in consequence. This is because, at the 

baseline case, each subregion of our simulated area is typically impacted by an epidemic 

during the lifetime of the hosts. Effectively, this means naturally acquired herd immunity is 

built up in every region. The raw value of our transmissibility for RVF was, of course, not 

determined by experiments on contagious spread, but by our desire to have our model 

reproduce the observed timescale of RVF to spread across wide regions of East Africa. 

Further observations, such as serological studies or selective sequencing of viruses, could be 

used to determine epidemiological linkages among regions will be required to further refine 

the relative importance of long range transport of livestock, vertical transmission in 

mosquitoes, and pathogen variability in the appearance of epidemics across the region.

This dependence can be used to guide the potential impact of vaccination of newborn 

livestock and mosquito control mitigation in areas of varying cattle density. The strong non-

linearities observed in the simulations suggest the importance of serological surveys for 

prevalence of exposure in deciding which areas will benefit from mosquito control 

programs.

To illustrate the role of lengthy rainy seasons on epidemic scale, Figure 5b shows the total 

number of dead cattle in a single season as a function of the duration of the rainy season for 

different assumed values of the initial mosquito population and associated carrying 

capacities. From Figure 5a, we expect the dependence on cattle populations to be similar to 

the dependence on mosquito population. Since the consequence also depend on other 

randomly sampled variables (Table 1) we use smoothing splines to summarize the prediction 

trends for the different cases of mosquito density, and show the complete variablity for only 

two of the simulations, as symbols. Once again, the epidemic size reaches the saturation 

value after the rainfall of longest duration (note, we used the same scaling factor of 1.0 as in 

Figure 5a). For higher mosquito densities, this saturation value is reached in half the time, 

but the same maximal consequence occurs. Cutting the mosquito populations by a factor of 

2.5, however, reduces the number of dead cattle 10-fold. Although much of the variance is 

due to variability in disease progression and severity parameters, much is also due to the 

interplay of geographic heterogeniety and herd immunity.

3.3. Mitigations

This same interplay of geographic heterogeniety and herd immunity complicates the 

assessment of the impact of mitigative measures. In Figure 6, we explore the impact of two 

such measures, short-range movement control and vaccination, for different values of vector 

density.

Restricting cattle movement is a common mitigation measure to prevent the spread of 

epidemics. For the uniformly distributed populations considered in these simulations, no 

long-range transport was included and the movement restrictions were applied to the 
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distance dependent spread between nearby geographic units. As with Figure 5b, the solid 

lines indicate smoothing splines that indicate the trend in a considerable background of 

other, significant, dependencies. For the base case mosquito population, labeled 1.0 in 

Figure 6a, the data points that the approximating spline is derived from are also shown. 

Movement controls make the most difference when the transmissibility is higher and the 

geographic spread is greatest.

For a 45 day rainy season, we see that there is only a 3 week window of opportunity to 

vaccinate in time to impact an ongoing epidemic for the baseline case. Since vaccination 

continues until the epidemic is extinguished, the overall consequence in Figure 6b is nearly 

an order of magnitude below the single-season consequence from Figure 5b; the benefits of 

vaccination primarily occur in years subsequent to the vaccination effort. The dependencies 

between the variables, shown in Fig. 6a, provide insight into the value of such vaccination 

programs when applied locally or with sub-optimal coverage of susceptible.

Including spatial heterogeneity and explicit time-dependence in the epidemiology model 

captures important and realistic effects. The most important effects are the relatively large 

year-on-year fluctuations in epidemic size and the likelihood that herd immunity in densely 

populated areas impacts the severity of epidemics at other locations.

4. Discussion

We present a model of RVF spread which incorporates interdependencies of the most 

important determinants of disease range and severity (host and vector population density; 

duration of rainy seasons). We quantified the impact of three important mitigative measures, 

vector control, vaccination, and movement restriction. The presence of geographic 

heterogeniety and herd immunity complicates our ability to understand the value of local 

(temporal and spatial) application of such controls in any particular region, although their 

overall value when applied consistently was clearly evident. Knowledge gaps exist in both 

our understanding of the geographic dependence and temporal dependence of RVF 

progression.

4.1. Geographic uncertainties

The density of susceptible hosts is of primary importance in determining epidemic severity 

and geographic range of RVF disease; a factor 2.5 reduction in density of susceptible hosts 

or mosquitoes is observed in Figure 5a to result in a factor ten or more reduction in 

consequence, averaged over 25 years. Examination of the cattle population density in Figure 

4 already allows one to see that the epidemics will be centered primarily in two locations: 

Ethiopia to the north and the regions surrounding Lake Victoria in the southwest of the East 

African region shown. Both the human populations and land use (and, by assumption, 

mosquito population) correlate reasonably well with the cattle populations, meaning that it 

should be possible to model some of the effects of geographic heterogeneity with an implicit 

vector model. Recent work has modeled the yearly changes in cattle populations, as 

impacted by rainfall, climate change, and human behaviors [31].
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Further examination of Figure 4 suggests short-range transport alone will not allow the 

epidemic to spread from Lake Victoria to Ethiopia. Consequently, a realistic model will 

likely require an explicit long-range transport of cattle between countries. Reference [46] 

suggests that a value of 200,000 cattle transported each year among countries represented in 

East Africa (Kenya, Tanzania, Rwanda, Burundi, Uganda, and Sudan) is reasonable.

In this work, we somewhat arbitrarily placed the transmissibility at the level needed to cause 

shortrange spread to take the disease across our simplified geographic region during one of 

the longer rainy seasons. Although in reasonable agreement with observation, specific 

efforts to characterize the level of naturally occurring herd immunity (fraction seropositive) 

as a function of geography and time would enable a better understanding of where the 

transmissibility lies [14].

Although reasonable sources of data exist for human and cattle populations, specifying the 

regional carrying capacity for competent vectors and relevant wildlife reservoirs is more 

problematic. Not only are the particular species-dependencies of competence not 

understood, but the population densities and disease-carrying attributes of each are also, in 

general, unknown. A recent study [15] documents the incidence of wildlife in mosquito 

meals in Uganda, suggesting that possible vector-wildlife reservoir relationship for several 

arboviruses, including Rift Valley fever virus. Similarly, investigation of the role of various 

wildlife hosts in re-seeding RVF epidemics in Kruger National Park, South Africa has 

suggested the wildlife must be considered for proper treatment [16].

While we kept a wildlife compartment in our model for completeness, we have left 

exploration of the wide variety of potential carrier states, long range transportation terms, 

and potentially complex spatial distributions for a subsequent work. It appears likely to us 

that land-use data, such as that shown in Figure 4 will be a necessary intermediate step to 

inform detailed models and guide collection of the relevant data. The principal aspect of our 

study relevant to these considerations are the impact of the 3 year replacement time of cattle 

in re-seeding the susceptible population for epidemics and the dependence of the yearly 

epidemic size on the duration of the rainy season.

In picking a granularity of 40 km, we were able to simulate multi-year epidemics across 

much of East Africa in a few minutes of time on a single computer processor, and compare 

to similarly aggregated data on epidemic progressions. In doing so, we have necessarily 

aggregated mosquito populations and rainfall to a similar spatial scale. The observation that 

human, cattle, and land use correlate will likely need refinement at higher level of spatial 

resolution, as local heterogeneities in the distributions of animal and human hosts and the 

vectors are resolved.

4.2. Temporal uncertainties

Numerous RVF epidemics have been characterized over the past three decades [1,35]. The 

strong correlation of RVF epidemics with rainfall has previously been noted [2]; 

consequently we used rainfall as the temporal variable driving our simulation. Other 

choices, such as temperature [22] or estimated area of standing water [41] can be 

incorporated to improve the correlation between model and observation. At least two types 
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of problems are impacted by the choice of temporal drivers of epidemics. First is how the 

epidemic severity depends on the amplitude of the forcing term (Does doubling the rainfall 

double the hatch rate of mosquitoes?) or the duration over which this term is applied. 

Second is how the seeding of subsequent epidemics occurs, such as survival of infected 

mosquito eggs through the dry season, a reservoir in wildlife, chronic-carrier cattle or 

wildlife, or long-range transport terms.

A decade is required in our simulations for a newly introduced RVF strain to equilibrate into 

the mosquito populations and spread across the geographic region and define appropriate, 

near steady state, initial conditions for the simulations. This initialization requires a few 

heavy rainfall years, because of the highly non-linear dependence of epidemic size on the 

duration of the rainy season. Targeted strain tracking would provide much-needed constraint 

on the relative importance of animal reservoirs of RVF and long- and short-range 

transportation of animals in spreading RVF throughout East Africa.

Although the yearly cycle of rainfall is immediately recognizable in Figure 2, the presence 

of two distinct rainy seasons per year, the spatial and temporal heterogeniety and ambiguity 

in this quantity is also evident. It is clear from our simulations that the consequence in any 

given epidemic will depend on the level of seropositive animals, the spatial-temporal profile 

of the rainfall, details of the lifecycle parameters describing the vectors, as well as assumed 

mitigations [27].

Even though there are over 30 species of mosquitoes that are vectors for RVF virus [38,45], 

we consider two representative types of mosquitoes: Aedes, or floodwater, mosquitoes and 

Culex mosquitoes. As mentioned earlier we use rainfall as the main driving factor of the 

populations. Aedes eggs must be dry for at least 6 days before they can mature. After they 

mature, they hatch during the next flooding event large enough to cover them with water. 

The eggs can survive dry and dormant for months to years [9,21]. At the beginning of the 

rainy season, the Aedes mosquitoes quickly ramp up to very large numbers and then decline 

due to the need of dry conditions for egg maturation. There can be a second increase at the 

end of the rainy season if it stops raining for several days and then rains again. Culex 

mosquitoes, on the other hand, prefer water that has been standing for a while. Their eggs 

require water to mature and hatch. They survive the dry season in adult form. During the 

rainy season, Culex mosquitoes ramp up to a maximum toward the end of the season.

Distinguishing among the above possibilities will be useful in guiding particular decisions 

surrounding local disease control efforts, and incorporation of these refinements will 

undoubtably improve the fidelity of modeling efforts such as ours. In particular, serology 

studies of areas of differing host and vector population density could provide an important 

constraint on our model by measuring the extent to which naturally acquired herd immunity 

limits epidemics of RVF [14]. Nevertheless, the particular mechanistic choices we made 

reporoduced widely-observed empirical features of RVF epidemiology, and should suffice 

for our intent – to explore the interplay of vector-host dynamics, weather, geography, and 

mitigation measures.
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4.3. Recommendations for control

Several observations appear robust enough (and plausible enough) to impact control 

measures. The observation of the benefits of vaccination in years subsequent to the 

vaccination program, when taken together with the problems of spontaneous abortion and 

spread of RVF virus through re-use of needles suggest an optimal mitigation strategy would 

consist of regular vaccination of cattle during their first year of life. Comparison of 

unmitigated epidemics in Figure 5 with mitigated epidemics in Figure 6 show an 

aproximately 30-fold reduction in mortality associated with relatively slow vaccination 

programs (with a much greater reduction for vaccination progams taking less than two 

weeks). The extent to which vaccination reduces impact in subsequent years will depend 

primarily on the birth/death rate of susceptible cattle, which was assumed to occur in 1,000 

days. Since the epidemics occur yearly, it is relatively straightforward to imagine how 

changes in this value will impact the value of such a vaccination program. The 30-fold 

reduction in mortality by reducing the susceptible pool by a factor of three is in keeping with 

the sensitivity observed in Figure 5a, and emphasizes the tremendous value of vaccination 

programs, provided they can establish herd immunity. We have modeled RVF epidemics 

and found the periodic rainfall and high sero-positive prevalence suggests self-limited 

epidemics. This leads to vaccination as the most robust mitigation, and it could be done 

annually in young animals, rather than under the severe time constraints that occur after an 

epidemic has begun.

Much more understanding of the role of ungulate wildlife and details of mosquito population 

dynamics will be necessary to fully characterize and realistically simulate RVF epidemics. 

Our model has identified some of the key quantities and data such as serological studies and 

sequencing, that are needed for validating improved mathematical models and future 

extensions of RVF simulations.

The potential importance of herd immunity has been highlighted in this work, but the 

potential of multiple co-circulating strains of RVF virus has not been considered in detail. 

As climate change, economic patterns, and population densities of hosts and vectors have all 

co-occurred in conjunction with increasing geographic range and severity of epidemics in 

the past decade, the likelihood of a virulent or vaccine-evading strain emerging must be 

considered, especially in regard to potential mitigation programs.
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Figure 1. 
Dynamic states of model for (a) cattle, wildlife, and humans, and (b) Aedes and Culex 

mosquitoes. For both models, S denotes Susceptible, D denotes Dead, and I denotes 

Infected. Additionally, for the animal and human model, Q denotes Quarantine, VS denotes 

Vaccinated susceptible, VE denotes Vaccinated exposed, L denotes Latent infection 

(incubating), C denotes Carrier, and R denotes Recovered. In (a), dashed lines represent 

mitigations. For the mosquito model, ES denotes Susceptible Eggs, EI denotes Infected 

Eggs, and the dashed lines indicate a hatching rate that explicitly incorporates a waiting-time 

before new mosquitoes can hatch. Equations describing the model are provided in text and 

parameters are provided in Table 1.
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Figure 2. 
Ten years of rainfall in the Serengeti wildlife refuge, taken from Reference [26]. Vertical 

lines designate the start of November of each year. Both the duration of rainy seasons and 

the monthly total vary significantly from year to year.
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Figure 3. 
Epidemic timelines for populations (top) and infected populations (bottom) of Aedes and 

Culex mosquito, and cattle versus time. On the left, one cycle of an epidemic is shown, 

while in the right are shown the sporadic epidemics over 25 years. Rainfall is modulated 

stochastically in a rough approximation to the patterns shown in Figure 2, and is shown in 

squares with an arbitrary scale.
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Figure 4. 
Spatial distribution of hosts and risk factors, geographic data for cattle populations [17], land 

use [24], human populations [7], and rainfall for January 1–10, 2007 [48]. For cattle, red 

indicates densities > 1,000 per km2; for land use, red indicates broad-leaf trees, green 

indicates mixed forests and grasslands, and blue desert (details of classification are provided 

in [24]; for human populations, red indicates densities > 100 per km2; for rainfall in the first 

ten days of 2007, red indicates > 10 cm.
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Figure 5. 
Important drivers of RVF epidemic severity. (a) Population density dependence of 

consequence over 25 years for cattle and mosquitoes. (b) Total deaths in a given year vs. the 

duration of the rainy seasons for the indicated mosquito densities of 0.4 (red +), 0.6 

(magenta line), 0.8 (green line), 1.0 (cyan line), and 1.9 (blue x) times that of baseline case. 

The smoothing spline was a heavily smoothed cubic spline, as implemented with the 

Gnuplot function acspline and a weighting parameter of 0.001; in the limit of zero 

weighting, this function provides a simple linear least squares fit to the data. Since the 

individual years were sampled from a 25 year simulation, the curves sample over not only 

the range of rainfall durations, but also the variety of possible sequences of wet and dry 

years.
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Figure 6. 
Mitigation strategies. Smoothing splines indicating deaths per individual epidemic, 

aggregated over 25 year simulations, as a function of (a) fraction of normal movement, and 

(b) vaccine response times, for different mosquito densities, with values of 0.4, 0.6, 0.8, 1.0, 

1.3, 1.6, and 1.9 indicating the fraction of the baseline mosquito population used, from 

bottom to top. For the basline case, (green, labeled 1.0), symbols are shown for each run 

determining the spline. Both plots were made from the same set of runs with both variables 

sampled over the indicated uniform distributions. The smoothing spline was a heavily 

smoothed cubic spline, as implemented with the Gnuplot function acspline and a weighting 

parameter of 0.001; in the limit of zero weighting, this function provides a simple linear 

least squares fit to the data. Most of the impact of vaccination occurs in subsequent years.
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