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Abstract: Autologous chondrocyte implantation (ACI) is a golden treatment for large defects of the knee joint without 
osteoarthritis or other complications. Despite notable progresses, generation of a stable chondrocyte phenotype 
using progenitor cells remains a main obstacle for chondrocyte-based cartilage treatment. Monolayer chondrocyte 
expansion in vitro is accompanied by chondrocyte dedifferentiation, which produces a non-specific mechanically 
inferior extracellular matrix (ECM) unsuitable for ACI. In-depth understanding of the molecular events during chon-
drocyte dedifferentiation is required to maintain the capacity of in vitro expanded chondrocytes to produce hyaline 
cartilage-specific ECM. This review discusses key cytokines and signaling pathways involved in chondrocyte dedif-
ferentiation from the standpoint of catabolism and anabolism. Some potential therapeutic strategies are also pre-
sented to counteract chondrocyte dedifferentiation for cell-based cartilage therapy.

Keywords: Chondrocyte dedifferentiation, in vitro, cytokines, signaling pathways, cartilage repair, autologous chon-
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Introduction

Articular cartilage is an avascular and aneural 
load-bearing connective tissue with a very lim-
ited capacity for intrinsic repair. Once damaged 
by trauma or pathology, it is highly susceptible 
to structural degradation, making it particularly 
difficult to restore. The chondrocyte is the only 
cell type that resides within articular cartilage 
and is solely responsible for the synthesis and 
turnover of the extracellular matrix (ECM).

For more than decades, autologous chondro-
cyte implantation (ACI) has been the golden 
therapy for patients with focal lesions of articu-
lar cartilage [1]. ACI procedure consists of three 
stages (Figure 1). The first stage is to harvest 
around 100 milligrams (mg) cartilage from a 
non-weight bearing area of the patient under 
arthroscopy. The chondrocytes are enzymati-
cally isolated from cartilage and propagated to 
obtain enough cells in vitro in a specialized 
laboratory. These cells are re-implanted in com-

bination with a membrane (tibial periosteum or 
biomembrane) in the damaged area of the artic-
ular cartilage when the patient undergoes a 
second treatment. ACI treatment leads to satis-
fying clinical results in terms of patient satisfac-
tion, reduction of pain and improvement in knee 
function [2]. Nevertheless, it is not yet a routine 
application in clinical practice, with its applica-
tion being mainly limited to young patients. One 
of the technical challenges is the isolation and 
ex vivo expansion of a large enough number of 
differentiated articular chondrocytes. During 
this process, the chondrocytes become fibro-
blast-like cells (Figure 2), characterized by an 
increase in the expression of type I collagen 
(COL-1) and a decrease of cartilage-specific 
markers, such as type II, XI, IX collagens (COL-2, 
COL-11, COL-9) and aggrecan (ACAN) [3-5]. This 
process is designated as chondrocyte dediffer-
entiation. The dedifferentiated chondrocytes 
produce a non-specific mechanically inferior 
ECM and are no longer suitable for ACI. The- 
refore, chondrocyte dedifferentiation is a major 
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obstacle in cell-based cartilage repair. In the 
past decades, multiple studies have been car-
ried out to explore the molecular mechanisms 
underlying chondrocyte dedifferentiation.

This review focuses on cytokines and signaling 
pathways of the anabolism and catabolism 
(summarized in Table 1), which are involved in 
chondrocyte phenotype maintenance. The pur-
pose of this report is to provide an up-to-date 
overview of cytokine networking involved in 
chondrocyte dedifferentiation in vitro and to 
provide potential targets for improving autolo-
gous chondrocyte-based cartilage repair.

Imbalance between catabolism and anabo-
lism

The major function of chondrocytes is to pro-
duce cartilage ECM. In turn, the ECM modifies 
chondrocyte behavior. Metabolic balance of 
ECM could play a critical role in chondrocyte 
phenotype maintenance. The failure to main-
tain the anabolic-catabolic balance within the 
cartilage matrix may give rise to chondrocyte 
dedifferentiation. The catabolic genes, such as 
inflammatory cytokines and proteases, partici-

pate in cartilage matrix degradation. In con-
trast, the anabolic genes including growth fac-
tors (e.g. insulin-like growth factor, bone mor-
phogenetic protein) critically contribute to carti-
lage matrix production and maintenance. 

Inflammatory cytokines

Interleukin 1-beta (IL-1β), the major pro-inflam-
matory cytokine in osteoarthritic synovial fluid, 
induces the dedifferentiation of cultured articu-
lar chondrocytes by decreasing COL-2 while 
increasing COL-1 and COL-3 expression at 
mRNA and protein levels [6, 7]. During chondro-
cyte dedifferentiation, IL-1β up-regulates the 
synthesis of E-series prostaglandins (PGE) to 
induce chondrocyte differentiation and incre- 
ase COL-2 expression, thereby counteracting 
the dedifferentiation-promoting action of IL-1β 
[8, 9]. Thus, the role of IL-1β on chondrocytes 
appears to be paradoxical. On one hand, IL-1β 
directly promotes chondrocyte dedifferentia-
tion; on the other hand, it maintains chondro-
cytes in differentiated status through increas-
ing PGE. To further understand this paradox, 
several downstream signal molecules have 
been studied in IL-1β-treated articular chondro-

Figure 1. Autologous chondrocyte implantation. A. Cartilage biopsy was harvested from a non-weight bearing area 
of the knee joint under an arthoscope. B. Around 100 mg cartilage was harvested and enzymatically digested. 
Chondrocytes were propagated in a GMP lab. C. During the second operation, a collagen membrane was trimmed 
according to the defect size. D. The periosteum was sutured. E. Chondrocytes were injected into the space between 
the membrane and the defect. F. After chondrocyte injection, the membrane was sealed with fibrin glue to prevent 
leaking.
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cytes and found that IL-1β activates c-Jun-N-
terminal kinase (c-JNK), p38 mitogen-activated 
protein kinase (MAPK) and extracellular-signal-
regulated protein kinase (ERK) -1/2 in primary 
cultures of human articular chondrocytes [10]. 
ERK-1/2 is the major tyrosine-phosphorylated 
protein in IL-1β stimulated chondrocytes. In 
response to IL-1β stimulation, ERK and p38 
MAPK are activated at 5 minutes and JNK is 
activated at 15 minutes [11]. Interestingly, pro-
longed IL-1β stimulation for 24 hours results in 
ERK-1/2 inhibition in chondrocytes [12]. Thus, 
the role of ERK-1/2 in chondrocyte dedifferen-
tiation remains controversial. The dedifferenti-
ated chondrocytes express lower levels of 
cyclooxygenase-2 (COX-2) mRNA and synthe-
size less PGE2 than differentiated chondro-
cytes. The down-regulation of COX-2 expression 
is associated with a reduction in IL-1β-induced 
p38 MAPK activation [13]. The WNT family pro-
tein (WNT-3A, WNT-7A) activities are also 
enhanced during IL-1β-induced dedifferentia-
tion of articular chondrocytes [14, 15].  

Treating lapine articular chondrocytes with 
human recombinant IL-1β has been shown to 
boost the production of nitric oxide (NO) and 
reduce COL-2 synthesis. NO activates ERK-1/2 
and p38 MAPK, but inhibits protein kinase C 
alpha (PKC-α) and PKC zeta (PKC-ζ) in chondro-
cytes [16]. NO appears to affect the metabo-
lism of cartilage in a stimulus-dependent man-
ner, as NO has been shown to enhance tumor 
necrosis factor (TNF)-α-induced, but not IL-1β-
induced, ACAN degradation in bovine cartilage 
explants [17]. Taken together, IL-1β regulates 
chondrocyte dedifferentiation through multiple 
pathways and the balance between the activi-
ties of these pathways may determine the over-
all effect of IL-1β.

In addition to IL-1β, the role of IL-6 in chondro-
cyte dedifferentiation has attracted much at- 
tention. IL-6 is produced by osteoarthritic syno-
vial lining or expanded chondrocytes rather 
than by cartilage [18], which exerts catabolic 
effects on cartilage and chondrocytes [19, 20]. 

Figure 2. Chondrocyte dedifferentiation during in vitro expansion. Primary human chondrocyte morphology under 
invert microscope (×100). With passaging, round and polygonal chondrocytes were shifted to fibroblast-like cells. A 
(P0), B (P1), C (P2), D (P4). 
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According to a recent report, IL-6 induces simi-
lar effects as Notch activation in chondrocytes. 
Furthermore, IL-6 mediates the effects of Notch 
signaling pathway through ACAN suppression 
and MMP-13 induction [21]. 

Proteases

Cartilage matrix components are degraded by 
various proteases, such as cathepsins [22], 
matrix metalloproteinases (MMPs) [23] and a 
disintegrin and metalloproteinase with throm-
bospondin motifs (ADAMTS) [24]. A microarray 
analysis revealed that 84 genes are up-regulat-
ed and 56 genes are down-regulated in pas-
sage 4 (P4) human chondrocytes compared to 
passage 1 (P1) cells. Among them, cathepsin K 
(CTSK) expression level is increased 28-fold. 
Overexpression of CTSK leads to reduced ma- 
trix production in cultured human chondrocytes 
in vitro and poor formation of engineered carti-
lage in vivo. In contrast, CTSK knockdown incre- 
ases the capability to maintain the chondrogen-
ic phenotype of in vitro expanded cells with in- 
creased mRNA and protein expression of COL-2 
and ACAN, in comparison to control cells [25]. 

To date, the role of MMP-13 in COL-2 degrada-
tion [26, 27] has been established, which criti-
cally contributes to the pathogenesis of experi-

Insulin-like growth factor-I (IGF-I), one of the 
most important anabolic growth factors for 
articular cartilage, plays a key role in cartilage 
homeostasis, balancing proteoglycans synthe-
sis and breakdown [34]. Several studies have 
demonstrated that IGF-I is not only able to 
extend the chondrogenic potential of dediffer-
entiated chondrocytes in vitro [35], but also 
can enhance the chondrogenesis of bovine 
articular chondrocytes seeded into polymer 
scaffolds [36]. Interaction of IGF-I and IGF-1R 
activates both the phosphoinositide-3 kinase 
(PI3K)/AKT/mammalian target of rapamycin 
(mTOR) and ERK-MAPK pathways, but only the 
activation of the PI3K/AKT/mTOR pathway is 
responsible for the ability of IGF-I to increase 
proteoglycan synthesis of adult human articu-
lar chondrocytes [37, 38]. The transfection of 
IGF-I gene (tIGF-I) into chondrocytes stimulates 
both COL-2 and ACAN expression. Of note, in 
comparison to the individual transgenes of 
BMP-2, BMP-7, TGF-β1 and FGF-2, tIGF-I gener-
ates the maximal stimulation of COL-2 expres-
sion in bovine articular chondrocytes [39].

Monolayer chondrocytes rapidly lose their dif-
ferentiated phenotype, which is accompanied 
by a significant decrease in IGF-I expression 
[30]. IGF-I drives dedifferentiated chondrocytes 

mental osteoarthritis (OA) [28] 
and human OA [29]. However, 
there are conflicting results about 
the expression changes of MMP-
13 during chondrocyte expansion. 
Two studies found that the expres-
sion of MMP-13 decreases during 
cell passaging [30, 31] while 
another in vitro study reported 
that MMP-13 expression is 
increased from day 1 up to 21 
[32]. Moreover, chitosan-plasmid 
DNA nanoparticles encoding short 
hairpin RNA (shRNA) against MMP-
13 has been shown to inhibit the 
expression of dedifferentiation-
related genes and help regenerat-
ing endurable cartilage [33]. 
Therefore, genetic modification of 
MMP-13 or CTSK could be a prom-
ising strategy to block chondro-
cyte dedifferentiation from the 
standpoint of catabolism.

Insulin-like growth factor-I 

Table 1. Summary of cytokines and signaling pathways in-
volved in chondrocyte dedifferentiation

Cytokine Signaling pathway Effect on chondro-
cyte phenotype Reference

IL-1β p38MAPK, ERK, JNK, 
PKCα, PKCζ, WNT-3A, 

WNT-7A

(-) COL-2; [6, 7, 10-12, 
14-16](+) COL-1;

(+) COL-3
IL-6 Notch (-) ACAN; [18-21]

(+) MMP-13
IGF-I PI3K/AKT, ERK/MAPK (+) ACAN; [33-41]

(+) COL-2;
(+) COL-1;
(+) COL-10

PDGF ERK, PI3K/AKT undefined [20, 42-44]
TGF-β1 ERK/AP-1, SP3/SP1 (±) COL-2* [45-52]

(+) COL-1
BMP-2 p38MAPK, WNT-7A (+) COL-2 [38, 62-68]

(+) ACAN
(+) COL-1

FGF-18 ERK, p38MAPK undefined [72-74]
*Species - dependent: rabbit/goat/mouse: (+) COL-2; human: (-) COL-2, (-) 
ACAN. (+) indicates up-regulation; (-) indicates down-regulation.
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re-differentiation back to the differentiated 
phenotype. These re-differentiated chondro-
cytes still have the capacity to form cartilage-
like tissue in a high-density cell culture [35]. 
Furthermore, IGF-I can block IL-1β or NO- 
induced rapid dedifferentiation of chondro-
cytes and help maintaining chondrocyte pheno-
type [12, 40, 41]. In addition, IGF-1 blocks 
NO-induced apoptosis through PI3K pathway 
[42]. However, it has been shown that IGF-I also 
increases the synthesis of COL-1 and COL-10 
(an indicator of chondrocyte hypertrophy) [39, 
42]. Therefore, much endeavor has to be direct-
ed to explore other factors that may have better 
re-differentiation potential. 

Platelet-derived growth factor 

Platelet-derived growth factor (PDGF) is a heat-
stable positively charged hydrophilic protein. 
PDGF activates ERK and up-regulates TGF-β1 
and TGF-β3 expression in human articular 
chondrocytes [20, 43]. Growth factor cocktail 
of TGF-β1, FGF-2, and PDGF-BB has been 

shown to increase human articular chondro-
cyte proliferation and maintain their chondro-
genic potential [43]. More importantly, different 
from TGF-β1 and FGF-2, PDGF-BB can promote 
the proliferation and extracellular matrix sulfa-
tion of resting chondrocytes in vitro without 
inducing a hypertrophic chondrocyte pheno-
type [44]. Combination of IGF-1 and PDGF-BB 
inhibits IL-1β-mediated chondrocyte apoptosis, 
in part through suppression of PI3K/AKT path-
way [45]. Therefore, addition of PDGF-BB to a 
monolayer culture system could be potentially 
used to maintain chondrocyte phenotype dur-
ing in vitro chondrocyte expansion. 

Transforming growth factor beta 

The effects of transforming growth factor beta 
(TGF-β) on chondrocyte phenotype mainte-
nance appear to be contradictory. For instance, 
one study demonstrated that TGF-β1 is capable 
of stimulating COL-2 expression in monolayer 
culture of rabbit articular chondrocytes after 
24 h treatment [46]. In contrast, after 6-day 

Figure 3. Schematic illustration of molecular events in chondrocyte dedifferentiation. Multiple signaling pathways 
are evoked during chondrocyte undergoing stimulants, including catabolic factors (IL-1β, IL-6, FGF-18) and anabolic 
factors (IGF-I, BMP-2, TGF-β). MAPK, PI3K/AKT, PKC, WNT, and Notch proteins are involved in regulating the ratio of 
COL-2 and COL-1, a key indicator of chondrocyte dedifferentiation. The red dash indicates inhibition and the black 
arrow indicates promotion. 
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exposure, TGF-β1 exerts an inhibitory effect on 
collagen synthesis without significant proteo-
glycan production change [47]. It is postulated 
that the chondrocyte status may influence the 
TGF-β1 action on matrix synthesis. Moreover, 
the action of TGF-β1 on matrix synthesis is spe-
cies-dependent. Studies have demonstrated 
that TGF-β1 can stimulate proteoglycan and 
COL-2 production during either expansion of 
goat articular chondrocytes or mouse precarti-
laginous stem cells in monolayer cultures [48, 
49]. Although human articular chondrocyte de- 
differentiation leads to decreasing TGF-β Rece-
ptor II (TβRII) expression level and subsequent 
TGFβ response [50], the addition of TGF-β1 dur-
ing monolayer expansion of human articular 
chondrocyte results in the loss of COL-2 and 
ACAN while increases the level of COL-10 pro-
tein [51]. In addition, TGF-β1 transduction path-
way is also species-dependent. One study has 
shown that TGF-β1 induces COL-2A1 expres-
sion in rat articular chondrocytes could impli-
cate activation of ERK and subsequent activa-
tor protein 1 (AP-1) binding [52]. Another study 
reported that the COL-2A1 gene transcription is 
down-regulated by TGF-β1 in rabbit articular 
chondrocytes through the increase of the Sp3/
Sp1 ratio [53].

Recently, the effect of combination of TGF-β 
with other growth factors or gene intervention 
on chondrocyte phenotype gets more and more 
attention. For example, conjunct IGF-I with TGF-
β1 stimulates the dedifferentiated human artic-
ular chondrocytes to re-differentiate, with an 
increasing in the expression of the cartilage-
specific proteins COL-2 and sex determining 
region Y box gene 9 (SOX-9) and down-regula-
tion of COX-2 and MMP-13. Thus, they exert 
anabolic effects on chondrocytes and enhance 
the chondrogenic potential [12]. Also, adenovi-
ral vector-mediated overexpression of TGF-β3 
and RNA interference of COL-1 drive dedifferen-
tiated chondrocytes back to the differentiated 
phenotype in a three-dimension (3-D) culture 
system [54]. 

Bone morphogenetic proteins 

Bone morphogenetic proteins (BMPs) are mem-
bers of the TGF-β superfamily, which regulate a 
wide range of developmental processes and 
control the differentiation of several musculo-
skeletal tissues including bone and cartilage. 
BMP-2 and -7 have already been clinically used 
for bone regeneration [55-59]. Besides, several 

BMPs, including BMP-2, -6, -9, -12 and -13, 
stimulate cartilage matrix macromolecules syn-
thesis by articular chondrocytes [60-62], reve- 
aling their potential to promote cartilage repair. 
During monolayer culture, BMP-2 expression 
levels are diminished during passaging. The 
addition of BMP-2 to monolayer culture could 
slow down chondrocyte dedifferentiation and 
reinforce the maintenance of chondrocyte phe-
notype in long-term culture conditions [31, 63]. 
It was reported that BMP-2 has a stronger 
capability than TGF-β1 to restore the character 
of chondrocytes. However, this re-differentia-
tion is limited to a certain degree because 
COL-1 expression persists after the addition of 
BMP-2 or TGF-β1 [64]. Combining BMP-2 with 
COL-1A1 siRNA effectively promotes the assem-
bly of cartilage matrix in agarose hydrogel with-
out production of COL-1 [65]. Simultaneous 
delivery of BMP-2 and SOX-9, two chondrogenic 
lineage-determining genes, results in signifi-
cantly increased expression of chondrogene-
sis-related markers (COL-2 and ACAN) and gly-
cosaminoglycan (GAG) matrix formation both in 
vitro and in vivo, compared with individual deliv-
ery of BMP-2 or SOX-9 gene [66]. Studies also 
have suggested that BMP-2 may have a better 
re-differentiation potential than IGF-I or TGF-β 
[64, 67]. Furthermore, co-transfection of IGF-I 
and BMP-2 can greatly increase the expression 
of COL2A1 and ACAN [39]. 

Although SMAD is the main signaling mecha-
nism of TGF-β, the effect of BMP-2 on COL-2 
expression is not mediated by SMAD pathway, 
as overexpression of SMAD-6 (an inhibitor of 
the canonical BMP-SMAD signaling pathway) 
could not block BMP-2-induced COL-2 pro-colla-
gen expression in mouse chondrocytes [64]. 
Therefore, non-BMP-SMAD signaling pathway 
could play a key role in BMP-2-induced COL-2 
expression in chondrocytes. This hypothesis is 
consistent with the results from a study that 
BMP-2 activates p38 MAPK, subsequently in- 
hibits Wnt-7A/β-catenin and eventually up-regu-
lates SOX-9 and COL-2 expression [68]. Taken 
together, BMP-2 has a stronger potential to pre-
vent dedifferentiation and induce re-differenti-
ation in chondrocytes. 

Fibroblast growth factors

Among the members of the fibroblast growth 
factor (FGF) family, FGF-2 and -18 have been 
implicated as key regulators in chondrocyte 
phenotype maintenance in vitro. The role of 
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FGF-2 in chondrocyte dedifferentiation is in dis-
crepancy. A series of studies have determined 
that FGF-2 functions as an anabolic inducer in 
animal articular chondrocytes. During mono-
layer expansion, the addition of FGF-2 reduces 
expression of fibroblastic molecules in calf 
articular chondrocytes. Furthermore, FGF-2 en-
hances chondrocyte response to BMP-2 in a 
3-D culture system on poly (glycolic acid) scaf-
folds [69]. Of note, the role of FGF-2 in human 
articular chondrocytes appears to contradict 
its role in calf articular chondrocytes. Recent 
studies revealed that FGF-2 stimulates the hu- 
man articular chondrocyte dedifferentiation in 
monolayer culture, suggesting it may serve pri-
marily as a catabolic factor [70]. FGF-2-ex- 
panded chondrocytes are fully dedifferentiated 
but retain their potential of re-differentiation to 
hyaline cartilage in response to environmental 
changes [71]. Such discrepancies suggest that 
the function of FGF-2 in articular chondrocytes 
may differ fundamentally between species.

FGF-18 has been shown to promote early chon-
drocyte proliferation while inhibit the differenti-
ation and matrix synthesis of chondrocytes 
[72]. Moreover, FGF-18 regulates chondrocyte 
proliferation and differentiation via binding FGF 
receptor 3 (FGFR-3) and activating ERK and 
p38 MAPK signal pathways [73]. A recent study 
verified that loss of chondrocyte phenotype is 
associated with increased FGF-18 expression 
level, indicating that FGF-18 may serve as a 
marker of dedifferentiation [74]. In this per-
spective, strategies to down-regulate the FGF-
18 expression may contribute to the chondro-
cyte phenotype maintenance.

Signaling pathways in chondrocyte dedifferen-
tiation

Extracellular signals evoked by ligand-receptor 
interaction enter into the intracellular compart-
ment to initiate a series of responses and con-
trol multiple fundamental cellular processes 
such as proliferation, differentiation, survival 
and apoptosis. There are multiple cellular sig-
naling pathways involved in chondrocyte dedif-
ferentiation, such as MAPK, PI3K/AKT, PKC, 
WNT and Notch, as shown in Figure 3. 

MAPK signaling 

The MAPK pathway (p38MAPK, ERK and JNK) 
controls multiple fundamental cellular process-
es such as proliferation, differentiation, surviv-

al and apoptosis. p38 MAPK plays a role in the 
maintenance of differentiated status of articu-
lar chondrocytes and induction of chondrocyte 
apoptosis. p38 MAPK positively regulates ch-
ondrogenesis while the ERK pathway functions 
as a negative regulator in staurosporine-in- 
duced re-differentiation [75]. It has been estab-
lished that ERK signal transduction pathway is 
involved in the regulation of cell growth and dif-
ferentiation. ERK-1 and -2 form the central 
component in the MAPK cascade. ERK-1/2 
activation induces chondrocyte dedifferentia-
tion and inhibits NO-induced apoptosis. In con-
trast, inhibition of ERK-1/2 subsequently blo- 
cks dedifferentiation [76]. However, a conflict-
ing report showed that inhibition of ERK path-
way can not block chondrocyte dedifferentia-
tion [31]. ERK-1/2 activity in chondrogenesis is 
negatively regulated by PKCα, whereas ERK-
1/2 and PKCα independently regulate dediffer-
entiation during chondrocyte passaging. Be- 
sides PKC, SH2 domain-containing transform-
ing protein (SHC) negatively regulates ERK acti-
vation in the absence of growth factors in 
human cells. The adaptor protein SHC directly 
binds the ERK, thus preventing its activation in 
the absence of extracellular stimuli. The SHC-
ERK complex restricts ERK nuclear transloca-
tion, restraining ERK-dependent transcription 
of genes [77]. A decrease in SHC-ERK interac-
tion has been suggested as a marker for irre-
versibly dedifferentiated chondrocytes in tis-
sue engineering [78]. 

Besides ERK-1/2 and p38 MAPK, the JNK sig-
naling pathway is also reported to play a role in 
the differentiation of chondrocytes [15, 79, 80]. 
However, the results are controversial. JNK 
phosphorylates c-Jun, leading to the activation 
of AP-1 to suppress the expression of SOX-9, a 
major transcription factor regulating COL-2 ex- 
pression. In addition, c-JNK/AP has been shown 
to function as downstream of WNT-3A-induced 
chondrocyte dedifferentiation [15]. A recent 
study demonstrated that JNK inhibitor sup-
presses miR-34-targeted Rac1 expression in 
chick chondroprogenitors, and Rac1 interacts 
with Rho to negatively modulate reorganization 
of the actin cytoskeleton, which is one of the 
essential processes for establishing chondro-
cyte-specific morphology [80]. 

PI3K/AKT signaling

IGF-1 binding to a receptor, namely IGF-IR, 
increases the activity of phosphatidylinositol 
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3-kinase (PI3K), which up-regulates the levels 
of the phosphatidylinositol (4,5)-bisphosphate 
[PI(4,5)P2] and phosphatidylinositol (3,4,5)-tri-
sphosphate [PI(3,4,5)P3]. The binding of AKT 
(also known as protein kinase B, PKB) to PI(4,5)
P2 and PI(3,4,5)P3 allows tyrosine phosphory-
lation of the very important regulatory sites of 
AKT, resulting in the further phosphorylation of 
AKT substrates, such as mTOR [81]. PI3K/AKT 
signaling pathway plays a critical role in cell 
growth, proliferation and differentiation. Seve- 
ral studies have demonstrated that PI3K/AKT 
signaling pathway is not only responsible for 
the ability of IGF-I to increase chondrocyte pro-
teoglycan synthesis [82], but also involved in 
blockage of the activation of p38 kinase and 
ERK-1/2 and inhibition of PKCα and PKCζ 
induced by NO, which in turn suppresses dedif-
ferentiation and apoptosis.

PKC 

PKC is a family of protein kinases that control 
the function of other proteins through the phos-
phorylation of hydroxyl groups of serine and 
threonine amino acid residues on these pro-
teins. In humans, the PKC family is divided into 
three subfamilies: conventional (α, βI, βII, and 
γ), novel (δ, ε, η, and θ), and atypical (ι and ζ). 
PKCα promotes chondrogenesis by activating 
COL-2 expression and blocks dedifferentiation 
of chondrocytes [83, 84]. PKCα expression is 
down-regulated during chondrocyte passaging, 
resulting in cellular dedifferentiation [84]. Th- 
erefore, PKCα functions as a critical signaling 
molecule promoting chondrocyte differentia-
tion and maintaining its differentiated pheno-
type. A decrease in PKCα and -ζ activities is 
required for both sodium nitroprusside (SNP)-
induced dedifferentiation and apoptosis of rab-
bit knee joint articular chondrocytes. Although 
the dedifferentiation of chondrocytes during 
subculturing is not accompanied by any chang-
es in PKCζ expression and activity [76], inhibi-
tion of PKCζ activity is required for SNP-induced 
dedifferentiation of chondrocytes [85].

WNT signaling

WNTs are a family of 19 morphogens that play 
a fundamental role in developmental process-
es ranging from embryonic morphogenesis to 
homeostasis of adult tissues. WNT pathway is 
divided into at least two branches: the canoni-
cal WNT/β-catenin signaling and the β-catenin-
independent “non-canonical” pathways.

In the canonical pathway, upon binding of WNTs 
(such as WNT-3A) to the co-receptor consisting 
of frizzled (FZD) and lipoprotein receptor-relat-
ed protein (LRP), the dishevelled (DVL) is acti-
vated. Activated DVL inhibits the destruction 
complex, resulting in nuclear import of β-cate- 
nin and its subsequent binding with TCF (T cell 
factor)/LEF (lymphoid enhancer binding factor) 
family of transcription factors to initiate the 
transcription of target genes. The non-canoni-
cal WNT pathways include calmodulin-depen-
dent protein kinase (CaMK) II pathway and 
c-Jun N-terminal kinase-mediated planar cell 
polarity pathway [86, 87]. 

Most of the cellular effects involved in WNT sig-
naling are through the modulation of β-catenin. 
For example, WNT-3A and -7A stimulating β- 
catenin-mediated transcription involved in the 
regulation of chondrogenesis and dedifferenti-
ation of primary articular chondrocytes [14, 
15]. Accumulation of β-catenin and subsequent 
activation of the β-catenin-TCF/LEF complex 
induces articular chondrocyte dedifferentiation 
characterized by the suppression of COL-2 
expression and the initiation of COL-1 expres-
sion. In addition, WNT-3A causes the expres-
sion of c-Jun and its phosphorylation by JNK, 
resulting in activation of AP-1, which suppress-
es the expression of SOX-9 [15]. Besides 
β-catenin, α-catenin also accumulates to inter-
act with each other to form a complex in pri-
mary monolayer culture during chondrocyte 
dedifferentiation. This complex inhibits ubiqui-
tin-independent degradation of α-catenin and 
β-catenin-TCF/LEF’s transcriptional activity to 
block WNT-7A/β-catenin induced dedifferentia-
tion in chondrocytes [88]. Recent studies have 
demonstrated that α-catenin recruits the tran-
scriptional repressor Gli3R to β-catenin to form 
a ternary complex, thus inhibits β-catenin’s 
transcriptional activity and dedifferentiation of 
articular chondrocytes [89]. During WNT-3A-
induced dedifferentiation of human articular 
chondrocytes, “non-canonical” CaMKII is also 
activated and reciprocally inhibits β-catenin-
dependent pathways. Therefore, blockade of 
the canonical β-catenin pathway could induce 
dedifferentiation through de-repression of the 
CaMKII pathway [90].

Notch signaling

Notch signaling is a conserved pathway that 
plays a fundamental role in embryogenesis and 
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maintenance of adult biological processes [91, 
92]. In mammals, the interaction of Notch li- 
gands (Jagged 1 [JAG-1], JAG-2, Delta-like [DLL] 
protein, microfibril-associated glycoprotein [MA- 
GP-1], MAGP-2, Notch like EGF-related receptor, 
and contactin) with its receptors (Notch1, 2, 3 
and 4) leads to a series of cleavages mediated 
by ADAM proteases and γ-secretase complex, 
resulting in the release of intracellular domain 
of Notch receptor (ICN) from membrane [93, 
94]. The active form of ICN fragment translo-
cates into the nucleus and forms a complex 
with other transcriptional factors (such as re- 
combination signal binding protein J [RBP-J]) 
and regulates downstream gene expression, 
such as hairy and enhancer of split 1 (HES1). 
Besides its important role in carcinogenesis, 
the Notch pathway has recently been found to 
be involved in the regulation of articular carti-
lage development [95], chondrocyte differenti-
ation [96-98] and dedifferentiation during 
osteoarthritis [99]. Successive passaging of 
murine articular chondrocytes (MACs) results in 
chondrocyte dedifferentiation, which is accom-
panied by increased expression of Notch 
ligands (DLL-1, JAG-1) and HES1 rather than up-
regulation of Notch1 receptor. Sustained acti-
vation of Notch1 signaling shows no effect on 
COL-2 mRNA expression, but decreases COL-2 
protein levels in chondrocytes. MMP-13, the 
main MMP family member involved in COL-2 
degradation, is up-regulated in the cells trans-
fected with constitutive active forms of the 
Notch1 receptor [100]. These results demon-
strate that Notch1 contributes to chondrocyte 
dedifferentiation via enhancing MMP-13-me- 
diated COL-2 degradation. Surprisingly, the No- 
tch inhibitor N-[N-(3,5-diflur- ophenylacetate)-L-
alanyl]-(S)-phenylglycine t-butyl ester (DAPT) 
down-regulates COL-2 mRNA expression [101]. 
Therefore, besides Notch1, other Notch family 
members may also participate in the regulation 
of COL-2 expression.

Unlike the in vitro chondrocyte culture, chon-
drocytes reside separately in the cartilage lacu-
na and thus neighboring chondrocytes lack 
Notch receptor-ligand communication. MAGPs, 
the components of extracellular microfibrils, 
are able to dissociate from the Notch1 extracel-
lular domain and activate the receptor [94]. In 
addition, MAGP-1 has been shown to interact 
with the chondroitin sulfate proteoglycan deco-
rin in cultured fetal bovine chondrocytes [102], 
which suggesting that Notch signaling is in- 

volved in chondrocyte dedifferentiation and OA. 
Therefore, we may infer that chondrocyte dedif-
ferentiation and OA share many similarities.

Conclusions

During in vitro monolayer culture, chondrocyte 
dedifferentiation occurs very early even at the 
first passage [103]. Although it has been shown 
that the 3-D culture system can partially help 
chondrocyte re-differentiation from character-
istics of dedifferentiated, it is still quite differ-
ent from the native matrix in vivo. To date, it 
remains to be extremely difficult to prevent 
chondrocyte from dedifferentiation due to the 
lack of knowledge regarding this process. Given 
the complexity of growth factors and their com-
plicated intracellular signaling pathways, the 
regimens of utilizing growth factors to maintain 
chondrocyte phenotype or using more specific 
inhibitors to block chondrocyte dedifferentia-
tion need to be optimized. On the basis of 
crosstalk signaling pathways between anabo-
lism and catabolism, future work should be 
directed toward identifying the intersection of 
signaling pathways that functionally impact on 
chondrocyte dedifferentiation. In addition, to 
design effective genetic modification-based tr- 
eatment modalities to control the chondrocyte 
dedifferentiation for clinical applications, it is 
important to introduce no deleterious or off-
target side effects. With more in-depth under-
standing of the molecular mechanisms underly-
ing chondrocyte dedifferentiation, better treat-
ment strategies may be on the horizon to com-
bat chondrocyte dedifferentiation and maintain 
the chondrocyte phenotype and simultaneously 
enhance hyaline cartilage matrix production. At 
present, our lab work has begun to investigate 
the combination of growth factors as well as 
explore alternative pathways to avoid chondro-
cyte dedifferentiation for ACI. Although much 
remains to be explored, we believe that it would 
greatly contribute to maintain the chondrocyte 
phenotype if the balance of the anabolic and 
catabolic signaling pathways can be fine- 
tuned.
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