Table 1. Comparison of this study with reported methods for PFOS degradation.
Method | Conditions | ka (h−1) | EEOb (103 kWh/m3/order) | Reference |
---|---|---|---|---|
Direct UV | [PFOS]: 40 μM | 0.0054 | 18.19 | Yamamoto, et al.10 |
750 mL | ||||
36–46°C | ||||
LPMLc: 32 W | ||||
UV in iso-propanol | [PFOS]: 40 μM | 0.039 | 2.52 | Yamamoto, et al.10 |
[NaOH]: 68 mM | ||||
750 mL iso-propanol | ||||
38–50°C | ||||
LPMLc: 32 W | ||||
UV/KI | [PFOS]: 20 μM | 0.18 | 3.41 | Park, et al.19 |
[KI]: 10 mM | ||||
30 mL | ||||
ambient temperature | ||||
UV: 8 W | ||||
UV/K2S2O8 | [PFOS]: 20 μM | 0.24 | 2.56 | Park, et al.19 |
[K2S2O8]: 10 mM | ||||
30 mL | ||||
ambient temperature | ||||
UV: 8 W | ||||
UV/FeCl3 | [PFOS]: 20 μM | 0.070 | 1.90 | Jin, et al.13 |
[FeCl3]: 100 μM | ||||
400 mL | ||||
25°C | ||||
LPMLc: 23 W | ||||
Sonolysis | [PFOS]: 20 μM | 0.96 | 8.00 | Moriwaki, et al.14 |
60 mL | ||||
20°C | ||||
ultrasonic: 200 W, 200 kHz | ||||
Plasma bubble | [PFOS]: 100 μM | 0.15 | 3.99 | Yasuoka, et al.18 |
50 mL | ||||
25°C | ||||
Power: ~13 W (oxygen plasma) | ||||
UV with optimization of pH and temperature | [PFOS]: 37.2 μM | 0.91 | 1.27 | this work |
PBS: 6.0 mM, pH 11.8 | ||||
100°C | ||||
1000 mL | ||||
MPMLd: 500 W |
apseudo-first-order rate constants;
belectrical energy per order, defined as the number of kilowatt hours of electrical energy required to reduce the concentration of a pollutant by 1 order of magnitude in 1 m3 of contaminated water, proposed as figure-of-merit for removal of pollutant at low concentrations by the Photochemistry Commission of the International Union of Pure and Applied Chemistry34;
clow pressure mercury lamp;
dmedium pressure mercury lamp with a low UVC luminous efficiency, which also acted as the heat source.