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Abstract

Wnt/-catenin signaling pathway.

of ESC differentiation.

effectively in the future.

Background: Embryonic stem cells (ESCs) are pluripotent stem cells and can differentiate into cardiomyocytes
when cultured in appropriate conditions. The function of hypoxia-inducible factors (HIFs) has been identified in
directing the formation of cardiac lineages. The purpose of this study was to investigate the ability of HIF2a to
induce differentiation of ESCs into cardiomyocytes and to explore the potential underlying molecular mechanisms.

Methods: Cardiac differentiation from mouse ESCs was analyzed using the “hanging drop” method, and success
was determined by assaying the numbers of beating embryoid bodies and the expression level of cardiac markers.
The expression of HIF2a was then manipulated during cardiac differentiation with piggyBac transposon and the
lentivirus system. The underlying mechanism was finally examined via administering selective inhibitors of the

Results: Overexpressing HIF2a can significantly drive mouse ESCs to form cardiomyocytes. Contrarily, knockdown of
HIF2a inhibits the emergence of cardiac cells. In addition, the cardiomyogenesis-promoting effect of HIF2a occurred
by increasing the protein level of 3-catenin, an effector that contributes to cardiac differentiation at an early stage

Conclusion: HIF2a has a cardiomyogenesis-promoting effect in ESCs via enhancing the activation of the Wnt/3-catenin
signaling pathway. Our results may be beneficial for generating and applying cardiomyocytes from ESCs safely and

Keywords: Embryonic stem cells, Cardiomyogenesis, HIF2a, 3-catenin

Background

Cardiomyogenic development is a multistep process
involving a cascade of signaling events and multiple
transcription factors, which operate in a spatial and
temporal fashion to specify the fate of cardiac cells [1].
Unfortunately, our current understanding of cardio-
myogenesis is limited due to the difficulty of studying
cardiac specification effectively in vivo. In vitro manipula-
tion of embryonic stem cells (ESCs) to form embryoid
bodies (EBs) that consistently give rise to beating cardio-
myocytes has become a useful model for exploring the
structural and functional properties of cardiomyogenesis
[2]. ESCs are derived from the inner cell mass of pre-
implantation blastocysts and can be maintained in culture
indefinitely while retaining the capacity to generate nearly
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any type of cell in the body [3,4]. These beating cells have
become an attractive candidate cell source to obtain
enough cardiomyocytes for cardiac repair, such as after
myocardial infarction, which is characterized by the loss
of functional cardiomyocytes [5]. However, the molecular
mechanisms governing differentiation of ESCs into cardio-
myocytes are still poorly understood.

Cardiac fate decisions are influenced by many parame-
ters, such as FGF [6], Notch [7], Wnt [8] signaling path-
ways, GATA transcription factors [9] and hypoxia
conditions [10]. Actually, hypoxia is involved the natural
progression of organogenesis in the early development
of mammals and is one of the most critical elements for
the formation of the heart [11]. Consistently, low oxygen
tension in vitro has been shown to enhance cardiac
differentiation from ESCs [12,13]. The pivotal regulators
of cellular responses to oxygen deprivation are hypoxia-
inducible factors (HIFs) [14], which are heterodimeric
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transcription factors including HIF1a, HIF2a and HIF3«
[14]. Of interest, HIF1a is more similar to HIF2«a than
HIF3a in functional domains, expression patterns and
functions. Both HIFla and HIF2a proteins contain the
basic-helix-loop-helix Per-ARNT-SIM domain (bHLH-
PAS), which is critical for gene binding. In addition, both
are widely expressed in various tissues. However, HIF3a
is normally expressed only in highly avascular tissues,
such as the cornea. Additionally, they activate gene
transcription while HIF3a inhibits the HIFla- or
HIF2a-mediated hypoxia responses [14]. A previous
study demonstrated that HIF1la is essential for proper
cardiac differentiation because HIFla deficiency leads
to abnormal cardiac looping in mice due to defective
ventricle formation caused by reduced expression of
myocyte factors [11]. Similarly, cultured ESCs in vitro
without HIFla expression rarely form beating embry-
oid bodies (EBs) [15], while overexpression of HIFla
can promote cardiac differentiation in mouse ECS-derived
EBs [16, 17]. Notably, both HIFla and HIF2a protein
complexes are expressed in cardiac tissue [18]. However,
little is known about the role of HIF2a in cardiac
differentiation.

In this study, we investigated the role of HIF2«a in
cardiac differentiation using gain- and loss-of-function
methods in mouse ESCs, and explored the possible
intracellular signaling pathways by which HIF2«a acti-
vates this process. Our study might provide expanded
insight to create an effective strategy for promoting dif-
ferentiation of ESCs cells into cardiomyocytes.

Methods

Mouse ESC culture

46C ESCs, kindly provided by Dr. Smith A (University of
Cambridge), were cultured on 0.1% gelatin-coated dishes
at 37°C in 5% CO,. The medium for routine main-
tenance was GMEM (Sigma, G5414) supplemented
with 10% FCS (HyClone), 1% MEM nonessential amino
acids (Invitrogen), 2 mM GlutaMax (Invitrogen), 0.1 mM
[B-mercaptoethanol (Invitrogen) and 100 units/ml LIF
(Millipore). Cells were digested by 0.25% trypsin (Invitro-
gen) and passaged when confluence reached approxi-
mately 70%.

Cardiac differentiation of ESCs

ESCs were differentiated into beating cardiomyocytes
in vitro by the “hanging drop” method as described pre-
viously [19]. Briefly, the modified steps included with-
drawal of LIF and cultivation of 1,000 cells in 30 pL
hanging drops to produce EBs for two days. After two
days, the EBs were seeded onto gelatin-coated 48-well
plates. The medium was renewed every two days. Over
the next two weeks, the beating rates of these EBs were
compared according to need.
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Plasmid construction and transfection

For RNA interference in ESCs, short hairpin (shRNA)
constructs for HIF2a were designed to target 21 base-
pair gene specific regions and were then amplified into
the pLKO.1-TRC (Agel and EcoRI sites). The targeted
sequences are as follows: HIF2a sh#1:GCTTCCTTCG
GACACATAAGC; HIF2a sh#2: GGGACTTACTCAG
GTAGAACT. pLKO.1-TRC-based lentiviral vectors were
transfected into 293 T cells in combination with
pMD2.G and psPAX2 plasmids. Virus-containing
supernatant was collected after 48 hours and filtered
through 0.45 pm filters (Millipore). ESCs were incu-
bated in the virus supernatant for 48 hours. For gene
overexpression, the coding region of HIF2a was cloned
from mouse cDNA with Hot Start DNA Polymerase
(Takara) and was inserted into the BglIT and Sall sites
of the PiggyBac transposon vectors. ESCs were trans-
fected with 2 pg PiggyBac inserted with targets plus a
2 pg transposon vector using Lipofectamine 2000
(Invitrogen) according to the manufacturer’s instruc-
tions. The modified cells were screened by treatment
with 2 pg/ml puromycin for about one week.

RT-PCR and qRT-PCR

Total RNA was extracted with TRIzol (Invitrogen).
c¢DNA was synthesized with 1 pg of total RNA using a
PrimeScript 1st strand cDNA Synthesis Kit (Takara) ac-
cording to the manufacturer’s instructions. QRT-PCR
was performed with SYBR® Premix Ex Taq™ (Takara) in
an ABI7500 Real-Time PCR machine (Applied Biosys-
tems). Target gene expression was normalized to
GAPDH expression. The primers that were used are
listed in Additional file 1: Table S1.

Western blotting

Cells were lysed in ice-cold RIPA cell buffer (Sigma)
supplemented with protease inhibitors (Sigma). The
proteins were separated with a 4-12% PAGE gel and
electrotransferred onto a PVDF membrane. The membrane
was probed with primary antibodies and subsequently de-
tected by horseradish-peroxidase (HRP) conjugated anti-
bodies (Santa Cruz). The primary antibodies were -catenin
(Santa Cruz), Flag antibody (Sigma), HIFla (Santa Cruz)
and HIF2«a (Santa Cruz).

Luciferase reporter assay

TOP-Flash or FOP-Flash constructs (Addgene) were
co-transfected with a Renilla luciferase plasmid
(Promega) into mESCs overexpressing PB empty
vectors or PB-HIF2a plasmids. Cells were harvested
and the relative luciferase activity of the lysate was
measured with the Dual-Luciferase reporter assay system
(Promega).
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Immunofluorescence staining

Cells were fixed in 4% paraformaldehyde for 20 minutes
and blocked in blocking buffer (PBS containing 5%
BSA and 0.2% Triton X-100). Cells were incubated in
primary antibody solution at 4°C overnight, followed
by Alexa Fluor 488 (Invitrogen, 1:1000) secondary anti-
bodies for 1 h at 37°C. Nuclei were stained with
Hoechst (Invitrogen, 1:10000). The primary antibodies
were Gata4 (G4; Santa Cruz, 1:100), Myosin (MF-20;
DSHB, 1:50) and Troponin T (1:1000, Abcam).

FACS analysis

Differentiated EBs were trypsinized into single cells,
fixed in 2% PFA and permeabilized with 0.2%
Triton x 100. Cells were suspended in antibody solu-
tion containing anti-cTnT and «-SMA antibodies
(1:200, Abcam). Cells were washed in PBS three times
and then resuspended in FITC-conjugated secondary
antibody solution (1:1000, Invitrogen). Cardiomyo-
cytes were detected with a BECKMAN COULTER
FACS.

Cobalt chloride (CoCl2) treatment

To induce a hypoxic condition, 100 pM CoCl2 (Sigma)
were supplemented into ESCs or EBs. For analyzing the
protein levels of HIFla or HIF2a, 46C ESCs were
treated with or without 100 uM CoCl2 for 10 h. For in-
ducing cardiac differentiation, ESCs-derived EBs were
exposed to 100 uM CoCl2 during the whole process of
differentiation, and the medium was changed every two
days.

Statistical analysis

All data are reported as the mean +s.d. A Student’s ¢ test
was used to determine the significance of differences in
comparisons. Values of p <0.05 were considered as sta-
tistically significant.

Results and discussion

HIF2a has no effect on the self-renewal of ESCs

A previous report showed that HIFla is sufficient to
induce morphological changes reflective of the transi-
tion from ESCs to epiblast stem cells (EpiSCs) [20]. To
investigate the function of HIF2a in the self-renewal of
ESCs, mouse 46C ESCs were transfected with a piggy-
Bac vector encoding HIF2a and analyzed by western
blotting for expression of HIF2«a (Figure 1A). There
was no obvious distinguishing characteristic in the
morphology of empty-vector control- and HIF2a-ESCs
(Figure 1B). Additionally, HIF2a did not affect the pro-
liferation of ESCs (Figure 1C) and the expression level
of key pluripotency genes Oct4, Sox2 and Nanog
(Figure 1D). These results indicated that HIF2a does
not affect the capacity for self-renewal of mouse ESCs.
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Expression pattern of HIF2a during cardiac differentiation
To examine the expression profile of HIF2a during car-
diac differentiation, we differentiated 46C ESCs into car-
diomyocytes, which were immunopositive for cardiac
markers Gata4, Myosin and Troponin T (Figure 2A),
and then total RNA from ESCs and different stages of
EBs (days 2, 4, 6, 8, and 10) were extracted and assessed
by quantitative RT-PCR (qRT-PCR). qRT-PCR analysis
showed that mRNA transcripts of pluripotency markers
Oct4 and Nanog were robust in undifferentiated mouse
ESCs, but declined abruptly upon induction of EB for-
mation (Figure 2B), while HIF2a was increased in differ-
entiating EBs from day 2 onward and reached a peak at
day 4 (Figure 2B), indicating that HIF2a may exert a role
at an early stage of cardiac differentiation.

HIF2a promotes cardiac differentiation of ESCs

Previous studies have shown that a hypoxic condition
has strong influence during the development of the car-
diovascular system, [17,21]. In line with this, hypoxia
(4% oxygen tension) yields more cardiomyocytes than
normoxic conditions in mouse and human ESCs [12,22].
As an important downstream target of hypoxia, we inves-
tigated the contribution of HIF2a in cardiomyogenesis.
We differentiated empty-vector control- and HIF2a-ESCs
into cardiomyocytes using the hanging drop method. The
colonies of beating EBs were counted from days 8 and 10.
As shown in Figure 3A, the incidence of beating EBs in
HIF2a-transduced cells was significantly higher than those
transduced with the empty-vector construct (Figure 3A),
suggesting exogenous HIF2a could increase the beating
frequency of EBs from ESCs.

To confirm HIF2a treatment could promote cardio-
myocyte differentiation of mouse ESCs, we detected the
expressions of cardiac specific transcription factors in
EBs at day 9 and found overexpression of HIF2« signifi-
cantly increased the expression of genetic markers of car-
diac progenitors; i.e., Gata4, Thx5, Mespl, Nkx2.5 and
Mef2C (Figure 3B).

To verify whether a full program of cardiomyogenesis oc-
curred in HIF2a-ESC-derived EBs, a quantitative analysis of
structural cardiomyocyte markers (ie., a-MHC and ¢TnT)
was performed in EBs at day 15. Higher expression of a-
MHC and ¢TnT was observed in HIF2a-EBs compared
with empty vector-EBs (Figure 3C). Flow cytometry (FACS)
analysis was used to confirmed the cardiomyogenesis-
promoting effect of HIF2a by detecting the expression of
¢InT and a-SMA at day 15 (Figure 3D). Collectively, these
results suggested that HIF2a is involved in cardiomyogen-
esis and regulates cardiac-specific transcription factors.

HIF2a knockdown suppresses key cardiac gene expression
To test whether HIF2a knockdown has an effect on
cardiac differentiation of ESCs, we infected 46C ESCs
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Figure 1 The effect of HIF2a on the self-renewal of mouse ESCs. (A) Western blot analysis of 46C mouse ESCs overexpressing empty vectors
or Flag-tagged HIF2a. (B) Morphology of mouse ESCs transfected with empty or Flag-tagged HIF2a vectors and cultured in serum/LIF for five
passages. Scale bar, 100 um. (C) Cell growth assay. Relative cell proliferation was measured as a standard at Days 0, 2, 4 and 6. The original cell
density was 3,000/well. Data represent the mean + s.d. of three biological replicates. (D) Quantitative RT-PCR (gRT-PCR) analysis of Oct4, Sox2 and
Nanog in mouse ESCs transfected empty- or Flag-tagged HIF2a vectors. Data represent the mean + s.d. of three biological replicates.

with lentiviruses encoding two short-hairpin RNAs than scrambled shRNA control cells (Figure 4B).
(shRNAs) specific for HIF2a mRNA (shHIF2«a). Stable  shHIF2a EBs showed decreased expression of cardiac
knockdown of HIF2a transcript levels was observed markers (Figure 4C), indicating that endogenous HIF2«
following drug selection (Figure 4A). The percentage is important for the formation of cardiac lineages in
of beating EBs in HIF2a knockdown cells was lower  ESCs.
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Figure 2 Expression profile of HIF2a during cardiac differentiation. (A) Immunostaining for cardiomyocyte markers Gata4, Myosin and
Troponin T in mouse ESC-derived EBs at day 10. Scale bar, 100 um. (B) qRT-PCR analysis of Oct4, Nanog and HIF2a in mouse ESCs and different
days of ESCs-derived EBs. Data represent the mean + s.d. of three biological replicates. *p < 0.05, **p < 0.01 vs ESCs.
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Figure 3 HIF2a facilitated cardiac differentiation of ESCs. (A) The percentages of beating EBs derived from PB and PB-HIF2a mouse ESCs. Data
represent the mean + s.d. of three biological replicates. **p < 0.01 vs PB. (B) gRT-PCR analysis of Gata4, Tox3, Mesp1, Nkx2.5 and Mef2c in PB and
PB-HIF2a EBs at day 9. Data represent the mean + s.d. of three biological replicates. *p < 0.05, **p < 0.01 vs PB. (C) gRT-PCR analysis of a-MHC

and cTnT in PB- and PB-HIF2a EBs at day 15. Data represent the mean + s.d. of three biological replicates. *p < 0.05, **p < 0.01 vs PB. (D) The
differentiated cardiomyocytes from PB- and PB-HIF2a mouse ESCs were analyzed by FACS with cTnT and a-SMA staining.

3 - O PB
Il PB-HIF20
kk
*
*
2 .
*
1 4
o J
6 N 6 G
S U
O’b A é@ e\t. é@
PB PB-HIF2a

FITC-A
FITC-A

FITC-A

FITC-A

O 200 400 600 300 1K
SSCA

HIF2a is able to partly mimic the cardiomyogenesis-
promoting effect of hypoxia

Because hypoxia is able to induce the stabilized HIF2a
protein [14], we next aimed to examine whether HIF2«
is involved in the cardiac differentiation-promoting ef-
fect of hypoxia in ESCs. CoCl, is known to elicit
hypoxia-like responses [23], thereby we applied CoCl, to
chemically mimic the hypoxia-like environment during
cardiac differentiation. As shown in Figure 5, 100 pM
CoCl, could significantly enhance the rate of beating
EBs and the expression level of cardiac marker genes
(Figures 5A and B), while knockdown of HIF2«a im-
paired, albeit not totally, the promoting-effect of CoCl,
on cardiac differentiation (Figures 5A and B), indicating

HIF2a partly mediated the potential cardiogenic effects
of hypoxia on cultured ESCs, similar to HIFl1a [16].
Recent studies showed areas of induction of HIF2a to
a large extent overlapped with those for HIFla in
response to hypoxia and both proteins were expressed in
the heart [18]. Moreover, a marked and persistent nu-
clear accumulation of both subunits has been observed
in cardiomyocytes under systemic and regional hypoxia
[24]. In addition, the hypoxic induction of HIFIla and
HIF2« in isolated cardiac microvascular endothelial cells
was very similar [25]. The above results indicated HIFIa
and HIF2a may be functionally redundant. Consistently,
we observed that 100 uM CoCl2 was able to increase
the protein levels of HIFla and HIF2a (Figure 5C).
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Figure 4 Knockdown of HIF2a impairs the ability of ESCs for cardiac differentiation. (A) gRT-PCR analysis of HIF2a mRNA levels in mouse
ESCs stably transfected with HIF2a shRNA. The transcript level was normalized against scramble shRNA controls. Data represent the mean + s.d. of
three biological replicates. *p < 0.05, **p < 0.01 vs Scramble. (B) The percentages of beating EBs derived from scramble shRNA or shHIF2a ESCs.
Data represent the mean + s.d. of three biological replicates. **p < 0.01 vs Scramble. (C) gRT-PCR analysis of cardiomyocyte-associated gene
(Gatad, Nkx2.5, Tbx5, Mesp1, Mef2C, a-MHC and ¢TnT) expression in shHIF2a ESC-derived EBs. Transcript levels were normalized against scramble
SshRNA controls. Data represent the mean + s.d. of three biological replicates. *p < 0.05, **p < 0.01 vs Scramble.
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While double knockdown of HIFIa and HIF2« signifi-
cantly impaired the promoting-effect of CoCl, on car-
diac differentiation (Figures 5E and D). However, it is
worthy to note that both factors were not totally com-
pensatory during development. For example, HIF2«a
protein was stabilized in type II pneumocytes and pul-
monary endothelial cells in response to hypoxia, while
HIFla was not detectable [26,27]. In addition, analysis
of HIF-a-staining patterns in ischemic myocardium
showed that both micro- and macrovascular endothelial
cells more frequently expressed HIF2a than HIFla, and
a progressive increase of HIF2a but not HIFla occurred
in myocardial tissue remote from the infarcted areas

[24]. Furthermore, in the process of reprogramming,
continuous and prolonged overexpression of HIFla is
beneficial for inducible pluripotent cell formation, while
HIF2a has a stage-specific function in the process, which
is essential in early, but not late, reprogramming [28]. It
is of great interest to undertake more experiments to
identify the specific functional redundancy between
HIFla and HIF2«a during cardiac development.

HIF2a promotes cardiac differentiation of ESCs via
B-catenin activation

A previous study reported that activation of the Wnt/(3-
catenin signaling pathway at an early stage of ESC
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Figure 5 HIF2a mediated the function of hypoxia in promoting cardiac differentiation. (A) The percentages of beating EBs derived from
scramble shRNA or shHIF2a ESCs in the presence of absence of 100 um CoCl2. Data represent the mean + s.d. of three biological replicates.

*p <0.05, *p < 0.01 vs Scramble-NT. NT: No Treatment. (B) gRT-PCR analysis of Gata4 and Nkx2.5 mRNA levels in scramble shRNA or shHIF2a EBs
treated with or without CoCl2. Data represent the mean + s.d. of three biological replicates. *p < 0.05, **p < 0.01 vs Scramble-NT. NT: No Treatment. (C)
Western blot analysis of the protein levels of HIF1a or HIF2a in 46C mouse ESCs treated with or without 100 uM CoCl2 for 10 h. (D) gRT-PCR analysis
of HIFTa or HIF2a mRNA levels in HIFTa and HIF2a double knockdown ESCs. Data represent the mean + s.d. of three biological replicates. **p < 0.01 vs
Scramble. (E) The beating frequency of EBs was analyzed among the indicated groups at day 15. Data represent the mean + s.d. of three biological
replicates. *p < 0.01 vs Scramble-NT.

differentiation will stimulate mesoderm induction and compared reporter activity in EBs at day 4. HIF2« signifi-
increase cardiac differentiation [8]. In addition, hypoxia  cantly enhanced reporter activity (2-fold; Figure 6A).
has been shown to be involved in activation of the Accordingly, HIF2« increased the protein level of cytosol
Wnt/B-catenin signaling pathway [29,30]. To determine  p-catenin at day 4 (Figure 6B), suggesting that the
whether this pathway is modulated by HIF2«, we transi- elevated [-catenin protein may contribute to the
ently transfected empty vector- and HIF2a transgene- cardiomyogenesis-promoting effect of HIF2a in ESCs.
overexpressed 46C ESCs with a luciferase-based TOP-Flash To verify the impact of Wnt/B-catenin signaling on
(TCF optimal promoter) Wnt reporter plasmid, and HIF2a induced cardiac differentiation, two [-catenin
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Figure 6 HIF2a-mediated ESC cardiac differentiation is B-catenin-dependent. (A) TOP Flash assay in PB- or PB-HIF2a- EBs at day 4. Data
represent the mean + s.d. of three biological replicates. **p < 0.01 vs PB-EBs. (B) Western blot analysis of 3-catenin at day 4 PB- or PB-HIF2a- EBs.
(C) TOP Flash assay of ESCs treated with the indicated conditions for 12 h. Data represent the mean + s.d. of three biological replicates. **p < 0.01.
NT: No treatment. (D) The percentages of beating EBs derived from PB- or PB-HIF2a- ESCs in the presence or absence of 2 um XAV939 or 2 um
IWR1. Data represent the mean + s.d. of three biological replicates. **p < 0.01. (E) gRT-PCR analysis of Gata4, Nkx2.5 and Mef2C in PB- or PB-HIF2a- EBs
in the presence or absence of 2 um XAV939 or 2 um IWR1. Data represent the mean =+ s.d. of three biological replicates. **p < 0.01 vs PB.
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specific inhibitors; i.e., XAV939 and IWR1 [31], were
used to inhibit the activity of B-catenin (Figure 6C).
Inhibition of B-catenin significantly decreased the ac-
tivity of Wnt/p-catenin signaling in HIF2a overex-
pressed and knockdown cells (Figure 6C). Then, the
PB- and PB-HIF2a-transfected ESCs were incubated
with XAV939 and IWRI1 during the process of differen-
tiation, and cardiac differentiation was assessed by cal-
culating the percentage of beating EBs and detecting
the cardiac cell markers Gata4, Nkx2.5 and Mef2c at
day 10. Compared with the no treatment (NT) group,
both inhibitors significantly reduced the number of
beating EBs and the expression of cardiac transcription
factors (Figures 6D and E). These results suggested that
HIF2a-mediated cardiogenesis is [-catenin-dependent in
ESCs.

Indeed, the function of hypoxia is associated with
Wnt/fB-catenin signaling in many types of cells. For ex-
ample, HIF1la promoted cellular adaptation to hypoxia
by interacting with p-catenin [32]. HIF2« accelerated cell
cycle progression and proliferation of renal cell carcin-
oma cells via binding -catenin and enhancing its tran-
scriptional activity [33]. Further study found that HIF2«
could localize on the enhancer of Wnti0b as well as
upstream of the Wntl gene [34]. In cardiomyocyte de-
velopment, early hypoxia lead to activation of HIFla
with potential subsequent effects on Wnt gene expres-
sion [29]. In our study, we also found that B-catenin is
required for HIF2a to promote cardiac formation. How-
ever, it is unclear whether HIF2a has the same effect on
B-catenin as HIF1a and how the latter affects 3-catenin.
Meanwhile, it is noteworthy that there was no significant
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difference seen in Luciferase activity between PB and
HIF2a sh#2 cells unlike that of PB and PB-HIF2a groups
(Figure 6C), implying other signaling pathways may be
responsible for the cardiomyogenesis—suppressing effect
of HIF2a knockdown. These detailed mechanisms need
to be clarified further.

Conclusions

The present results provide valuable insight on the func-
tion of HIF2a in ESC-derived cardiomyocytes. The
HIF2a-induced promoting effect on B-catenin signaling
may be involved in this process. Our results will be par-
ticularly helpful in attempts to achieve effective cardiac
differentiation from ESCs and will provide useful infor-
mation for the clinical application of ESCs.

Additional file

[ Additional file 1: Table S1. Primers used for real-time PCR. ]
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