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Abstract

Obesity and type 2 diabetes remain epidemic problems. Different bariatric surgical techniques 

causes weight loss and diabetes remission to varying degrees. The underlying mechanisms of the 

beneficial effects of bariatric surgery are complex, and include changes in diet and behavior, as 

well as changes in hormones, bile acid flow, and gut bacteria. We summarized the effects of 

multiple different bariatric procedures, and their resulting effects on several hormones (leptin, 

ghrelin, adiponectin, glucagon-like peptide 1 (GLP-1), peptide YY, and glucagon), bile acid 

changes in the gut and the serum, and resulting changes to the gut microbiome. As much as 

possible, we have tried to incorporate multiple studies to try to explain underlying mechanistic 

changes. What emerges from the data is a picture of clear differences between restrictive and 

metabolic procedures. The latter, in particular the roux-en-Y gastric bypass, induces large and 

distinctive changes in most measured fat and gut hormones, including early and sustained increase 

in GLP-1, possible through intestinal bile acid signaling. The changes in bile flow and the gut 

microbiome are causally inseparable so far, but new studies show that each contributes to the 

effects of weight loss and diabetes resolution.
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Introduction

Obesity and type 2 diabetes are a worldwide epidemic. Medical weight loss through proper 

diet and exercise are essential to good health, but some patients require bariatric surgery in 

addition. Bariatric surgery has proven to be safe and effective in inducing weight loss and 

improving or even curing type 2 diabetes. Although all bariatric surgery procedures end up 

changing the patient’s diet, the alteration to patient anatomy and/or nutrient flow has effects 

that are independent of the restriction on diet.
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Weight loss surgery can generally be divided into three classes: restrictive, metabolic, or 

both. The restrictive procedures discussed here are: the adjustable gastric band (AGB), 

which simply encircles the cardia of the stomach with an inflatable silicone ring; and the 

sleeve gastrectomy (SG), in which most of the greater curvature of the stomach is removed. 

After these procedures, nutrients follow their pre-surgical course, but the patient is limited in 

the rate of food intake. There are many metabolic procedures, some of which also include a 

restrictive component. Here we review several procedures, as their similarities and 

differences in anatomical rearrangement and downstream effect can be compared to draw 

insight into the underlying physiology. The duodenal-jejunal bypass (DJB) involves 

separating the duodenum from the stomach outlet, and connecting a jejunal limb in its 

place.. This procedure has a restrictive component; nutrients bypass the duodenum, which as 

a result is exposed to undiluted bile, and the bile and nutrients mix in the jejunum. Similar is 

the biliary-pancreatic diversion (BPD), which involves a much longer intestinal bypass, 

wherein the alimentary limb is anastomosed to the ileum. The BPD also usually involves a 

gastrectomy of varying types. BPD can lead to severe nutrient deficiencies, and is falling out 

of favor as RYGB and SG become more common (1, 2). Finally, the roux-en-Y gastric 

bypass (RYGB) involves separating the stomach into a small upper pouch, which is 

anastomosed to a roux jejunal limb, while leaving the remnant stomach attached to the 

biliary limb, into which the bile still drains. It is thus both restrictive and metabolic. The 

RYGB has been proven to induce greater weight loss and resolution of diabetes than the 

restrictive procedures, with a good safety record (3). Each weight loss intervention has its 

pros and cons; their various differences also induce different changes in patient physiology, 

leading to direct effects on weight loss and diabetes resolution.

The last 10–15 years has seen a great increase in research in the hormone environments of 

the gut and the adipose tissue as they relate to weight loss. The stomach and intestine are 

now known to be crucial in the production of hormones such as ghrelin and glucagon-like 

peptide (GLP)-1. Further, adipose tissue is under homeostatic control by leptin and 

adiponectin. Weight loss procedures all have differing effects on these and other 

hormones;RYGB, in particular, is known to have an incretin effect, through both the 

‘foregut’ mechanism, whereby bypass of the proximal small intestine leads to decreased 

anti-incretin effects, and the ‘hindgut’ mechanism, whereby direct flow nutrients to the 

distalsmall bowel cause a direct increase in incretin hormones. Disentangling the surgical 

changes from the changes induced by weight loss and diet are keys to understanding both 

the underlying physiology of obesity as well as the success of bariatric surgery.

Metabolic bariatric surgery has long been known to exert at least some of its effects through 

altered bile flow, including decreased absorption of fatty acids and increased bile production 

by the liver. Bile acids are now understood as signaling molecules in their own right; 

mechanistic studies of oral bile acid sequestrants have shown a significant incretin effect 

from altered bile flow (4). Mechanistic studies of bile flow after surgery are difficult, and 

only few have been accomplished. Still, new evidence points to a causal link between the 

altered bile flow in malabsorptive procedures and the subsequent incretin effect.

The alterations in diet and bile flow that accompany weight loss surgery lead to changes in 

the gut microbiome. The techniques that are now used to profile the gut microbiome are 
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relatively new, so mechanistic studies of bariatric surgery and changes in gut bacteria are 

only now beginning to come out (5). Studies of the microbiome after change in diet, weight 

loss, bariatric surgery, probiotics, and antibiotics have all given new insights into how 

changes in the gut bacteria lead to profound changes in host physiology.

Here, we report a review of the impact of known weight loss procedures on gut and adipose 

hormones, bile acids, and the gut microbiome. From the large body of research that has been 

amassed, we can begin to glean new insights into the mechanism of weight loss and diabetes 

resolution after weight loss surgery.

Methods

A review of the mechanisms of bariatric surgery and medical weight loss was undertaken. 

Pubmed was hand-searched for the following interventions: gastric band or gastric banding 

or AGB; sleeve gastrectomy or SG; duodenal bypass or duodenojejunal bypass or DJB; roux 

en Y gastric bypass or gastric bypass or RYGB; biliary pancreatic diversion or 

biliopancreatic diversion or BPD; and bile acid sequestrant or colestipol or cholestyramine 

or colesevelam. Each intervention was searched with the following terms: hormone; leptin; 

ghrelin; adiponectin; glucagon; GLP-1; peptide YY or PYY; or serum bile acid or bile acids; 

and microbiome or microbiota. Medical weight loss was searched with: medical weight loss 

or restrictive diet weight loss. As this review is intended to focus on bariatric surgical 

interventions, the medical weight loss review was not designed to be comprehensive.

This list generated several hundred articles. We excluded reviews or studies not done in 

humans, with the exception of some mechanistic studies of bile acid sequestrants and the gut 

microbiome, where human data are sparse. Studies that did not provide adequate statistical 

comparisons between groups (ie, studies that showed trends without tests) were not 

included. Also not included were studies that did not group patients according to a single 

intervention (ie, grouped several surgery types together). Trends that did not achieve 

statistical significance were listed as ‘no change’. For time-course measurements, 

achievement of a statistical difference at any time point was listed as a change (ie, 

measurements at 3,6, and 12 months that were significantly increased only at 12 months 

were listed as ‘increased’), unless there were significant changes in opposite directions 

during the time course. Due to the significant amount of literature present in this field, some 

studies may have been missed.

Results

Hormonal changes in weight loss and bariatric surgery

Energy homeostasis and fat metabolism in the body are heavily regulated by a complex 

network of hormones (6, 7). A relatively small subset of hormones has been thoroughly 

studied in the setting of bariatric surgery (leptin, ghrelin, adiponectin, glucagon-like peptide 

1 (GLP-1), glucagon, and peptide YY (PYY)), and we will focus on this subset. This list is 

not comprehensive; however, each hormone included in this review has data available across 

most surgical interventions. Each hormone will be discussed in turn; Table 1 shows the 

literature findings of hormone changes across the various interventions.
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Leptin is a hormone made in adipose tissue and increased by increased fat mass; its main 

function is to decrease hunger. When a person loses fat mass by any means, the level of 

circulating leptin falls, thereby triggering a hunger response at the hypothalamus. Thus, 

leptin normally acts to keep fat mass constant. Since all reviewed interventions lead to 

weight loss, it is perhaps not surprising that all have evidence of late decrease in leptin 

levels, perhaps in rough proportion to the amount of weight lost (i.e., leptin levels decrease 

less with AGB than RYGB, and total weight loss follows the same trend, (8)). Interestingly, 

AGB is the only procedure which has repeated measures of increases in leptin (which would 

thereby function to decrease hunger in such patients). Although 21 of 27 studies still report a 

decline in leptin in patients post-AGB (9–29), there are several papers which show either no 

change (30, 31), an immediate increase (32, 33), or a late increase (8, 34). Our literature 

review did not turn up any similar increases in leptin in other bariatric interventions. Why a 

small proportion of the literature would show an increase (as opposed to simply no change) 

in AGB is unclear, and an open question.

Ghrelin is a hormone that is a cleavage product of preproghrelin, along with obestatin (31). 

Ghrelin’s best-known function is to stimulate hunger, somewhat opposite of leptin. 

Preproghrelin is made mainly in the stomach (31); thus it might be expected that removal of 

part of the stomach might decrease ghrelin, and indeed, we see such an effect with SG. A 

total of 14 out of 15 studies of ghrelin levels after SG show a significant decrease (35–49). 

In contrast, both medical weight loss and AGB show either no change or an increase in 

ghrelin, thereby stimulating hunger (8, 10, 11, 14, 16, 20–22, 26, 28, 46, 47, 50–58). 

Malabsorptive procedures all show mixed data, indicating that nutrient flow likely alters 

ghrelin production to some degree. BPD (44, 59) and DJB (36, 60) each show either a 

decrease in ghrelin or no change. Studies of ghrelin after RYGB exhibit the full range of 

responses: decreased, unchanged, and increased (8, 11, 21, 35, 37–39, 43, 49, 54, 56, 57, 61, 

62). There can be considerable variation in ghrelin levels based on timing of blood draw 

with relation to surgery, operative technique, and remnant gastric pouch; these may partly 

explain the mixed nature of these results. These data suggest that ghrelin production is 

decreased at least in part by altered upper GI nutrient flow, though this mechanism may be 

indirect.

Adiponectin is a complex hormone that has a variety of actions. Briefly, although it is 

produced by adipose tissue, its circulating level has been found to negatively correlate to 

BMI (63). Adiponectin is involved in energy homeostasis and insulin sensitivity. A literature 

review shows that adiponectin is almost universally increased after bariatric surgery or 

medical weight loss (17, 19, 23, 29, 34, 41, 45, 47, 50, 55, 64–84). Moreover, no study 

showed an increase in adiponectin due to a given procedure not also possibly explained by 

weight loss. The only studies which did not show a change in adiponectin were one showing 

a decrease in adiponectin after medical weight loss (85) and a study of duodenal-jejunal 

bypass in which the surgical group did not show a significant change in fat mass or BMI 

(86). It thus seems most likely that adiponectin production is increased secondary to weight 

loss in all procedures, since it is increased by weight loss of any kind, including medical 

weight loss.
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GLP-1 is a hormone that is made in the ileum. As an incretin, it is known to increase insulin 

production and decrease glucagon production. The GLP-1 analogues exenatide and 

liraglutide are used in the treatment of type 2 diabetes. Six studies have shown that GLP-1 is 

not increased after medical weight loss and may be decreased (54, 55, 71, 87–90). Only 1 of 

10 studies in AGB showed an increase in GLP-1, and in that one study it was increased less 

than RYGB (30); the others showed no change (8, 21, 22, 56, 57, 68, 91–93). Every 

malabsorptive procedure exhibits an increase in GLP-1 (for a discussion of the impact of 

bile acids on GLP-1, see the section below). RYGB has been especially well-studied with 19 

of 20 studies showing an increase in GLP-1 after RYGB (8, 21, 37–39, 42, 49, 50, 56, 57, 

68, 71, 84, 87, 90, 91, 94–96), and only 1 study showing a decrease (92). The increase in 

GLP-1 has been shown to occur prior to weight loss, and may contribute to the early 

remission of diabetes (84). Interestingly, GLP-1 showed variable response to SG, with 

studies showing GLP-1 decrease (44), no change (90), an increase less than RYGB (37, 39, 

49), or an overall increase (38, 40, 42, 48, 89, 94, 95, 97). The preponderance of the 

evidence suggests that SG increases GLP-1; since simple restriction in the setting of diet or 

AGB does not increase GLP-1, this seems to be specific to the removal of a portion of the 

stomach, though still could be a secondary effect. Overall, one clear contribution of altered 

anatomy in bariatric surgery is an incretin effect due to increased GLP-1.

The effects of bile acid on GLP-1 are important in the outcomes of bariatric surgery. 

Pharmacologic bile acid sequestration (via colestipol, cholestyramine, or colesevelam) has 

been shown to increase circulating GLP-1 levels and reduce hyperglycemia in both humans 

(98–100) and rodents (101–103). One study showed no change in incretins due to 

colesevelam, though there was still an improvement in oral, but not intravenous, glucose 

tolerance (104). The bile acid sequestrants all decrease serum bile acids (not surprisingly) 

(105–107), while the malabsorptive procedures increase them (see bile acids section and 

Table 2 below). The common mechanism of action, if one exists, is thus likely the alteration 

of bile flow in the intestine, but this has not been proved. One elegant study showed that 

enteric bile acids signal through the receptor TGR-5 in the intestine to increase GLP-1 

production (108). Overall, these data show that altered bile acid flow in malabsorptive 

procedures is likely one reason for their resultant incretin effect. Still, Steinert et al. showed 

that increases in serum bile acid after RYGB lagged behind the increase in GLP-1 by several 

months (95); clearly, more work is needed to elucidate the exact mechanism.

Glucagon functions opposite insulin to increase circulating glucose via decreased uptake and 

increased glycogenolysis. Generally, glucagon levels are not well studied after bariatric 

surgery. The studies that have been done show somewhat conflicting results; there may be a 

trend towards increased glucagon production after malabsorptive procedures. Patients 

undergoing medical weight loss show decreased glucagon production (109–111). After AGB 

there is no change in glucagon production (68, 91, 93), and after SG there is evidence of 

both early increase (42, 94) and late decrease (44, 112). With the exception of one study 

showing no change (91), both BPD and RYGB show evidence of increased glucagon 

production (44, 68, 94, 110, 113). BPD and RYGB methods also tend to have the highest 

increases in insulin; it is possible that the increased glucagon observed after RYGB and 

BPD are compensatory increases for significantly lowered blood sugar in these cases.

Sweeney and Morton Page 5

Best Pract Res Clin Gastroenterol. Author manuscript; available in PMC 2015 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Peptide YY is released by the ileum and colon and is known to inhibit gastric motility, 

reduce pancreatic exocrine secretion, and may reduce appetite directly through NPY 

receptors in the brain. It also may inhibit appetite through secondary effects of reduced GI 

motility. Studies have shown that PYY either decreases (58) or does not change after 

medical weight loss (52, 53, 55, 87). Both AGB and SG show a general trend towards 

increased PYY, with 18 studies reporting a range of decreased (44), unchanged (8, 41, 42, 

56, 57), and increased (21, 28, 37–40, 49, 50, 92, 97, 114, 115) PYY after intervention. 

Interestingly, the malabsorptive procedures show a uniform increase in PYY (8, 21, 30, 37–

39, 42, 44, 49, 56, 57, 87, 92, 96, 116). The mechanism of how PYY is increased is unclear, 

but may be related to early contact with nutrients or altered bile flow; bile acid sequestration 

shows mixed effects for PYY (decreased (117), no change (104), increased in rats (101)). 

The overall effect on PYY on weight loss and diabetes resolution is thus unclear, but 

appetite reduction due to increased PYY may contribute to the anti-obesity effects of 

malabsorptive procedures.

Bile acid changes in bariatric surgery

The normal enterohepatic circulation is that primary conjugated bile acids are secreted into 

the duodenum in response to fatty meals, where they mix with fatty acids. Some are 

dehydroxylated to secondary bile salts by lower GI bacteria. Most are reabsorbed in the 

ileum and flow back to the liver. The level of postprandial bile excretion is decreased in 

obese compared to lean patients (118); serum bile acids are higher in obesity, and decrease 

after medical weight loss (119–121). The studies done in AGB and SG are conflicting, 

showing serum bile acid levels that are increased (122), decreased (95, 123), and unchanged 

(41, 57) in response to restrictive procedures. No serum bile acid data could be found for 

DJB or BPD. In RYGB, 9 of 10 studies showed in increase in some fraction of serum bile 

acids (57, 96, 123–129); the other study showed an initial decrease prior to a late increase 

(95) (see Table 2 for references). Overall, the increased serum bile acids seen in RYGB are 

well-known, and the increase is believed to be due to the fact that excreted bile acids have 

less time to mix with food prior to transit through the ileum, leaving more bile acids free for 

ileal reuptake. See Table 2 for an overview of alterations in bile flow in bariatric surgery.

As discussed above, increased free ileal bile acids activate TGR-5, leading to increased 

GLP-1 production. A separate incretin effect from bile follows the bile->FXR->FGF-19-

>CYP7A1 pathway (130). Briefly, luminal bile acids bind the Farnesoid X Receptor (FXR) 

in the intestine, which activates fibroblast growth factor (FGF)-19; FGF-19 then activates 

CYP7A1 in the liver, which produces bile acid from cholesterol; it is thus a somewhat rare 

example of a feed-forward mechanism. FGF-19 is decreased in diabetes; after RYGB, it was 

shown that both FGF-19 expression and bile acid production increase to a greater degree in 

diabetic patients, possibly contributing to the increased bile acid levels and hence the 

incretin effect of RYGB (126, 131). On the other hand, some data suggest that FGF-19 is not 

increased by RYGB (128). Interestingly, FGF-19 was previously found to be decreased by 

bile acid sequestrants and increased by oral bile acid supplementation (132); this FGF-19 

pathways is thus somewhat at odds with the finding of an incretin effect with bile acid 

sequestrants.
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Increased bile acids have a complex relationship with gut microbiota. An increase in free 

bile acids may encourage overgrowth of bile-tolerant bacteria in phylum proteobacter (such 

as Bilophila wadsworthia); at the same time, a change in gut bacteria may change the degree 

to which bile acids are metabolized in the gut (133). Moreover, some evidence shows that 

the gut microbiota directly regulate the production of bile acids by conjugating bile acids to 

activate FXR->FGF signaling (134). Sorting out the cause and effect of change in bile acid 

flow and change in gut bacteria remains an active area of study.

Gut microbiota changes in bariatric surgery

The gut microbiome changes significantly after both medical weight loss and bariatric 

surgery (5). In particular, recent research has repeatedly shown persistent phyla-level 

differences in obesity, and after medical weight loss and RYGB. Generally, the 

Firmicutes:Bacteroides ratio is increased in obese individuals (135–138), and decreases after 

medical weight loss (135, 139, 140), though one study reported no significant difference 

between healthy and obese patients (141). A similar decrease in the Firmicutes:Bacteroides 

ratio is induced after RYGB (138, 142, 143). Moreover, several studies have now shown an 

increase in Proteobacteria after RYGB (142–145). Unfortunately, our comprehensive 

literature search found no studies of the microbiome in any of the other interventions 

discussed here.

The taxonomic changes observed after medical weight loss and after RYGB have in 

common a decreased Firmicutes:Bacteroides ratio; however, RYGB shows a persistent 

increase in Proteobacter that is not observed in medical weight loss. Moreover, David et al. 

showed that a change in diet to less carbohydrates and higher protein and fat produced a 

very fast (within a day) significant shift towards increased gut bile-tolerant phylum 

Proteobacter (133). One possibility is thus that RYGB patients ingest more animal products 

than their medical weight loss counterparts, and this induces a shift towards Proteobacteria. 

However, a more likely scenario is that the greater amount of free bile acids seen by the 

lower intestine after RYGB creates an environment more hospitable to bile-tolerant bacteria 

such as in phylum Proteobacter. Perhaps even more fascinating is that a recent study of the 

gut microbiome after oral vancomycin administration showed that the vancomycin 

selectively killed off Firmicutes bacteria, which lead to an overgrowth of Proteobacter; this 

in turn caused a decrease in secondary bile acids, leading to increased serum primary bile 

acid levels with a resulting incretin effect (146). Putting these data together, then, the 

increase in free primary bile acids in the lower intestine after RYGB has both a direct 

incretin effect through TGR-5 signalling, but also an indirect feedforward effect in serum 

bile acids caused by changes in the gut microbiome. These synergistic changes may be 

partly responsible for the magnified incretin effect seen after RYGB. As an aside, it should 

also be noted that a recent study linked increased Proteobacter to a higher incidence of 

gallstones; thus changes in the gut microbiome may also be linked to the increase in 

gallstones after RYGB (147). Finally, it has also been shown that administering oral 

lactobacillus post-RYGB leads to increased weight loss; there may thus be benefits to 

modulating gut microbiota to induce weight loss (148).
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A mechanistic proposal of interplay between hormones, bile, and the microbiome

Taken together, the complex interplay between change in diet, bile flow alteration, hormonal 

change and altered gut microbiota cannot be easily understood. Still, some cause and effect 

relationships are clear, even if the exact mechanisms remain unknown. First, leptin is 

decreased and adiponectin is increased in rough proportion to weight loss, and they do not 

appear to change according to type of intervention. Second, SG is the only intervention 

which appears to show a sustained decrease in ghrelin, and this may be partly responsible 

for its greater weight loss success than AGB. Third, some of the anorectic effect seen in 

malabsorptive procedures may be due to increases in PYY. Fourth, GLP-1 is significantly 

increased in malabsorptive procedures, at least partially due to a direct effect from increased 

unbound luminal bile acids acting through intestinal TGR-5. Moreover, the incretin effect 

from GLP-1 can be reproduced in part by oral administration of bile acid sequestrants. Fifth, 

RYGB causes an increase in free bile acids in the lower intestine and increases in serum bile 

acids not seen with restrictive procedures or medical weight loss; this may contribute to its 

incretin effect through TGR-5 signalling to increase GLP-1 expression. Finally, RYGB 

induces an increase in Proteobacter in the gut microbiome not seen in medical weight loss, 

and this may induce a feedforward mechanism towards increasing serum bile acids and an 

incretin effect.

In each intervention discussed here, the diet is changed. Moreover, the diets between the 

different interventions may be changed in different ways; malabsorptive procedures, in 

particular, often create an aversion to dietary fats. The effects discussed above thus cannot 

be untangled, as of yet, from their possible dietary changes. Still, some elegant mechanistic 

studies of bile flow, gut bacteria and incretins have helped explain, at least in part, why 

malabsorptive procedures are so successful in reversing type 2 diabetes.

Weaknesses

This review has some weaknesses. First, the exact time courses of the changes in hormones 

with respect to the procedures are not reviewed here. Second, the choice of hormones 

reviewed is not comprehensive. The actions of other hormones, such as insulin, thyroid 

hormones, GIP, and FGF-19 were not reviewed. Third, medical weight loss was not 

reviewed systematically, and so our results may have bias. Finally, this study is not a formal 

meta-analysis; although we aimed to be comprehensive in our literature search, simple 

‘vote-counting’ of studies should not take the place of a formal statistical meta-analysis; we 

hope that others will use this work as a starting point for more formal analyses.

Conclusions

Obesity and type 2 diabetes remain as epidemics. Modern bariatric surgery is safe, reliable, 

and effective for weight loss and reduction of insulin resistance. While both restrictive and 

malabsorptive procedures are effective for weight loss, RYGB in particular is known to 

induce greater weight loss with a higher cure rate of type 2 diabetes. The so-called BRAVE 

effects of RYGB (altered Bile flow due to exclusion of the biliary limb, Reduced gastric size 

in the RYGB , Anatomic gut rearrangement (as explained in the introduction), Vagal 

alterations secondary to the gut rearrangement, and Enteric hormone alterations as reviewed 
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here) have been known for some time, but only recently have mechanistic studies in bile 

flow and gut microbiota shed light on how RYGB causes such a significant incretin effect.

Still, more work is needed. Important questions include whether and how the gut 

microbiome might change in purely restrictive procedures, and to what degree this depends 

on diet. Also important to reconcile is the exact mechanism of action of bile acids in the 

incretin effect; although intestinal TGR-5 signaling may cause at least part of this effect, it 

doesn’t explain why bile acid sequestrants and anatomic bile-rerouting both have an incretin 

effect through GLP-1. Regarding hormonal changes, enough studies have been done that a 

formal meta-analysis of hormonal changes after bariatric surgery, including time series, 

would be both feasible and beneficial. As the questions of timing of changes in diet, 

hormones, bile flow, gut bacteria, and weight loss become clear, causative models will be 

established, giving unparalleled insight into the physiology of obesity and weight loss.
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Practice Points

• Bariatric surgery is now recognized as having profound metabolic effects.

• Comparative effectiveness of bariatric surgery varies with gastric bypass 

providing the most effectiveness and gastric band the least effectiveness with 

corresponding metabolic changes

• Changes in the microbiome and their role in weight loss following bariatric 

surgery require more definition
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Research Agenda

• The role of the microbiome, bile acid metabolism, and hormonal changes 

following bariatric surgery needs to be further defined.

• The impact of the microbiome upon weight loss should be determined to be 

associative or causative.

• The mechanism of bile acid metabolism upon weight changes requires further 

study.
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Table 1

Review of studies on hormonal changes across different interventions. If one group of studies formed a 

majority, the number is listed, and their references are found in the cell at right.

Leptin Ghrelin Adiponectin GLP-1 Glucagon PYY

Medical
Weight

Loss

Decrease (26, 
47, 52, 58, 

109),
No Change 

(55)

No Change 
(46, 47, 54, 

55),
Increase (35, 
52, 53, 58)

Decrease (85),
No Change (55),
Increase (47, 64, 

67, 85)

Decrease (58),
No Change (54, 55, 

71, 87–90)

Decrease (109–111) Decrease (58),
No Change (52, 

53, 55, 87)

AGB Decrease (9–
28),

No Change 
(29,30),

Immediate
Increase 
(31,32),

Late Increase 
(8,33,34)

Decrease (34)
No Change 

(8, 14, 20, 21, 
29, 56, 57),
Transient 

Increase (16),
Increase (11, 
25, 27, 51),

Late Increase 
(10)

Increase (17, 19, 
22, 28, 33, 65, 

68)

No Change (8, 20, 21, 
56, 57, 68, 91–93),

Increased Less Than 
RYGB (29)

No Change (68, 91, 
93)

No Change (8, 
56, 57)

Decreased 
fasting level,

Increased total 
production (27, 

92, 114),
Increased Less 
Than RYGB 

(20, 29)

SG Decrease (40, 
41, 43, 47, 49, 

73, 75, 77)

Immediate 
Decrease (97)

Decrease 
(35–38, 40, 
41, 44–49),

Late 
Decrease 

(42),
No Change 

(43)

Increase (41, 45, 
47, 73, 77)

Decrease (44),
No Change (90)

Increase Less
Than RYGB (37, 39, 

49),
Increase (38, 40, 42, 
48, 89, 94, 95, 97)

Late Decrease (44, 
112),

Early Increase (42, 
94)

Early Decrease 
(44)

No Change 
(41,42),

Increase Less
Than RYGB 

(37–40);
Increase (97, 

115)

RYGB Decrease (8, 
11, 20, 26, 29, 
33, 43, 49, 72, 

74, 77)

Decrease (37, 
38, 42, 54, 

56),
No Change 

(8, 11, 20, 35, 
43, 49, 57),
Higher than 

SG (61),
Increase (62, 

74, 76)

Increase (29, 33, 
45, 68–71, 74–

79, 81–84)

Decrease (92),
Increase (8, 20, 37–

39, 42, 49, 50, 56, 57, 
68, 71, 84, 87, 90, 91, 

94–96)

No Change (91)
Increase (68, 94, 110, 

113)

Increase (20, 29, 
37–39, 49, 56, 
57, 87, 92, 96),

Late Increase (8, 
42)

BPD Decrease (23, 
72, 73)

Decrease 
(59),

No Change 
(44)

Increase (73) Early Increase (44) Early Increase (44) Increase (44)

DJB Decrease (86) Decrease (60)
No Change 

(36)

No Change (86) Increase (36, 61, 86, 
116)

Decrease (86)
Increase (61)

Increase (116)

Bile Acid
Sequestrants

not studied not studied not studied No Change (104),
Increased in Humans 

(98–100),
Increased in Rodents 

(101–103)

No Change (98–100) Decreased 
(117),

No Change 
(104), Increased 

in rats (101)
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Table 2

Review of studies on bile acid changes across interventions.

Serum Bile Acids

Medical
Weight Loss

(late)

Decreased postprandial in obesity (118)
Higher in obesity, Decreased during weight loss (119–121)

AGB Decreased (123),
No Change (57),

Increased in AGB+SG (122)

SG Early Decrease (95);
No Change (41);

Increased in AGB + SG (122)

RYGB Increase (57, 96, 123–129);
Initial Decrease, late Increase (95)

BPD Not studied

DJB Not studied

Bile Acid
Sequestrants

Decreased (105–107)
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Table 3

Review of studies on gut microbiome changes across different interventions.

Gut Microbiota

Obesity
vs

Normal

Firmicutes:Bacteroides ratio increased in obesity (135–138),
No change in phyla (141)

Medical
Weight

Loss

F:B ratio decreased after weight loss (135, 139, 140)
Diet profoundly changes microbiome (133)

AGB Not Studied

SG Not Studied

Post-
RYGB

F:B ratio decreased (138, 142, 143);
Administration of lactobacillus increases weight loss (148);

Proteobacter increased (142–145)

BPD Not Studied

DJB Not Studied

Bile Acid
Sequestrants

Not Studied
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