Skip to main content
. 2015 Mar 23;5:9353. doi: 10.1038/srep09353

Table 1. Comparison of this study with reported methods for PFOS degradation.

Method Conditions ka (h−1) EEOb (103 kWh/m3/order) Reference
Direct UV [PFOS]: 40 μM 0.0054 18.19 Yamamoto, et al.10
  750 mL      
  36–46°C      
  LPMLc: 32 W      
UV in iso-propanol [PFOS]: 40 μM 0.039 2.52 Yamamoto, et al.10
  [NaOH]: 68 mM      
  750 mL iso-propanol      
  38–50°C      
  LPMLc: 32 W      
UV/KI [PFOS]: 20 μM 0.18 3.41 Park, et al.19
  [KI]: 10 mM      
  30 mL      
  ambient temperature      
  UV: 8 W      
UV/K2S2O8 [PFOS]: 20 μM 0.24 2.56 Park, et al.19
  [K2S2O8]: 10 mM      
  30 mL      
  ambient temperature      
  UV: 8 W      
UV/FeCl3 [PFOS]: 20 μM 0.070 1.90 Jin, et al.13
  [FeCl3]: 100 μM      
  400 mL      
  25°C      
  LPMLc: 23 W      
Sonolysis [PFOS]: 20 μM 0.96 8.00 Moriwaki, et al.14
  60 mL      
  20°C      
  ultrasonic: 200 W, 200 kHz      
Plasma bubble [PFOS]: 100 μM 0.15 3.99 Yasuoka, et al.18
  50 mL      
  25°C      
  Power: ~13 W (oxygen plasma)      
UV with optimization of pH and temperature [PFOS]: 37.2 μM 0.91 1.27 this work
  PBS: 6.0 mM, pH 11.8      
  100°C      
  1000 mL      
  MPMLd: 500 W      

apseudo-first-order rate constants;

belectrical energy per order, defined as the number of kilowatt hours of electrical energy required to reduce the concentration of a pollutant by 1 order of magnitude in 1 m3 of contaminated water, proposed as figure-of-merit for removal of pollutant at low concentrations by the Photochemistry Commission of the International Union of Pure and Applied Chemistry34;

clow pressure mercury lamp;

dmedium pressure mercury lamp with a low UVC luminous efficiency, which also acted as the heat source.