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Diverse involvement of EZH2 in cancer epigenetics
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Abstract: EZH2 is the catalytic subunit of Polycomb Repressor Complex 2 (PRC2) which catalyzes methylation of 
histone H3 at lysine 27 (H3K27me) and mediates gene silencing of target genes via local chromatin reorganization. 
Numerous evidences show that EZH2 plays a critical role in cancer initiation, progression and metastasis, as well 
as in cancer stem cell biology. Indeed, EZH2 dysregulation alters gene expression programs in various cancer types. 
The molecular mechanisms responsible for EZH2 alteration appear to be diverse and depending on the type of can-
cer. Furthermore, accumulating evidences indicate that EZH2 could also act as a PRC2-independent transcriptional 
activator in cancer. In this review, we address the current understanding of the oncogenic role of EZH2, including the 
mechanisms of EZH2 dysregulation in cancer and progresses in therapeutic approaches targeting EZH2. 
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Introduction

During embryogenesis, the fertilized egg deve- 
lops into a complex organism composed of 
many differentiated cell types. The mainte-
nance of the differentiation status of these cell 
types requires a cellular memory system res- 
ponsible for the stable inheritance of gene 
expression programs. The Polycomb group 
(PcG) and trithorax group (trxG) genes were dis-
covered in Drosophila melanogaster as part of 
such a memory system [1, 2]. They have been 
identified as repressors (PcG) and activators 
(trxG) of genetic programs, respectively. Muta- 
tions in the PcG and trxG genes result in pleio-
tropic defects, of which homeotic transforma-
tions are the most apparent [3]. In vertebrates, 
the PcG and trxG proteins have similar roles in 
the maintenance of homeotic gene expression 
patterns. Indeed, changes in the body plan 
have been observed in PcG and trxG gene 
homolog mouse mutants [4-7]. Although pri-
marily known for their involvement in the con-
trol of homeotic genes during the establish-
ment of the body plan, PcG and trxG members 
have also been shown to be implicated in the 
control of various cellular processes, such as 
stem cell renewal and differentiation, cell fate 

decisions, senescence, chromosome X-inacti- 
vation in mammals, or tumorigenesis and neo-
plastic development [8-10].

Perturbations in local chromatin structure cau- 
se inappropriate gene expression and genomic 
instability, resulting in cellular transformation 
and malignant outgrowth. Therefore, proteins 
involved in chromatin organization, including 
Polycomb group (PcG) proteins constitute fun-
damental players in cancer pathogenesis [11- 
13].

Polycomb repression and EZH2 activity

PcG proteins have been found to interact with 
each other to form multimeric, chromatin-asso-
ciated protein complexes of two general types: 
the Polycomb Repressive Complex 1 (PRC1) 
and PRC2 [14, 15]. These complexes post-tran- 
slationally modify histone tails and are believed 
to cooperate in transcriptional repression of 
target genes by altering local, higher order chro-
matin structure. The PRC2 protein complex con-
tains EZH2, a histone methyltransferase that 
catalyzes trimethylation of histone H3 lysine 27 
(H3K27me3) [16, 17]. In addition to EZH2, core 
PRC2 is composed of EED, SUZ12 and RBBP4/
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RbAp48/NURF55 which are required for full 
EZH2 histone methyltransferase activity [18, 
19]. The PRC1 protein complex binds to PRC2-
modified residues (H3K27me3) and monoubi- 
quitinylates histone H2A at lysine 119 (H2AK- 
119ub1) [20, 21]. These modifications (H3K27- 
me3 and H2AK119ub1) cause in turn local 
chromatin compaction and transcriptional si- 
lencing.

EZH2 is the catalytic subunit of the PRC2 pro-
tein complex, and its C-terminal SET domain 

exhibits the H3K27 methyltransferase func-
tion. However, EZH2 by itself lacks enzymatic 
activity. Two other PRC2 components, the zinc-
finger-containing protein SUZ12 and the WD40-
repeat protein EED are required to maintain the 
integrity of the PRC2 complex and for EZH2 
robust methyltransferase activity [22-24]. The 
fourth PRC2 core subunit, RBBP4/RbAp48 also 
contributes to PRC2 function but subcom- 
plexes lacking this component retain substan-
tial enzyme activity [18, 19]. Additional PRC2 
components, such as AEBP2, PCL (PHF) and 

Table 1. EZH2 alterations and cancers 
Alteration Cancer type References
Overexpression Prostate, breast, bladder, ovarian, renal carcinoma, lung, liver, brain, gastric, 

esophageal, pancreatic, melanoma
[35, 38, 39-56, 166]

Activating mutations Large follicular and B-cell lymphomas [99, 100, 102, 103]

Inactivating/hypomorphic mutations Myeloproliferative neoplasms Pediatric cancers [115, 116, 118-120]

H3.3K27M-mediated EZH2 inhibition Pediatric gliomas [121-124]

Figure 1. Schematic representation of the diverse EZH2 dysregulations found in cancer. A. The histone lysine 
methyltransferase EZH2 catalyzes H3K27 methylation at defined target genes and silences their expression. B. 
Overabundance of EZH2 is responsible for an increase in H3K27me3 repressive mark levels leading to the silencing 
of tumor suppressor genes in cancer cells. C. EZH2 bearing activating mutations at residues Y641, A677 or A687 
possesses an enhanced activity leading to an increase in H3K27me3 levels. D. Overexpression of EZH2-interacting 
partners such as specific lncRNAs enhances recruitment of EZH2 to targets and increases H3K27me3 levels. E. 
EZH2 harboring an inactivating mutation or EZH2 gene deletion leads to a decrease in H3K27me3 levels and activa-
tion of EZH2 target gene programs in cancer. F. A lysine to methionine substitution at position 27 (K27M) in the gene 
encoding histone H3.3 (H3F3A) inhibits EZH2 activity and leads to nearly undetectable H3K27me3 repressive mark 
levels in pediatric gliomas. Purple hexagons represent H3K27me epigenetic marks, and M illustrates H3.3K27M 
mutant histones.
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JARID2 may function as accessory factors regu-
lating the activity of the PRC2 protein complex. 
However, their role appears to be modulatory 
rather than essential [17, 25-28].

In the context of the PRC2 protein assembly, 
EZH2 SET domain performs three successive 
methyl transfer reactions, producing ultimately 
H3K27me3. This contrasts with other SET-
domain protein methyltransferases whose ca- 
pacity for methyl transfer appears more limited. 
For example, SET7/9 produces only monome- 
thylated products (H3K4me1), whereas G9a/
EHMT2 catalyzes mono- and dimethylation (H3- 
K9me1 and H3K9me2) and SUV39H2 can di- 
and trimethylate monomethylated substrates 
(H3K9me1 methylation into H3K9me2 and 
H3K9me3) [29, 30].

EZH1 is a paralog of EZH2; PRC2-EZH2 and 
PRC2-EZH1-containing complexes control over-
lapping sets of target genes but act differently 
to maintain the repressed chromatin state [31]. 
Furthermore, EZH2 is mainly expressed in pro-
liferating tissues, whereas EZH1 expression is 
found in dividing and differentiated cells [31, 
32]. This observation suggests that EZH2-con- 
taining PRC2 complexes might establish the 
H3K27me3 repressive marks, whereas EZH1-
containing PRC2 complexes might contribute to 
the restoration of the H3K27me3 methylation 
profile after histone demethylation or histone 
exchanges.

Involvement of EZH2 in cancer

The genome-wide mapping of PcG target genes 
revealed more than 2,000 sites in the mouse 
embryonic stem cell genome [8, 33, 34]. 
Interaction of PcG proteins with chromatin at 
these loci is associated with increased levels of 
H3K27me3 repressive marks and Polycomb 
repression affects numerous genes encoding 
key developmental regulators and signaling 
proteins. These genomic studies point on the 
widespread roles of PRC2 and H3K27 methyla-
tion in developmental and differentiation pro-
cesses of multicellular organisms, and on their 
implication in fundamental chromatin mecha-
nisms that underlie stem cell regulatory circuits 
and cancer progression. Thus, it is not surpri- 
sing that increasing evidences indicate that 
EZH2 deregulation is frequently observed in a 
variety of cancers (Table 1). Interestingly, diffe- 
rent ways by which the function of EZH2 may be 

impaired in tumors have been described (Figure 
1). It also appears that the type of EZH2 dys-
regulation often correlates with the malignan-
cy. EZH2 overexpression is mainly found in solid 
tumors, whereas activating or inactivating 
mutations are identified in hematologic malig-
nancies. A missense mutation Lys27Met 
(K27M) in the gene encoding histone H3.3 
(H3F3A) is present at high frequencies in pedi-
atric gliomas. This mutation behaves as a 
potent inhibitor of EZH2 activity. Thus, although 
mechanisms could be different, misregulation 
of H3K27 methylation is common in tumorigen-
esis and EZH2 appears to have both oncogenic 
and tumor suppressive functions.

EZH2 overabundance in solid cancer

Overexpression of EZH2 was first found in pros-
tate and breast cancer in microarray studies 
[35, 36]. Furthermore, EZH2 overexpression is 
linked to aggressive and advanced metastatic 
stages of the disease and is strongly associ- 
ated with poor clinical outcome and prognosis 
[36-38]. Overexpression of EZH2 has also been 
reported in a large number of other solid tumors 
such as bladder cancers [39-42], ovarian can-
cers [43, 44], renal carcinomas [45], small cell 
and non-small cell lung cancers [46-49], hepa-
tocellular carcinomas [50], brain tumors [51], 
kidney cancers [52], gastric tumors [53], eso- 
phageal cancers [54], pancreatic cancers [55] 
or melanomas [38, 56]. EZH2 has been shown 
to promote cell proliferation, migration, and 
invasion in different in vitro cancer cell models 
[32, 36, 43, 57-59]. EZH2 overexpressing cells 
are also tumorigenic when injected into the 
mammary fat pads of nude mice [60], while 
overexpression of wild-type EZH2 in mammary 
epithelial cells in vivo results in epithelial hyper-
plasia and promotes mammary tumor initiation 
[61, 62]. Furthermore, the oncogenic property 
of EZH2 in mice correlates with its H3K27 
methyltransferase activity [63].

Overabundance of EZH2 in tumor cells may 
result from different mechanisms. In some 
cases, EZH2 up-regulation is associated to 
gene amplification [35, 64]. Using FISH tech-
niques, Sramaki and colleagues studied the 
copy number of the EZH2 gene in several pros-
tate cancer cell lines such as LNCaP, DU145, 
PC-3, 22Rv1, in xenografts and in clinical tu- 
mors [64]. In contrast to early prostate cancer, 
in late stage tumor samples, EZH2 gene ampli-
fication was shown to correlate with its over- 
expression. 
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Increased EZH2 levels in cancer may also be 
caused by a variety of transcriptional signals 
and pathways, some of them common for dif-
ferent cancer types while others may be more 
specific or limited to specific malignancies 
(Figure 2, Table 2). The MEK-ERK-ELK1 path-
way, which is often activated in cancer, has 
been demonstrated to be responsible for EZH2 
overexpression in triple-negative and ERBB2-
overexpressing subtypes of breast cancer [65]. 
Upon phosphorylation ELK1 binds to three 
ELK1-binding motifs located within the EZH2 
gene promoter and activates EZH2 transcrip-
tion. The pRb-E2F signaling is another pathway 
involved in numerous tumors. Upon pRb/RB1 
phosphorylation, E2F dissociates from the 
pRb-E2F complex and the activated E2F trans- 
cription factor binds to E2F-binding sites loca- 
ted in the EZH2 promoter to activate its tran-
scription [32]. Overexpression of E2F or deregu- 
lation of the pRb-E2F pathway correlate with 
activated EZH2 expression in breast, bladder 
and small-cell lung cancer [32, 66-68]. A num-

precise mechanism of regulation is not yet fully 
understood [75].

Hypoxia in solid tumors represents another 
pathway directly regulating EZH2 transcription. 
Chang and colleagues identified a consensus 
sequence for hypoxia-inducible factor-1α (HRE) 
within the EZH2 promoter [76]. Hypoxic micro-
environment in tumors induces HIF1α binding 
to the HRE and transactivates EZH2 to promote 
breast tumor expansion (Table 2).

In addition, EZH2 abundance is controlled at 
the post-translational level by multiple micro-
RNAs (miRs). The miR-25, -26a, -30d, -98, -101, 
-124, -137, -138, -144, -214 and let-7 interact 
with defined sequences within the EZH2 3’UTR 
and directly downregulate EZH2 protein abun-
dance. The loss of control by these miR results 
in the up-regulation of EZH2 and appears to be 
involved in the aggressiveness of various can-
cers [57, 77-98] (Figure 2, Table 3).

Figure 2. Schematic representation of EZH2 overexpression controlling levels. EZH2 overexpression in cancer cells 
is achieved at the transcriptional level through the binding of transcription factors to its promoter or at the post-
transciptional level via the alteration of the micro-RNA regulation.

Table 2. Regulators of EZH2 transcription
Factor/Pathway Cancer type References
MYC Prostate [69]
ETS/ERG Prostate [70]
E2F (pRB-E2F pathway) Breast [32]

Lung [68]
Bladder [66, 67]

ELK1 (MEK-ERK pathway) Breast [65, 76]
ATAD2/ANCCA Breast [73]
NF-YA Ovarian [71]
STAT3 Colorectal [72]
BRAF (V600E) Melanoma [75]
EWS-FLI1 Ewing’s sarcoma [74]
HIF1α (Hypoxia) Breast [76]

ber of transcription factors involved in tumori-
genesis directly bind to the EZH2 promoter 
and activate its mRNA expression in different 
cancer models. In particular, MYC and ETS 
transcription factors directly regulate EZH2 
transcription in prostate cancer [69, 70], 
whereas NF-YA, STAT3 and the co-activator of 
the androgen receptor ATAD2/ANCCA regu-
late EZH2 expression in epithelial ovarian, 
colorectal, and breast cancer cells, respec-
tively [71-73]. In Ewing’s sarcoma, the fusion 
oncoprotein EWS-FLI1 induces EZH2 expres-
sion which has a key role in endothelial/neu-
roectodermal differentiation and tumor 
growth [74]. Also, expression of EZH2 was 
found profoundly affected by the BRAF 
(V600E) mutation in melanoma although the 
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Altogether, different studies suggest that the 
diverse mechanisms involved in EZH2 over-
abundance depend on the cell context. How- 
ever, EZH2 functions as an oncogenic factor in 
the majority of solid tumors and regardless of 
the molecular mechanisms involved, EZH2 
overabundance leads to higher levels of H3- 
K27me3 repressive epigenetic marks that 
would be responsible in turn, for the silencing 
of tumor suppressor genes in cancer cells 
(Figure 1B). 

EZH2 activating mutations in lymphoma

In about 7% of large follicular lymphomas and 
22% of diffuse B-cell lymphomas, recurrent 
somatic mutations were identified at tyrosine 
641 (Y641) within the catalytic SET domain of 
EZH2 [99]. Initially reported to be a loss-of-
function mutation [99], it has been demon-
strated that these mutations shift the methyla-
tion capacity of EZH2 [100]. Indeed, EZH2-Y641 
mutants have reduced H3K27 mono- and 

Table 3. EZH2 post-transcriptional regulation by miR
MiR Cancer Type References
miR-25, miR-30d Thyroid cancer [77]

miR-26a Lymphoma, nasopharyngeal carcinoma, breast cancer, prostate cancer [78-80] 

miR-98 Nasopharyngeal carcinoma, gastric cancer [81, 82]

miR-101 Nasopharyngeal carcinoma, glioblastoma multiform, prostate cancer, bladder cancer, head and neck cancer, 
non-small cell lung cancer, melanoma

[57, 83-88]

miR-124 Hepatocellular carcinoma, gastric cancer [89, 90]

miR-137 Melanoma [91]

miR-138 Head and neck cancer, glioblastoma multiform, non-small cell lung cancer [92-94]

miR-144 Bladder cancer [98]

miR-214 Gastric cancer, hepatocellular carcinoma [81, 95]

Let-7 Prostate cancer, nasopharyngeal carcino ma [96, 97]

Figure 3. PRC2-independent transcriptional activation by EZH2 in cancer. A. In ER-positive breast cancer cells, 
EZH2 interacts with β-catenin and ER, and functionally enhances gene expression. B. In ER-negative breast can-
cer cells, EZH2 interacts with RELA/RELB to stimulate NF-κB target gene expression. C. In colorectal cancer cells, 
EZH2 forms a complex with β-catenin and PAF to promote transcription. D. In castration-resistant prostate cancer, 
AKT1-mediated phosphorylation of EZH2 at serine 21 allows EZH2 to interact with the AR at target genes to activate 
transcription. The AKT pathway then acts as a molecular switch changing EZH2 function from a chromatin silencer 
to a transcriptional co-activator of the AR. This transcriptional activation function is methyltransferase activity-de-
pendent. E. AKT1-mediated phosphorylation of EZH2 at serine 21 also facilitates STAT3 methylation and activation 
in glioblastoma stem cells. ER: estrogen receptor; TCF: T-cell factor; AR: androgen receptor; PAF: PCNA-associated 
factor; RNA Polase: RNA polymerase II.
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dimethylation activities, but aberrantly eleva- 
ted trimethyltransferase activity. Because of 
their reduced H3K27me1/2 activities, EZH2- 
Y641 mutant alleles are invariably found at het-
erozygous forms together with the wild-type 
EZH2 allele in lymphomas. In agreement with 
these observations, transgenic mice express-
ing the EZH2-Y641F mutant in lymphocytes dis-
played a global increase in trimethylated 
H3K27 in spleen cells and developed lympho-
mas when combined with Eµ-Myc expression 
[101]. Similar to the Y641 mutation, mutations 
within the EZH2 SET domain at residues Alanine 
677 (A677G) and Alanine 687 (A687V) are driv-
ers of H3K27 hypertrimethylation [102-104]. 
Thus, EZH2-Y641, EZH2-A677 and EZH2-A687 
are oncogenic mutants responsible for an 
excess of H3K27me3 repressive marks impai- 
ring gene expression programs in lymphomas 
(Figure 1C). 

Increased recruitment of EZH2 at chromatin 
in cancer

An excess of H3K27me3 repressive marks in 
cancer can also result from an increase of 

malignant myeloid disorders

Mutations in EZH2 have been identified in 
about 10%-23% of various subtypes of myelo-
dysplastic syndromes and myeloproliferative 
neoplasms, as well as in 13% of myelofibrosis 
[114-118]. Both monoallelic and biallelic muta-
tions were identified, and almost all are pre- 
dicted to inactivate the methyltransferase 
activity of EZH2. In particular mutations found 
in myeloid disorders include missense muta-
tions, frameshift mutations, premature stop 
codons, and spliceosomal mutations. In addi-
tion to EZH2 mutation, decreased EZH2 expres-
sion was found to be associated with hemizy-
gous deletion (7/del7q) involving the EZH2 
gene. EZH2 loss-of-function mutations are 
associated with reduced H3K27me3 methyla-
tion and derepression of EZH2 target genes, 
which may contribute to leukemogenesis 
(Figure 1E). Consistent with these findings, 
deletion of Ezh2 alone is sufficient to induce 
myelodysplastic syndrome/myeloproliferative 
neoplasm-like diseases in mice [119].

Figure 4. Methionine cycle and mode of action of several EZH2 inhibitors. 
DNZep is an inhibitor of SAH hydrolase leading to an accumulation of SAH 
which in turn inhibits EZH2 activity, as well as other cellular methltransferases. 
SAM competitors such as EPZ005687, EPZ-6438, EI1, UNC1999 and GSK126 
bind to the SAH-binding pocket of EZH2 to prevent the recruitment of the SAM 
methyl donor. SAH-EZH2 peptides disrupt the PRC2 assembly required for full 
EZH2 activity.

PRC2 recruitment at chro-
matin (Figure 1D). In parti- 
cular, long non-coding RNAs 
(lncRNAs) have emerged as 
potential factors involved in 
PRC2 recruitment. HOTAIR 
is one of these lncRNAs 
interacting with EZH2 and 
playing an oncogenic role in 
cancer [105-109]. Overex- 
pression of HOTAIR increas-
es invasiveness and meta-
static potential of epithelial 
cancer cells and induces 
relocalization of the PRC2 
complex which binds to tar-
get genes in a pattern simi-
lar to that observed in em- 
bryonic fibroblasts, whereas 
HOTAIR knockdown decrea- 
ses cancer invasiveness, 
especially in cells expres- 
sing high levels of PRC2 pro-
teins [106]. Other lncRNAs, 
such as HEIH, PCAT-1, H19 
or linc-UBC1 have been 
shown to interact with EZH2 
and to be involved in cancer 
[110-113]. 

EZH2 null-mutations in 
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Furthermore, EZH2-inactivating mutations are 
also primarily detected in pediatric cancers 
including core binding factor acute myeloid leu-
kemia and T-lineage acute lymphoblastic leuke-
mia [120].

Altogether, these studies outline the tumor sup-
pressor function of EZH2 in myeloid malignan-
cies, in addition to its role as an oncogene in 
other cancer types.

H3.3K27M mutation-dependent inhibition of 
EZH2 in high-grade pediatric gliomas

Sequencing studies of high-grade pediatric  
gliomas, including glioblastoma multiforms 
(GBM) and diffuse intrinsic pontine gliomas 
(DIPG) identify recurrent heterozygous Lysine to 
Methionine substitutions at position 27 (K27M) 
in the gene encoding histone H3.3 (H3F3A) 
[121, 122]. H3.3K27M mutation occurs in 
70-80% of midline GBM and DIPG in young chil-
dren and confers a dismal prognosis [122-124]. 
The mutation also leads to nearly undetectable 
H3K27me3 repressive mark levels in gliomas 
[125-128]. Furthermore, it has been shown 
that H3.3K27M peptides bind to EZH2 and 
interfere with its methyltransferase activity, 
potentially as methionine mimics the structure 
of monomethyl lysine [127] (Figure 1F). Since 
H3.3 is a variant of canonical histone H3 which 
contributes to a minority of total histone H3 in 
gliomas, H3.3K27M behaves like a powerful 
dominant negative inhibitor of EZH2 activity. 
Interestingly, EZH2 protein and remaining H3- 
K27me3 repressive marks were also shown to 
be locally increased at hundreds of gene loci in 
glioma cells expressing H3.3K27M [128]. 
Therefore, H3.3K27M mutation alters gene 
expression programs and the global epigenetic 
landscape which may drive to tumorigenesis in 
gliomas.

PRC2-independent function of EZH2 in cancer

EZH2 is primarily known for its role in gene 
silencing through H3K27 trimethylation. How- 
ever, several studies reveal that EZH2 may also 
function as a transcriptional activator in diffe- 
rent cancer models [129-131] (Figure 3). 

In breast cancer cells, EZH2 has been reported 
to act as a transcriptional activator but its 
mechanism of action depends on the cell type 
[129, 130]. In estrogen receptor-positive, lumi-

nal-like MCF-7 breast cancer cells, EZH2 links 
physically the estrogen receptor α to the Wnt 
signaling components β-catenin and TCF at tar-
get gene promoters. By this way, EZH2 acti-
vates Cyclin D1 (CCND1) and MYC transcrip-
tion, independently of its methyltransferase 
activity [129] (Figure 3A). By contrast, in estro-
gen receptor-negative, basal like MDA-MB-231 
breast cancer cells, EZH2 interacts with the 
NF-κB components RELA and RELB to activate 
transcription of several NF-κB target genes, 
such as the TNF and IL6 genes [130] (Figure 
3B). Thus, EZH2 could act as a transcriptional 
repressor via its H3K27 histone methyltrans-
ferase activity or, as a transcriptional activator 
through different molecular mechanisms, in 
promoting breast tumorigenesis.

The PCNA-associated factor PAF (KIAA0101) is 
overexpressed in colon cancers and is required 
for cancer cell proliferation via Wnt signaling 
activation. Jung and colleagues [131] identified 
a PAF-EZH2-β-catenin protein complex involved 
in Wnt target gene transactivation in colon can-
cer cells. Upon Wnt signaling activation, PAF 
dissociates from PCNA, binds to β-catenin and 
recruits EZH2 at Wnt target genes to induce 
their expression independently of EZH2’s enzy-
matic activity (Figure 3C).

EZH2 is oncogenic and functions as a transcrip-
tional activator in castration-resistant prostate 
cancer (CRPC) [132]. However in contrast to 
what was described in breast cancer cells and 
in colon cancer cells, the transcriptional pro- 
perties of EZH2 in CRPC rely on its methyltrans-
ferase activity, but do not require the other 
PRC2 components. It has been suggested that 
EZH2-mediated transcriptional activation may 
occur through the methylation of the androgen 
receptor or other associated proteins. Further- 
more, Xu et al. [132] reported that AKT1-
mediated phosphorylation of EZH2 at serine 21 
(S21) allows the methyltransferase to interact 
with the androgen receptor at many target 
genes. Thus, the AKT pathway acts as a mole- 
cular switch changing EZH2 function from a 
chromatin silencer to a transcriptional co-acti-
vator of the androgen receptor (Figure 3D). A 
similar situation has been described in glio-
blastoma where AKT1-mediated phosphoryla-
tion of EZH2 at S21 enhances STAT3 activation 
via its EZH2-mediated trimethylation at lysine 
180 [133] (Figure 3E).
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The methyltransferase activity of EZH2 is 
required for EZH2-dependent gene activation in 
CRPC and in glioblastoma, indicating that EZH2 
can methylate non-histone substrates. In this 
regard, it is worth noting that previous studies 
showed that EZH2 indeed methylates non-his-
tone proteins such as the transcription factors 
GATA4 and RORα, although the role of these 
methylations in cancer remains to be explored 
[134, 135]. 

Post-translational modifications of EZH2 in 
cancer

The discovery that AKT1-mediated EZH2 phos-
phorylation at S21 converts EZH2 silencing 
activity into an activating effector [60, 132, 
133] underlines the important role cell signal-
ing may have on EZH2 activity control. There is 
growing evidence showing that EZH2 activity 
and stability are tightly regulated by multiple 
post-translational modifications. 

In addition to phosphorylation at S21, EZH2 
could be phosphorylated at multiple threonine 
residues [136-139]. In particular, cyclin-depen-
dent kinases (CDK1/2) phosphorylate EZH2 at 
T350 and T492. T350 phosphorylation pro-
motes the interaction between EZH2 and lnc- 
RNAs such as HOTAIR [137]. Thus, CDK-me- 
diated phosphorylation positively impacts 
EZH2 action by enhancing its recruitment at 
chromatin. In contrast, T492 phosphorylation re- 
duces the methyltransferase activity of EZH2 
by disrupting PRC2 assemblies [138]. However, 
phosphomimic change at the corresponding 
mouse Ezh2 residue (T487D) does not seem to 
have an effect on methyltransferase activity 
nor on PRC2 assembly [137]. In another study, 
Wu and Zhang [139] reported that CDK1-
mediated phosphorylation at T350 and T492 
promotes EZH2 ubiquitinylation and subse-
quent degradation of the protein by the protea-
some. These discrepancies might reflect that 
distinct regulatory mechanisms control EZH2 
activity in different cell types. 

Finally, recent experiments suggest that glyco-
sylation may also affect EZH2 stability and 
H3K27me3 levels [140]. EZH2 interacts with 
O-linked N-acetylglucosamine (GlcNAc) trans-
ferase (OGT) and the methyltransferase is 
O-GlcNAcylated at serine 75 (S75) in vivo. 
Furthermore, OGT knockdown specifically down- 
regulates EZH2 protein stability and greatly 

reduces H3K27me3 levels. EZH2-S75A mu- 
tants also exhibit a reduction in stability. This 
OGT-EZH2 axis might then explain in part how 
the dysregulation of OGT is implicated in 
cancer.

Involvement of EZH2 in cancer stem cell bio- 
logy

According to the cancer stem cell (CSC) hypo- 
thesis, the CSCs which represent a small frac-
tion of the tumor population are the only tumor-
initiating clones. CSCs have unlimited self-
renewal capacities and the ability to differenti-
ate in many cancer cell types. They are resis-
tant to chemotherapy [141] and thought to be 
responsible for metastatic spreading [142]. 
Thus, deciphering the cellular regulations 
involved in CSC biology is central to the devel-
opment of efficient anti-cancer opportunities. 

EZH2 is a crucial factor playing a role in the 
maintenance of self-renewal of adult and em-
bryonic stem cells [13, 143, 144], while EZH2 
expression is reduced in differentiated cells. 
Since EZH2 overexpression is linked to cancer 
initiation and metastasis and considering that 
high-grade tumors are enriched with a high 
content of CSCs, it is proposed that EZH2 
expression could favor the transition of dor-
mant progenitors and/or differentiated cells 
into a more aggressive stem-cell like pheno-
type. Indeed, EZH2 expression has been shown 
to be involved in breast CSCs formation and 
expansion that promote cancer progression 
[76]. Similarly, EZH2 expression is crucial for 
glioblastoma CSC self-renewal and tumor- 
initiating capacity [145-147]. 

Anti-cancer strategies targeting EZH2

Numerous experimental evidences indicate 
that EZH2 plays a prominent role in carcino- 
genesis, from tumor initiation to metastasis, in 
various cancer types. EZH2 has thus emerged 
as a potential cancer therapeutic target. In- 
deed, knock-down of EZH2 inhibits cancer cell 
proliferation and decreases in vivo tumor 
growth in xenograft models [148, 149].

The search for pharmacological inhibitors of 
EZH2 activity also yielded several promising 
molecules. Among them, 3-deazaneplanocin A 
(DNZep) has been shown to exhibit significant 
anti-tumor activity against different cancer 
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models, such as breast, prostate, lung, brain, 
colorectal and liver cancer cells [150-152]. 
Indeed, DNZep treatment reduces EZH2 pro-
tein and H3K27me3 levels, reactivates PRC2 
target genes and is responsible for apoptosis of 
cancer cells, but not of normal cells [150]. 
Interestingly, DNZep has also been shown to 
abrogate self-renewal and tumor-initiating ca- 
pacities of glioblastoma cancer stem cells, 
ovarian cancer stem cell-like populations and 
prostate cancer stem cells [59, 146, 153, 154]. 
However, DNZep is an S-adenosylhomocysteine 
(SAH) hydrolase inhibitor causing intracellular 
SAH levels to increase. Accumulation of SAH 
subsequently inhibits diverse methyltrans- 
ferases including EZH2, by a feed-back loop me- 
chanism (Figure 4). DNZep is therefore not 
selective and specific to EZH2 [155, 156]. 

More recently, high-throughput screens per-
formed with the PRC2 complex led to the dis-
covery of potent compounds that selectively 
inhibit EZH2 enzymatic activity [157-161]. 
These molecules including EPZ005687, EPZ-
6438, EI1, UNC1999 and GSK126, all act as 
S-adenosylmethionine (SAM) competitive inhi- 
bitors (Figure 4).

The compound EPZ005687 has an equilibrium 
dissociation constant (Ki) value of 24 nM and 
has a 50-fold selectivity for EZH2 against the 
closely related EZH1 enzyme and more than 
500-fold selectivity against 15 other protein 
methyltransferases [157]. Interestingly, EPZ- 
005687 can also inhibit the H3K27 methyla-
tion activities of lymphoma cells harboring  
heterozygous EZH2-Y641 and EZH2-A677 
mutations, killing these cells with minimal 
effects on the proliferation of wild-type cells 
[157]. EPZ-6438, with a Ki value of 2.5 nM, 
possesses a superior potency and drug-like 
properties, including good oral bioavailability in 
EZH2-mutant xenograft mice models [158]. 
The molecule is currently undergoing a phase I 
clinical trial in patients with advanced solid 
tumors or refractory B-cell lymphoma [158]. 

EI1 (Ki of about 13 nM), UNC1999 an orally bio-
available compound in mice, but non-selective 
for EZH1 and GSK126, the most potent EZH2 
inhibitor (Ki of about 0.5-3 nM) [159-161], as 
well as EPZ005687 and EPZ-6438, all bind to 
the SAM pocket of the EZH2 catalytic SET do- 
main and selectively inhibit its H3K27 methyl-
transferase activity. However, the inhibitors are 

only effective in killing cell lines harboring gain-
of-function EZH2 mutations (EZH2-Y641, EZH2- 
A677), although all of these compounds induce 
a decrease in H3K27me3 levels in both EZH2-
mutated and wild-type cancer cells. This indi-
cates that the SAM competitive inhibitors may 
be more beneficial to patients with lymphoma 
rather than with other cancer types.

Since the enzymatic activity of EZH2 requires 
its association with other components of the 
PRC2 complex, such as EED and SUZ12, a 
strategy disrupting PRC2 assembly has been 
successfully developed to inhibit EZH2 methyl-
transferase activity [162]. A hydrocarbon-sta-
pled peptide that mimics the α-helical EED-
binding domain of EZH2 (SAH-EZH2 peptide) 
was shown to disrupt the interaction between 
EZH2 and EED (Figure 4). Indeed, the SAH-
EZH2 peptide reduces the H3K27 methyltrans-
ferase activity of the PRC2 complex and leads 
to growth arrest and differentiation of MLL-AF9 
leukemia cells which are dependent on PRC2 
activity. The antiproliferative activity of SAH-
EZH2 was also extended to EZH2-dependent 
B-cell lymphomas; the inhibitory peptide re- 
duces H3K27 trimethylation, EZH2 protein lev-
els, as well as cancer cell viability. Thus, disrup-
tion of the PRC2 complex may represent an 
alternative and complementary strategy for 
selectively arresting the proliferation of at least 
some EZH2-dependent cancers. It is also worth 
noting that the SAH-EZH2 peptide also dissoci-
ates EZH1-EED complexes, in addition to EZH2-
EED assemblies [162].

In addition, some natural chemopreventive 
agents have been shown to effectively inhibit 
EZH2 and reactivate PRC2-silenced target 
genes in various cancer models. These com-
pounds include epigallocatechin-3-gallate 
(EGCG), a major component of green tea and 
dietary omega-3 polyunsaturated fatty acids 
(omega-3 PUFAs) which both reduce EZH2  
levels by increasing proteasomal degradation 
[163, 164]. Curcumin, a natural ingredient of 
turmeric also decreases cancer proliferation by 
modulating EZH2 levels, but in that case down-
regulation of EZH2 expression is mediated by 
the MAPK pathway rather than by the increase 
of protein degradation [165].

Conclusion

A large set of experimental data have estab-
lished that EZH2 acts as a key player in tumori-
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genesis. However, the molecular mechanisms 
involved in EZH2 dysregulation in cancer 
appear to be diverse. EZH2 overexpression is 
mainly found in solid tumors and activating 
mutations are found in B-cell lymphomas while 
inactivating mutations are often identified in 
myelodysplastic syndromes and myelopro- 
liferative neoplasms. Finally a missense muta-
tion in the gene encoding histone H3.3 (H3F3A) 
inhibiting EZH2 activity is present at high fre-
quencies in pediatric gliomas. Thus, EZH2 func-
tions as an oncogene in solid tumors and lym-
phomas whereas it behaves like a tumor sup-
pressor gene in myeloid disorders and in pe- 
diatric glioblastomas. The oncogenic role of 
EZH2 mainly depends on its ability to repress 
gene expression programs via H3K27 methyla-
tion and chromatin compaction. However, stud-
ies in certain cancers revealed that the onco-
genic function of EZH2 could also result of its 
action as a PRC2-independent transcriptional 
activator. Then, EZH2 could be involved in can-
cer through multiple mechanisms and could be 
regulated by different pathways depending on 
cellular context and cancer type. A better 
understanding of the regulatory network invol- 
ving EZH2 is consequently required for the 
development of novel anti-cancer therapeutic 
strategies. 
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