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Abstract

Due to recent improvements in mass spectrometry (MS), there is an increased interest in data 

independent acquisition (DIA) strategies in which all peptides are systematically fragmented using 

wide mass isolation windows (“multiplex fragmentation”). DIA-Umpire (http://

diaumpire.sourceforge.net/), a comprehensive computational workflow and open-source software 

for DIA data, detects precursor and fragment chromatographic features and assembles them into 

pseudo MS/MS spectra. These spectra can be identified using conventional database searching and 

protein inference tools, allowing sensitive untargeted analysis of DIA data without the need for a 

spectral library. Quantification is obtained using both precursor and fragment ion intensities. 

Furthermore, DIA-Umpire enables targeted extraction of quantitative information based on 

peptides initially identified in only a subset of the samples, resulting in more consistent 

quantification across multiple samples. We demonstrate the performance of the method using 

control samples of varying complexity, and publicly available glycoproteomics and affinity 

purification - mass spectrometry data.
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Introduction

The combination of liquid chromatography (LC) and tandem mass spectrometry (MS/MS) is 

a powerful technology frequently applied to high-throughput peptide and protein 

identification and quantification. The most common strategy for peptide identification 

remains the data-dependent acquisition (DDA) approach1, in which the instrument 

sequentially surveys all the peptide ions that elute from the LC column at a particular time 

(MS1 scans), followed by isolation and fragmentation of selected peptide ions (usually the 

top few most intense) to generate MS/MS (MS2) spectra. Peptides are identified from these 

MS/MS spectra, most often through database searching2 (spectrum-centric approach; Fig. 

1a). However, mass spectrometers are not able to reliably isolate and acquire high quality 

MS/MS spectra for all peptides present in typical samples, introducing stochasticity in the 

process3-7.

Recent improvements in MS instrumentation have enabled alternative workflows to DDA, 

namely data-independent acquisition (DIA) methods4, 6, 8-14, now supported on multiple 

vendor platforms. These DIA strategies are based on acquiring fragment ion information for 

all precursor ions within a certain range of m/z values (DIA MS2 spectra), as exemplified by 

the Sequential Window Acquisition of all THeoretical Mass Spectra (SWATH)6 approach. 

The prevalent approach for DIA analysis is currently the targeted extraction of quantitative 

information from the acquired DIA data using libraries containing retention time and 

fragmentation information for the desired peptide species15, 16 (Fig. 1b; peptide-centric 

matching approach). Library generation is a current limitation of this strategy: either time 

and sample must be consumed to generate the libraries using the same samples and 

instrument, or libraries can be obtained independently17, but with the issues that 

fragmentation patterns and retention times may differ across experimental conditions. 

Additionally, DIA MS1 information (precursor peptide measurement scans) has not been 

systematically incorporated into DIA scoring so far, and the lack of accurate precursor mass 

leads to ambiguity in data interpretation, especially for peptides co-isolated in the same DIA 

window and sharing fragment ion peaks. Only a few computational tools4, 18, 19 have been 

developed so far for untargeted peptide identification from DIA and they have not been 

tested on SWATH-like DIA methods nor are they capable of performing both identification 

and quantification.

Here, we developed DIA-Umpire, a new computational approach that takes full advantage 

of DIA strategies such as SWATH. Our approach allows untargeted peptide identification 

directly from DIA data without the dependence on a spectral library for the data extraction: 

this enables us to readily employ tools developed for DDA data2 such as database search 

engines and post-identification analysis tools, facilitating incorporation of DIA into existing 

workflows. DIA-Umpire also reports DIA MS1- and MS2-based quantification results. 

Furthermore, DIA-Umpire is able to generate spectral libraries directly from the peptides it 

identifies, which can then be used to extract quantitative information in a targeted way in the 

samples where a particular peptide was not identified at the initial untargeted stage, 

increasing sensitivity in this hybrid approach (Fig. 1c). DIA-Umpire is neither vendor-

specific nor limited to a particular DIA strategy, and is available as an open source pipeline.
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Results

DIA-Umpire workflow

DIA-Umpire incorporates a number of computational algorithms for DIA analysis (see 

Online Methods for detail). It begins with a two dimensional (m/z – retention time) feature 

detection algorithm that discovers all possible precursor and fragment ion signals in DIA 

MS1 and MS2 data, respectively, and also possible unfragmented precursor ions in the MS2 

data (Fig. 2). Because DIA usually employs wider isolation m/z range (e.g. 25 Da) than 

DDA, co-eluting peptides are more frequently co-fragmented, generating complex MS2 

spectra. In order to measure the likelihood that a detected fragment signal is derived from a 

particular precursor peptide ion, the algorithm calculates the Pearson correlation coefficient 

of LC elution peaks and retention time differences of LC elution peak apexes between all 

detected precursor features and all co-eluting fragment ions. Reflecting the complex nature 

of precursor–fragment relationships, all precursor–fragment pairs are represented as a 

bipartite graph (Fig. 2). After filtering by a combination of thresholds, sets of fragment 

peaks are grouped with precursor features and stored as precursor–fragment groups (Fig. 2).

For direct untargeted analysis, DIA-Umpire generates a pseudo MS/MS spectrum 

(Supplementary Fig. 1) for each precursor–fragment group. The pseudo MS/MS spectra can 

be searched by any conventional database search engine. Here we used X! Tandem20 

Comet21, and MSGF+22 followed by PeptideProphet23 or iProphet24 and ProteinProphet25 

analysis. The resulting peptide and protein identification lists are filtered using computed 

peptide and protein probabilities controlling the false discovery rate (FDR) via, e.g., the 

target-decoy approach2. Identified peptides and proteins are quantified using either the MS1 

precursor ion intensity or the MS2 fragment ion intensities (Fig. 1c).

DIA-Umpire is also compatible with a targeted quantification strategy in which the library is 

generated based on untargeted identification from DIA as described above (Fig. 1c). A 

peptide-centric spectral matching algorithm queries unidentified precursor–fragment groups 

against a spectral library built from spectrum-centric search results, allowing more 

consistent quantification of peptide ions across multiple experiments. Exact retention time is 

known for peptides identified in a given experiment, and the commonly identified peptides 

are used to perform retention time alignment across all the runs, negating the need for 

external retention time calibration peptides. An additional advantage of this approach over 

previously-described targeted extraction strategies6, 12, 16, 26 is that the precursor peptide m/z 

value is used to constrain the search space, enabling to distinguish between peptides with 

multiple shared fragments (e.g. modified and unmodified peptides).

Untargeted protein identification using DIA-Umpire

We first evaluated the performance of DIA-Umpire for untargeted protein identification 

using samples ranging from low complexity (48 Universal Protein Standard (UPS) proteins) 

to high complexity (E. coli and human cell lysates) by performing parallel DDA and DIA 

runs in at least duplicates on an AB SCIEX TripleTOF 5600. We acquired DIA data using 

250 ms ion accumulation time for MS1 survey scans instead of the 50 ms SWATH setting 

used in earlier reports6, which improved the MS1 signal quality and detectability of 
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precursor ion signals in complex samples (Supplementary Fig. 2). We identified close 

numbers of peptide ions and proteins in the DDA and DIA runs for all samples and search 

engines tested (Fig. 3a; Supplementary Table 1). As previously shown for DDA data, 

combining DIA pseudo MS/MS search results from multiple search engines with iProphet24 

led to a consistent increase in the number of peptide ions and proteins identified at a given 

FDR (Supplementary Table 1). However, for the sake of clarity and because single search 

engine analyses are still prevalent in the field, the remainder of the manuscript, unless noted 

otherwise, is based on peptide and protein identifications using X! Tandem only (Fig. 3a; 

Supplementary Tables 2-4).

In low complexity UPS2 samples (48 proteins spanning 5 orders of magnitude in 

abundance), DIA and DDA identified similar numbers of peptide ions and proteins, with 

DIA identifying more peptide ions than DDA for higher abundance proteins (Fig 3b; 

Supplementary Table 1), and with the identification success depending on the abundance of 

each protein in the sample. In complex samples, such as human cell lysates (Fig. 4a; 

Supplementary Table 1), DDA slightly outperformed DIA at both peptide ion (9,272 vs. 

8,757) and protein levels (1,645 vs. 1,465). Interestingly, the overlap between the peptide 

ions identified with high confidence (1% FDR) by both methods was relatively low (42% 

compared to 78% overlap at the protein level). While some of these differences were simply 

due to a detected peptide ion not passing the 1% FDR threshold in one or the other 

approach, DIA was also able to identify peptide ions where no MS/MS spectrum was 

acquired in DDA (2,326 peptide ions). The lack of an acquired MS/MS spectrum in DDA 

was observed even for some high intensity ions, possibly due to a combination of dynamic 

exclusion settings and co-elution of a different (more abundant) peptide. On the other hand, 

DDA was more successful in identifying peptide ions for which the pseudo MS/MS spectra 

extracted by DIA-Umpire from DIA data did not contain enough fragment ions, many of 

which were of low intensity (Fig. 4b,c). The loss of fragment ions in DIA can be attributed 

to a number of factors, including suppression of fragment ions by higher intensity species in 

the same DIA window, which is further compounded by computational challenges such as 

the imperfect de-multiplexing of co-eluting peptide ions. Similar results and trends were 

observed when the results from all three search engines were combined (Supplementary Fig. 

3), and in the E. coli dataset (Supplementary Figs. 4 and 5).

Comparison between untargeted and targeted DIA analysis

To investigate the differences between the untargeted approach described above and targeted 

data extraction strategies previously applied to SWATH data, we processed the human and 

E. coli datasets using OpenSWATH16. We used SpectraST27 to build spectral libraries by 

taking the union of DDA-identified spectra (9,272 peptide ions) from two replicates of 

human cell lysate data, and adding the same number of shuffled decoy spectra (Online 

Methods and Supplementary Fig. 6). In these data, OpenSWATH detected 7,372 peptide 

ions at 1% FDR according to mProphet28 (Supplementary Fig. 6a; Supplementary Table 5). 

In comparison, the untargeted analysis using DIA-Umpire (i.e. searching against the whole 

proteome database) identified 8,757 peptide ions at the same FDR. OpenSWATH had a 

better overlap with the identifications from the target library than DIA-Umpire, 79% vs. 

58% (Supplementary Fig. 6b). This, to a large degree, can be explained by a smaller search 
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space for OpenSWATH data extraction than for DIA-Umpire (Supplementary Fig. 6a). 

Indeed, when the pseudo MS/MS spectra were searched against a smaller database 

containing only the peptide sequences included in the spectral library used for OpenSWATH 

analysis (i.e. DDA-identified peptides), the overlap between the DIA-Umpire identified 

peptides and the DDA-identified peptides improved to 69% (Supplementary Fig. 6b). 

Similar results were obtained for E. coli samples (Supplementary Fig. 7; Supplementary 

Table 6). The use of the entire database however provided us with the opportunity to 

identify peptide ions not present in the DDA-constructed library.

Furthermore, when we built the spectral library for OpenSWATH from the pseudo-MS/MS 

spectra confidently identified by DIA-Umpire (8,757 peptide ions for the human cell lysate 

dataset), OpenSWATH confidently identified 8,650 (98.8%) of the library peptides, 

providing additional validation of the peptides identified using untargeted DIA-Umpire 

approach. We observed similar results (96.2% confirmation rate) for E. coli samples. The 

small percentage of peptide ions not identified by OpenSWATH was in part due to 

OpenSWATH's internal filtering of spectra from the input library.

We further assessed the performance of untargeted DIA-Umpire approach on a publicly 

available SWATH N-glycopeptide dataset from prostate cancer, which was already 

processed with OpenSWATH using a spectral reference library containing deamidated 

asparagine peptides built from a large number of DDA runs29. At 1% FDR, DIA-Umpire 

and OpenSWATH identified 1,821 and 1,383 deamidated asparagine peptide sequences 

(2,933 and 1,537 peptide ions) respectively (Online Methods; Supplementary Fig. 8; 

Supplementary Table 7). Among the additional identifications introduced by DIA-Umpire, 

more than 80% had a N-glycosylation (NX-S/T) motif, indicating high site specificity of the 

additional identifications (non-consensus identifications could be due to standard 

deamidation of non-glycosylated peptides, as we have not restricted our analysis to a library 

enriched in glycosylation sites, in contrast to the OpenSWATH library).

An additional drawback of current targeted extraction approaches (e.g. OpenSWATH) for 

DIA analysis is that they have difficulties resolving ambiguities for peptide ions that share 

many MS2 fragments (e.g. unmodified and post-translationally modified peptides co-

fragmenting in the same isolation window), especially since the exact precursor mass is not 

used for scoring. We present examples (Supplementary Figs. 9–13) in which OpenSWATH 

was not able to distinguish deamidated peptide ions from unmodified ones. In contrast, DIA-

Umpire constructs pseudo MS/MS spectra according to detected high mass accuracy MS1 

precursor features, enabling better differentiation of peptide species.

Targeted extraction and protein quantification

Accuracy and coverage of protein quantification is of critical importance for downstream 

analysis of proteomic data. Following the initial untargeted analysis, DIA-Umpire fills in the 

missing peptide ion intensities across samples by creating an internal spectral library from 

all the identified peptides, followed by re-extraction of quantitative information across all 

precursor–fragment groups, including those which were not identified in the untargeted 

manner in some samples (Fig. 1c). In the human cell lysate data, targeted re-extraction 

improved the number of peptide ions and proteins identified across both replicate runs 
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(estimated FDR less than 1%; see Online Methods), with the overlap between the replicates 

at the peptide ion and protein levels increasing from 63% to 80% and from 84% to 93%, 

respectively, compared to the initial untargeted identification results (Supplementary Fig. 

14).

The same human cell lysate data was used to investigate the quantification performance of 

the algorithm. DIA-Umpire computes two iBAQ30 protein abundance measures (from MS1 

and MS2 data) as well as “Top N peptides” (MS1)9 and “Top N peptides/ Top M fragments” 

(MS2)31 metrics (Supplementary Fig. 15 and 16; Online Methods). Using the reproducibility 

of protein quantification across the two replicate runs as a benchmark measure, the MS2-

based method with a stringent peptide and fragment selection procedure (“MS2 Top6pep/

Top6fra, Freq > 0.5”) outperformed the other methods considered (Supplementary Fig. 16). 

A similar MS1-based quantification metric (“MS1 Top6pep, Freq > 0.5”) performed almost 

equally well, but with fewer (1,310 vs. 1,341) proteins quantified across both replicates 

(Supplementary Fig. 15). A good agreement was observed between these two (MS1 and 

MS2-based) abundance measures (Supplementary Fig 17), further demonstrating the 

reliability of the feature detection and quantification algorithms in DIA-Umpire. In UPS2 

standard protein sample, both MS1 and MS2 quantification recovered the expected trend of 

differential abundance, suggesting that these measures are suitable for estimation of absolute 

protein abundances (Supplementary Fig. 18).

Application of DIA-Umpire to interactome data

A popular application of MS based proteomics is interactome analysis which involves in 

most cases the use of quantitative MS to monitor the relative abundance of a given protein in 

a bait purification experiment in comparison to negative controls. The coupling of affinity 

purification (AP) with targeted extraction strategies for SWATH analysis (AP-SWATH) 

was recently described26, 32. At the same time, a large number of scoring tools have been 

previously developed to assist identification of true interaction partners over background 

contaminants in DDA data33, including Significance Analysis of INTeractome 

(SAINT)34, 35. We reasoned that AP-SWATH data would provide a good test case for a 

complete analytical pipeline by demonstrating that DIA-Umpire in combination with SAINT 

can detect true interactors from DIA data, without the need for spectral libraries. We 

analyzed a dataset consisting of three biological replicates of the baits EIF4A2 and MEPCE 

and the negative GFP control analyzed by DIA26 (Fig. 5a).

In the first step, we processed DIA data through DIA-Umpire in an untargeted manner, 

leading to identification and quantification of 3,900 – 4,900 peptide ions (600 – 700 

proteins) in each AP-SWATH run (Supplementary Table 8). As expected, using targeted re-

extraction with a stringent 0.99 peptide-centric identification probability threshold (Fig 5b; 

Supplementary Fig. 19), we could identify and quantify additional peptide ions (1,300 – 

2,300) and proteins (60 – 100) in each AP-SWATH run (Supplementary Fig. 20). 

Importantly, targeted re-extraction reduced the stochasticity issue, with an increase (by 19 – 

23%) in the number of proteins quantified across all three replicates for the same bait (Fig. 

5c). Protein abundances were estimated using the “MS2 Top6pep/Top6fra, Freq>0.5” 

Tsou et al. Page 6

Nat Methods. Author manuscript; available in PMC 2015 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



approach, with an excellent quantification reproducibility observed across the biological 

replicates for each bait and the GFP controls (Fig. 5d; Supplementary Fig. 21).

Using SAINT35 we recovered 45 significant interactors (SAINT probability above 0.95) for 

the EIF4A2 bait, a translation initiation factor implicated in the association of mRNAs to the 

ribosome (Supplementary Table 9). These proteins included 19 associated translation 

initiation factors (specifically the multi-subunit factors eIF3 and eIF4), the poly(A) binding 

protein which binds eIF4 and, as expected, several RNA helicases and RNA-binding 

proteins that are likely recruited via the mRNA. The ubiquitin protease USP10 (previously 

reported as an interaction partner for the eIF4A2 direct interactor eIF4G1) and casein kinase 

II subunits (which interact with eIF3) were also detected, alongside a known eIF4A 

inhibitor, PDCD436. A similar result was observed for the MEPCE bait – a protein that 

methylates the cap of the 7SK snRNA, leading to its stabilization37: 54 proteins were 

confidently scored as interactors, including well-characterized partners such as CDK9, 

Cyclin T, HEXIM1, METTL16, LARP7, SART1 and 3, several splicing components, and 

multiple components of the large, but not small, ribosomal subunit26, 36, 37 (Supplementary 

Table 9). In summary, DIA-Umpire allows sensitive protein identification from DIA data, 

extraction of accurate quantitative information with less missing data, and is fully 

compatible with the existing interaction scoring methods such as SAINT, leading to the 

recovery of biologically-meaningful interactions.

Discussion

We demonstrated that by using DIA-Umpire we could identify a comparable number of 

peptides and proteins from DIA and DDA data. However, we have also observed the 

complementary nature of these two data acquisition strategies. As both the DDA and DIA 

technologies and the underlying instrumentation are rapidly improving, future work should 

include a comprehensive comparative analysis of different workflows as they are applied to 

a variety of biological problems. We also showed that reproducible and reliable 

quantification is possible using both DIA MS1 and MS2 data. Furthermore, DIA-Umpire is 

compatible with different DIA strategy variants including implementations on other 

instruments such as the Q Exactive Plus (Supplementary Fig. 22), and alternative 

approaches such as the MSX method12. The highly flexible design of the DIA-Umpire 

computational framework (importantly, with a full support for MS1 feature detection and 

quantification) should allow us to quickly adapt the algorithms to take advantage of new 

approaches and technological improvements, including emerging hybrid DIA/DDA 

strategies38. Finally, the pseudo MS/MS spectra generated by DIA-Umpire can be used to 

build spectral libraries for use with external tools, e.g. for visualization of spectra and 

precursor and fragment chromatograms in Skyline39 (Supplementary Fig. 23), or for 

targeted quantification using OpenSWATH. The internal (i.e. study-specific, DIA-derived) 

libraries can also be combined with external (e.g. DDA-derived) libraries for more complete 

analysis, a strategy that we are currently exploring in DIA-Umpire.

Tsou et al. Page 7

Nat Methods. Author manuscript; available in PMC 2015 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Accession Codes

All mass spectrometry files (Supplementary Table 11) along with DIA-Umpire results 

presented in this paper have been deposited to the ProteomeXchange Consortium40 (http://

proteomecentral.proteomexchange.org) via the PRIDE partner repository with the dataset 

identifier PXD001587.

Online Methods

Sample preparation

Proteomics Dynamic Range Standard (UPS2) sample was acquired from Sigma-Aldrich (St. 

Louis, MO), the MassPREP E. coli Digest Standard was acquired from Waters (Milford, 

MA) and the MS compatible human protein extract digest was from Promega (Madison, 

WI). The UPS2 samples were reduced with 5 mM TCEP (tris(2-carboxyethyl)phosphine), 

alkylated with 50 mM iodoacetamide, and digested overnight with 1 μg trypsin (Promega, 

Madison, WI) in 100 mM Tris pH 8 at 37°C. UPS2, E. coli, and human peptides were 

acidified with formic acid and loaded at various concentrations, alone or in combination, 

onto an in-house made 75 μm x 12 cm analytical column emitter packed with 3 μm 

ReproSil-Pur C18-AQ (Dr. Maisch HPLC GmbH, Germany). A NanoLC-Ultra 1D plus 

(Eksigent, Dublin CA) nano-pump was used to deliver a 90 minute gradient from 2% to 

35% acetonitrile with 0.1% formic acid, followed by a 30 minute wash with 80% 

acetonitrile prior to re-equilibration to 2% acetonitrile with 0.1% formic acid.

Mass spectrometric analysis

Each sample was analyzed in duplicate (1 ug E. coli lysate, 500 ng Human lysate) or in 

triplicate (UPS2, UPS2 plus E. coli; affinity purified samples previously reported26) on a 

TripleTOFTM 5600 instrument (AB SCIEX, Concord, Ontario, Canada) once using DDA 

and once using DIA (SWATH) with an extended ion accumulation time of 250 ms for MS1 

scans. UPS2 samples were also analyzed using SWATH with the previously-reported MS1 

survey scan ion accumulation time of 50 ms6, 26. The DDA run consisted of one 250 ms 

MS1 TOF survey scan covering 400–1300 Da followed by ten data dependent 100 ms 

MS/MS scans (1 Da isolation window, scan range 100–2000 Da) with precursors excluded 

for 15 s after being selected for fragmentation once (dynamic exclusion option). The 

SWATH run consisted of one 250 ms or 50 ms MS1 TOF survey scan followed by 34 

sequential MS2 windows of 25 Da covering a mass range of 400–1250 Da at 95 ms per each 

SWATH scan. The DIA run (Thermo Q Exactive Plus) consisted of one MS survey scan 

(17500 resolution, target 3e6, max fill time 50 ms) every 10 scans, and 24 sequential MS2 

windows of 26 amu (17500 resolution, target 5e5, max fill time 80 ms) covering a mass 

range from 400–1000 Da. The DDA run (Thermo QE Plus) consisted of one MS survey scan 

(70000 resolution, target 1e6, max fill time 30 ms) followed by fifteen MS/MS scans (2 Da 

isolation, 17500 resolution, target 1e5, max fill time 125 ms), with former precursors 

excluded for 20 s after being selected once.
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mzXML File conversion

The .wiff raw files from AB SCIEX 5600 TripleTOF were converted to mzML format with 

the AB MS Data Converter (AB SCIEX version 1.3 beta) using “centroid” option, and the 

resulting mzML files were further converted into mzXML format by msconvert.exe from the 

ProteoWizard package (version 3.0.4462)41 using the default parameters. The .raw files 

from Thermo Q Exactive Plus were directly converted to mzXML files by msconvert.exe.

Precursor and fragment ion 2D peak detection in DIA-Umpire

A two-dimensional feature detection algorithm was developed to locate precursor and 

fragment ion signals in MS1 and MS2 data (Fig. 2). Feature detection analysis starts with the 

LC elution profile (“peak curve”) detection step. A peak curve represents a mass trace 

continuous in time, and a peak must be present in at least three consecutive scans (for data 

presented in this study, >9 second on average). It is stored as three vectors of m/z values MZ 

= (m1, m2, …, mn), intensities INTraw = (i1, i2, … in), and retention times RTraw = (t1, t2, … 

tn), where n is the number of consecutive scans and ti+1>ti. For detected features the 

algorithm reports m/z value, retention time span (elution start and end times, t1 and tn) and 

extracted ion chromatograms (XICs). The m/z value M of a peak curve is calculated as a 

weighted average (by intensity) of detected m/z values in the retention time span,

Each peak curve is then smoothed by B-spline interpolation (using the 2nd degree basis 

function). XICs are represented as two vectors of interpolated retention times RT = (t1, t2, … 

tk) and intensities INT = (i1, i2, … ik), where k is the total number of interpolated points per 

peak (we used 150 points per minute, making k = 150(tn-t1)). As a peak curve might have 

multiple maxima, we apply a Continuous Wavelet Transform (CWT)-based approach42 for 

splitting it into several separate peak curves using Mexican-hat wavelet. For each unimodal 

peak curve, the apex intensity is determined as Imax = max(INT).

In MS1 data generated using high-resolution instruments, several isotope peaks for each 

peptide precursor ion can usually be detected (referred to as precursor ion features; see Fig. 

2 and Supplementary Fig. 24), helping to distinguish true precursor signals from noise. 

Single peak curves detected in MS1 scans are grouped together to form isotopic clusters 

based on RT apex distance and m/z spacing, which should fit the spacing for a given charge 

state (in this work, +2, +3, and +4 only). In complex samples, however, the presence of 

multiple co-eluting peptides having similar m/z values results in overlapping signals, leading 

to multiple alternative possibilities for isotope peak grouping (see Supplementary Fig. 25 for 

an illustration). In such cases, the algorithm intentionally over predicts the number of 

precursor ion features by first considering the m/z of each peak curve as a possible 

monoisotope, and then attempting to find heavier isotope peaks for that presumed 

monoisotopic m/z value. In doing so, the algorithm maximizes the sensitivity with respect to 

finding true precursor ion features at the cost of introducing some redundant features with 

incorrectly assigned monoisotopic m/z values.
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In general, the higher the number of isotope peaks detected for an MS1 feature, the more 

likely it is to be a true precursor ion signal. Thus, the algorithm uses the number of isotope 

peaks as a measure of quality of precursor ion features. Features with three or more isotope 

peaks are labeled as Quality Tier 1 (QT = 1 or Q1) precursors, i.e. the precursors that are 

most likely to represent true precursor peptides with the correctly determined monoisotopic 

m/z values. MS1 features with only two detected isotope peaks are labeled as Quality Tier 2 

(QT = 2 or Q2). All single peaks observed in MS1 scans (i.e. peaks with no isotopic 

envelope detected) are discarded.

In addition to detection of precursor ion features in MS1 scans, unfragmented precursor ions 

can sometimes be observed in DIA MS2 spectra. This is likely due to the collision energy 

not being universally suitable for complete fragmentation of all the precursor ions within a 

particular DIA isolation window. To take advantage of this, all peaks in MS2 spectra having 

m/z values within the corresponding DIA isolation window are considered as potential 

unfragmented precursors (see Fig. 2). Unfragmented precursor ion features are detected as 

described above for MS1 data, requiring at least two isotope peaks. These features are added 

to the precursor list as Quality Tier 3 (QT = 3 or Q3). Note that some peptide precursor ions 

can be detected in both DIA MS1 and MS2 spectra, and their corresponding features thus 

may be included in both Quality Tier 3 and Quality Tier 1 (or 2) sets.

Fragment ion peak detection in MS2 data is performed similarly, with one modification. It is 

generally more difficult to detect multiple isotopic peaks for low intensity fragment ions. 

Relaxed stringency of feature detection for fragment ions (compared to MS1 precursor ions 

feature detection described above) resulted in improved sensitivity of peptide identification 

and reduced the computational time (data not shown). Thus, isotope peak grouping and 

charge state determination for fragment ions is not performed at this stage. Instead, each 

possible fragment peak is treated independently, and isotope detection and charge state 

determination is performed at a later stage (after the precursor–fragment grouping step 

described below).

Precursor-fragment grouping in DIA-Umpire

“Co-elution” is an important characteristic of the data that reveals relationships between a 

precursor ion and its fragments9. The algorithm takes advantage of this characteristic by 

calculating the Pearson correlation coefficient and the retention time difference of LC 

elution peak apexes between all detected precursors (P) and all possible fragment ions (F) 

(see Fig. 2). This pairing is naturally restricted to fragment ions in the DIA isolation window 

corresponding to the m/z value of the precursor. For a precursor Pq and a fragment Fr the 

Pearson correlation coefficient Cq,r = corr(Pq, Fr) is computed using the LC profiles (XICs) 

of monoisotopic precursor and fragment ion features. All precursor–fragment pairs are 

represented as a bipartite graph (see Fig. 2). In this representation, one fragment ion can 

have multiple precursors and several precursors can share the same fragment.

To better connect precursor ions to their most likely fragment ions, the following parameters 

are calculated based on the correlation scores for each possible Pq, Fr pair. First, given a 

fragment ion Fr, RP(Pq, Fr) score is calculated as the rank of the precursor ion Pq based on 

Pearson correlation Cq,r between that fragment and all candidate precursors. Second, given a 
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precursor ion Pq, RF(Pq, Fr) score is calculated as the rank of the fragment Fr based on 

Pearson correlation between that precursor and all possible fragments. For a precursor ion 

with many co-eluting fragments, a higher-ranking fragment is more likely to be derived 

from it. Similarly, for a fragment ion, a higher-ranking precursor ion is more likely to be its 

true precursor. These two metrics, as well as the retention time difference of LC profile 

apexes, ΔT(Pq, Fr), are used to assemble precursor–fragment groups (see Fig. 2).

Generation of pseudo MS/MS spectra using DIA-Umpire

To generate a pseudo MS/MS spectrum for a precursor ion Pq, the algorithm first detects the 

charge state of each fragment peak (if only a single isotopic peak is detected, charge state +1 

is assumed). It then detects all likely complementary y- and b-ions in the spectrum (detected 

as pairs of fragments summing up to the precursor peptide mass 43). For non-complementary 

ion peaks, only those fragments Fr are kept that pass the following set of thresholds: RF(Pq, 

Fr) ≤ RFmax, RP(Pq, Fr) ≤ RPmax, and ΔT(Pq, Fr) ≤ ΔTmax. These threshold parameters are 

implemented as user-specified options in the software, allowing re-evaluation and 

adjustment of the default thresholds (described below), if necessary.

Charge state and precursor m/z for each pseudo MS/MS spectrum are determined by 

precursor ion features. Fragment ion intensities are computed in three steps. For fragment Fr, 

the intensity is taken as LC apex intensity of the corresponding elution peak curve, Ir. Then 

for each complementary b-, y- fragment pair Fr1, Fr2, the intensity of the less intense 

fragment is boosted to match that of the more intense one, Ir1 = Ir2 = max(Ir1, Ir2). At the last 

step, intensities are adjusted by weighting according to the square of correlation with the 

precursor peak curve, Ir′ = Ir×C2
q,r. The presence of complementary ions is a positive sign 

of a connection between the precursor and fragment ions, and boosting the intensities of 

complementary ions has been shown to improve the sensitivity of peptide identification44. 

Note that this fragment intensity adjustment step can optionally be skipped for other 

applications, e.g. to use a spectral library search engine for searching pseudo MS/MS spectra 

or to build a spectral library from the pseudo MS/MS spectra. Also note that the adjusted 

(boosted) intensities are not used for quantitation, only for identification. An example of a 

pseudo MS/MS spectrum (before and after complementary ion boosting), the underlying 

precursor ion and fragment ion elution profiles in DIA MS1 and MS2 data, and the DDA 

MS/MS spectrum for the same peptide are shown in Supplementary Fig. 1.

The performance of the DIA-Umpire algorithm for different combinations of the threshold 

parameters described above was evaluated using a subset of the data (Supplementary Table 

10). When the pseudo MS/MS spectra extracted under different settings were searched using 

X! Tandem, the following threshold values resulted in the highest number of identifications 

(at 1% FDR) and were selected as default values in the software: allow the top 25 ranked 

precursors for each fragment (RPmax= 25), the top 300 ranked fragments for each precursor 

(RFmax = 300) and 0.6 minutes apex elution time difference (ΔTmax = 0.6). Note that the 

best performance was achieved by allowing the possibility of an MS2 fragment to be 

included in multiple MS/MS spectra (RPmax= 25). Because the algorithm takes the square of 

a peak shape correlation coefficient between the precursor and fragment signals as the 

weighting factors for calculation of adjusted fragment intensities in pseudo MS/MS spectra, 
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true high intensity fragments can still contribute to the identification of their corresponding 

peptide even if they have a relatively poor correlation with the precursor (e.g., due to ion 

suppression effects affecting either the precursor ion or the fragment ion elution peak 

shape). The overall robustness of the pseudo MS/MS spectrum generation process was also 

evident from similar numbers of peptide ion identifications obtained by searching the 

spectra with three different database search engines (X! Tandem, Comet, and MSGF+, 

Supplementary Table 1). These results indicate that inclusion of more fragment ions in a 

pseudo MS/MS spectrum does not hamper the identification rate. On the contrary, by doing 

so the algorithm increases the chance of true fragments to be included, thus improving the 

number of confident identifications. An additional analysis was also carried out for E. coli 

and human cell lysate datasets by removing fragments from pseudo MS/MS spectra that 

were also matched in other pseudo MS/MS spectra identified with high confidence. 

Repeating X! Tandem search with those fragments removed did not change the number of 

identified peptide ions in either dataset.

Peptide and protein identification using pseudo MS/MS spectra

In this study, we used X! Tandem20, Comet21, and MSGF+22 as search engines to identify 

peptides from pseudo MS/MS spectra (however, any database search engine developed for 

searching DDA spectra can be used). Because of the similar characteristics of DDA and DIA 

pseudo MS/MS spectra, all downstream analysis of the database search results, including 

protein inference and estimation of posterior probabilities of correct identification and FDR, 

can also be performed using conventional strategies developed for DDA data. Database 

search output files were processed by PeptideProphet23 via the Trans-Proteomic Pipeline 

(TPP)45, followed by ProteinProphet25 analysis to assemble peptides into proteins/protein 

groups and to determine protein probabilities. The final protein and peptide identification 

lists were filtered to achieve a desired FDR (here – 1%) estimated using the target-decoy 

approach2. The only modification was to compute posterior peptide probabilities by 

PeptideProphet separately for each of the three quality categories of MS/MS spectra 

(Quality Tiers QT = 1, 2 or 3) because of very different ratios of correct vs. incorrect 

identifications among them. Further analysis of the model parameters and the distributions 

of scores reported by PeptideProphet (Supplementary Fig. 26) did not show any evidence 

indicating that pseudo MS/MS spectra extracted using DIA-Umpire behaved any different 

than conventional DDA spectra with respect to the basic assumptions in PeptideProphet or 

the target-decoy FDR estimation strategy.

Targeted extraction in DIA-Umpire using spectral libraries

The targeted extraction module of DIA-Umpire (peptide-centric matching) was developed as 

an optional second step in the DIA-Umpire workflow to increase the quantification coverage 

across multiple samples. Given a set of peptides identified by the initial spectrum-centric 

untargeted database search, the algorithm builds an internal consensus spectral library using 

confident identifications from all DIA runs. In addition, DIA runs are aligned (in retention 

time) using commonly identified peptides between the DIA runs as pivot points for non-

linear regression46. For a peptide ion not identified in a particular DIA run in untargeted 

way, DIA-Umpire calculates its retention time (via retention time alignment) and m/z (via 

mass calibration model, described below), and performs targeted data re-extraction. This is 
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achieved by matching the library spectrum of that peptide ion against precursor–fragment 

groups previously extracted from the experimental data within a narrow retention time 

window (in this work, ±1 minute of the calculated retention time) and a narrow precursor 

mass window (±30 ppm of the calibrated precursor mass). The details of this targeted data 

extraction algorithm are described below.

1. Spectral library generation—A consensus spectral library is built using confident 

identifications (here, 1% FDR at the peptide level) from the initial untargeted analysis of the 

DIA data. First, for each confident pseudo MS/MS spectrum match, the matched fragment 

intensities are normalized to the most intense matched fragment. For a peptide ion which has 

multiple spectra identified across samples, the intensity of a fragment in the consensus 

spectrum is computed as the average fragment intensity across all corresponding identified 

spectra. Decoy spectra are created by the “shuffle-and-reposition” method47, and such a 

decoy is generated for each peptide ion in a consensus spectral library.

2. Retention time prediction and mass calibration for target peptide ions—
DIA-Umpire adopts a previously described46 nonlinear regression-based method for 

retention time calculation and a mass calibration model48 for adjusting precursor m/z values 

of a peptide ion in a DIA run. To generate the retention time model for a pair of DIA-runs, 

retention times of commonly identified peptide ions from the initial spectrum-centric search 

are used and a non-linear regression model is built based on these retention times. For mass 

calibration, mass errors are represented as a function of the retention time, and a non-linear 

LOWESS regression is done for calculation of peptide ion mass errors given the peptide 

retention time in a DIA run.

3. Peptide-centric matching—To find the best matching precursor–fragment group for a 

peptide ion from a spectral library, all precursor–fragment groups within the range of ± 30 

ppm (user-defined parameter) of the calculated precursor m/z and ± 1 minute of calculated 

retention time are considered as candidates. A library spectrum S is denoted as

where NS is the number of fragment peaks in the spectrum, and Ir
S and Mr

S are the intensity 

and the theoretical m/z value, respectively, of each fragment Fr that belongs to spectrum S. 

A precursor-fragment group G is represented as

where NG is the number of fragment peaks, Ir
G and Mr

G are the intensity and m/z value, 

respectively, of each fragment Fr that belongs to precursor-fragment group G, and Cr
G is the 

Pearson correlation coefficient between the fragment Fr and the precursor anchoring group 

G. Given a library spectrum S and a precursor–fragment group G, matched fragment peaks 

from the precursor–fragment group are extracted using a predefined mass tolerance (e.g. ± 
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40 ppm for AB SCIEX 5600 instrument). The algorithm then calculates five sub-scores for 

the match between S and G. In addition to the number of matched fragments (L), it 

calculates a spectral similarity score as follows. Consider an intensity vector INTG-S = (I1
G, 

I2
G, …, INS

G) of length NS, with Ir
G taken as the intensity of the fragment peak Fr in G that 

matches to a fragment in S, and as zero if no fragment peak can be found in G within the 

specified mass tolerance window around Mr
S. The spectral similarity is then calculated by 

Pearson correlation between the vector INTG-S and the library spectrum intensity vector 

(I1
S, I2

S, …, INS
S).

Three more scores, Mass Error Score (MES), Intensity Score (IS), and Correlation Score 

(CS), are calculated using matched fragments Fj only as follows:

The final match score (U-score) between S and G is calculated as a linear combination of 

these five sub-scores (Supplementary Figure 19a), with the score weights determined using 

the linear discriminant analysis (LDA)28. For LDA model training, 50% of all matches in 

which S is a decoy spectrum are randomly selected and labeled as negative training data (the 

other 50% are held away from the training; these can be used at the final stage to assess the 

quality of the model fitted using the mixture modeling algorithm described below). 

Positively labeled training dataset is composed of likely true matches, i.e. matches between 

S and G that were identified with high scores at the initial untargeted (spectrum-centric 

search) stage.

4. Peptide-centric match probability and FDR—The U-score is computed for all 

targets considered in a particular DIA run. Targets are defined here as peptide ions 

represented in the spectral library (created, as described above, from all DIA runs in the 

experiment) that were not identified in that particular DIA run by the untargeted (spectrum-

centric) search. The U-score distribution for these target matches computed as described 

above is assumed to be a bimodal distribution representing populations of correct and false 

matches (Supplementary Fig. 19c). This distribution is modeled as a mixture of two normal 

distributions and is de-convoluted using the expectation maximization (EM) algorithm23. 

The probability that a match is correct, given the U-score U, is determined as
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Here f1(U) and f0(U) are Gaussian density functions (from the mixture model above) for 

correct and false matches, respectively. The parameters of the distributions and their mixing 

weights, π0 and π1, are determined directly from the data using the EM. FDR can then be 

estimated using computed probabilities2, 23. In this study, a probability threshold of 0.99 

(estimated FDR of less than 1% in these data) was applied as the final filter.

Quantification in DIA data using DIA-Umpire

The quantification module of DIA-Umpire computes peptide and protein intensities 

estimated either from MS1 precursor ion intensities or from MS2 fragment ion intensities. 

We use the LC apex intensity of the smoothed MS1 monoisotopic peak to determine the 

MS1 precursor ion intensity. For MS2 fragment ion intensity, we use the raw LC apex 

intensity of the fragment signal. The MS2 fragment-based intensity for a protein can be 

computed by summing the intensities of all matched fragments of all identified peptide ions 

from that protein (or only using selected peptide ions and fragments, as described below). In 

rare cases, the same peptide ion is identified from multiple precursor ion features (i.e. at 

different retention times). Such peptides are excluded by default (optionally, such peptide 

ions can be used for quantification by selecting the precursor ion feature with the highest 

MS1 intensity). When computing protein-level intensities, the analysis can be based on all 

peptides or based only on peptides unique to a particular protein group (e.g. with 

ProteinProphet computed group weight above 0.9; default option).

For fragment-based quantification, DIA-Umpire computes two protein intensity measures. 

The MS2 iBAQ intensity is computed for each protein by summing the intensities of all 

matched fragments from all identified peptide ions divided by the number of expected 

tryptic peptides (similar to the iBAQ score30 commonly used for DDA MS1 intensity data). 

This intensity measure can be computed for all proteins identified in the dataset. In addition, 

DIA-Umpire also computes a protein intensity measure using selected fragments and peptide 

ions consistently identified across multiple samples within the whole dataset, as described 

below.

1. Fragment selection—For a peptide ion which is identified in Npep DIA runs within 

the experiment, only fragments detected in more than MinFreq × Npep DIA runs are kept. 

For each remaining fragment Fr, the fragment quality score

is calculated using the Pearson correlation Cr
j between fragment Fr and its precursor peak in 

DIA run j, and the apex intensity of a fragment Fr in DIA run j, Ir
j. For a peptide ion, its top 

TF best (i.e. with highest QF scores) fragments (e.g. TF =6, denoted as Top6fra option) are 
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selected for quantification. Peptide ion intensity in a DIA run is then determined by 

summing the intensities of all selected fragments.

2. Peptide ion selection—To select peptide ions for protein quantification, only peptide 

ions identified in more than MinFreq × Nprot runs are kept, where Nprot is the number of 

DIA runs in which the protein was identified. The peptide ion intensity in each DIA run is 

computed using the intensities of its fragments selected as described above (e.g. Top6fra 

option). The peptide ion quality score is then computed as a sum of peptide ion intensities 

across all runs in the dataset. The protein intensity in then calculated in each DIA run by 

summing the intensities of the top TP highest quality peptide ions (e.g. TP =6, denoted 

asTop6pep option).

The thresholds described above were implemented as input parameter options. The 

following parameters were selected in this work based on the analysis of variability between 

two replicate human cell lysate runs: TP = 6, TF = 6, and MinFreq = 0.5 (denoted as 

“Top6pep/Top6fra Freq>0.5”; Supplementary Fig. 16). Note that this selection procedure 

may lead to a loss of a small number of identified proteins that cannot be quantified due to 

lack of reproducible peptide ions passing the filters described above. Out of 1,653 proteins 

identified in both replicates of the human cell lysate data (Supplementary Table 3), only 12 

were not quantified by the “Top6pep/Top6fra Freq > 0.5” approach.

DIA-Umpire also reports two MS1-based quantification scores. The MS1 iBAQ protein 

intensity is computed as previously described30, with peptide ion intensities determined at 

the apex of the LC elution monoisotopic peak. Note that MS1-based peptide quantification 

is only available for peptide ions identified from QT = 1 or 2 category pseudo MS/MS 

spectra (no MS1 feature is detected for QT = 3 spectra). In the human cell lysate data, 1,324 

out of 1,353 proteins were quantified by MS1 iBAQ in both replicates (Supplementary 

Table 3; Supplementary Fig. 15). In addition, DIA-Umpire reports a second MS1 

quantification score computed as a sum of intensities of top TP peptide ions, selecting 

peptide ions for quantification in a similar manner as described above for MS2-based 

quantification (e.g. top 6 most intense peptide ions, with an additional MinFreq = 0.5 filter: 

“Top6pep, Freq > 0.5” option; Supplementary Fig. 15).

To demonstrate the importance of selecting the most reliable peptide ions and fragments 

across all samples for quantification, we also implemented a selection procedure applied 

independently within each DIA run (“MS1 Top3pep (indep. selection)” in Supplementary 

Fig. 15; “MS2 Top3pep/Top2fra (indep. selection)” in Supplementary Fig. 16), which 

produced significantly worse results.

Peptide and protein identification parameters

For UPS2, E. coli, and human cell lysate datasets, DDA MS/MS spectra and the DIA pseudo 

MS/MS spectra were searched by X! Tandem, Comet, and MSGF+ using the following 

parameters: allow tryptic peptides only, up to one missed cleavage, oxidation of methionine 

and cysteine alkylation as variable modifications. The glycoproteomics SWATH dataset was 

searched by X! Tandem only, with cysteine alkylation specified as a fixed modification and 

with deamidation of asparagine as a variable modification. The instrument-specific 
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parameters – the precursor ion mass tolerance and the fragment ion mass tolerance – were 

set to 30 ppm and 40 ppm for AB SCIEX 5600 TripleTOF, and 10 ppm and 20 ppm for 

Thermo Q Exactive Plus, respectively. In X! Tandem, the analysis was limited to 140 most 

intense peaks which gave the best results based on the same subset of the data that was used 

to select the parameters for the DIA-Umpire pseudo MS/MS extraction algorithm (see 

above). However, the search results were not very sensitive to the choice of this parameter 

(which is also evident from the fact that similar results were obtained using Comet and 

MSGF+ search tools that do not provide an option to restrict the number of peaks in the 

spectra). The sequence database for the UPS2 experiment was compiled from the UPS 

sequences (total 50 sequences: 48 UPS1 proteins and 48 UPS2 proteins, 

www.sigmaaldrich.com). For the E. coli experiments, E. coli proteome sequences (4,431 

proteins) were extracted from UniProtKB. The non-redundant human protein sequence 

FASTA file from the UniProt/SwissProt database (release of 09-Jan-2013), appended with 

common contaminant proteins, was used for the human cell lysate experiment, AP-SWATH 

interactome, and the glycoproteomics datasets. For all sequence databases, reversed 

sequences were added as decoys for target–decoy analysis. The initial search results from 

the search engines were first converted into pepXML format, followed by analysis using 

PeptideProphet23 via the Trans-Proteomic Pipeline (TPP)45 (v4.7). For DIA derived pseudo 

MS/MS spectra, PeptideProphet was run separately for each of the three quality categories 

of MS/MS spectra (Quality Tiers QT = 1, 2 or 3). The iProphet24 tool was used when 

merging the search results from all three search engines. Unless noted otherwise, peptide ion 

identification lists for each DDA or DIA run were filtered at 1% FDR, estimated by target–

decoy approach based on PeptideProphet probability for each search engine (or iProphet 

peptide ion probability when using iProphet).

Protein inference for different analyses was performed as follows. To report the numbers of 

protein identification for individual DIA/DDA runs (Fig. 3 and Supplementary Table 1), 

PeptideProphet output files (individual search engine analysis) or iProphet output files 

(when combining the search results) were analyzed by ProteinProphet25 for protein 

inference. For the comparison between DDA and DIA (Fig. 4, Supplementary Figs 3–5, 

Supplementary Tables 2–4) or between DIA-Umpire and OpenSWATH (Supplementary 

Figs 6, 7) results at the protein level, PeptideProphet output files (based on X! Tandem 

results) for both DIA and DDA were processed together by ProteinProphet. For the AP-

SWATH dataset, ProteinProphet analysis was done by taking all PeptideProphet output files 

(X! Tandem results) from all SWATH runs, i.e. EIF4A2 and MEPCE bait data (biological 

triplicates for each bait) and the three GFP negative controls. The final protein lists for each 

ProteinProphet analysis were determined using an 1% FDR threshold, estimated by target–

decoy approach.

Quantification in DDA data

We used elution apex intensity of the MS1 precursor feature when performing peptide 

quantification for DDA MS1 data. For each MS/MS spectrum identified in a DDA 

experiment, all precursor features observed in the MS1 data with close monoisotopic m/z 

(same precursor m/z tolerance as used in the database search), close retention time (within 

±1 minute), and same charge state were considered as candidates. Among these candidates, 
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the MS1 feature with the closest retention time was considered as the precursor ion for the 

identified MS/MS spectrum. As with DIA MS1 data in DIA-Umpire, peptide ion intensity 

and its retention time in DDA MS1 were determined from the intensity and the retention 

time at the LC apex of the monoisotopic peak.

Comparison of ion intensities between DDA and DIA

To compare the fragment ions observed for the same peptide in DDA and in DIA 

experiments, the compomics-utilities library49 was used to generate theoretical peptide 

fragments. To find the signal of a peptide ion which was only identified in either DDA or 

DIA data, the retention time observed for that ion in the run where it was identified was used 

to detect the corresponding peptide ion feature in the other run. This was done without the 

need for retention time alignment between the runs because of the excellent retention time 

and ion intensity reproducibility between DDA and DIA runs on the same samples (see 

Supplementary Fig. 27 and 28). An MS1 precursor feature m/z window of ±30 ppm and a 

retention time window of ±1 minute were used. For DDA data, the highest intensity 

candidate was selected among multiple possible ones. For DIA data, the best candidate 

(precursor–fragment group) was selected based on the number of matched fragments 

between the corresponding pseudo MS/MS spectrum and the DDA identified peptide 

sequence. The number of matched fragments was calculated as follows: for each DDA 

MS/MS spectrum, or pseudo MS/MS spectrum in DIA, only the top 140 highest intensity 

peaks were considered. The mass tolerance for peak matching was set to 40 ppm for AB 

SCIEX 5600 TripleTOF and 10 ppm for Thermo Q Exactive Plus. The analysis was 

restricted to b- and y-fragment ions only. A peak in an experimental spectrum was allowed 

to be matched to only one theoretical fragment. The number of matched fragments for each 

spectrum was counted and then normalized by the total number of theoretical fragments for 

that peptide.

Targeted extraction analysis using OpenSWATH

The E. coli and human cell lysate experiments from AB SCIEX 5600 TripleTOF were also 

processed with OpenSWATH to identify proteins and peptides using the fully targeted 

approach. The two DDA replicates acquired for each sample were used to build the spectral 

library using SpectraST27 with the following options: best replicate; union; 0 minimum 

peaks for exclusion; 0 minimum amino acids for exclusion. Only the DDA non-decoy 

identification spectra that passed 1% FDR threshold were used for building the library. The 

probability thresholds were: 0.6979 for DDA E. coli replicate 1; 0.7877 for DDA E. coli 

replicate 2; 0.8075 for DDA human replicate 1; 0.8233 for DDA human replicate 2. This 

resulted in a total of 12,820 and 17,402 peptide ions including decoys represented in the 

“transition lists” used by OpenSWATH for E. coli and human, respectively. For 

OpenSWATH analysis using DIA-derived libraries, the libraries were built with SpectraST 

using the pseudo MS/MS spectra (without complementary b- and y-ion boosting) from 

peptide ions identified by the DIA-Umpire's untargeted workflow and filtered at 1% FDR 

(8,757 peptide ions for human and 6,364 for E. coli samples).

OpenSWATH was run using the following parameters: extraction elution time window 

(seconds): 60; minimum transitions: 2; maximum transitions: 6; unique ion signature 
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threshold: -1; retention time normalization factor (seconds): 7200 (i.e. the whole LC-MS run 

duration in our case). Our dataset did not contain iRT50 peptides for retention time 

normalization because all the experiments were performed using the same instrumentation 

setup and the retention times were highly reproducible (within one minute) between the 

DDA/DIA runs (Supplementary Fig. 29). Peptide ion identification lists were filtered using 

mProphet28 at 1% FDR. The number of candidate peptide ions used for scoring against the 

extracted peak groups in OpenSWATH analysis was estimated as the number of ions in the 

DDA-derived library falling within the corresponding 25 Da SWATH isolation window and 

within the specified retention time tolerance (1 minute).

DIA-Umpire analysis using reduced database

In order to demonstrate how search space affects peptide identification, in addition to 

searching DIA pseudo MS/MS spectra against the proteome-wide sequence database (all E. 

coli or human proteome sequences plus decoys), we also used a smaller database of peptide 

sequences (5,997 and 8,784 sequences for E. coli and human cell lysate experiments, 

respectively) identified from the corresponding DDA data. Reverse versions of these 

sequences were also appended to the database for target-decoy analysis. All other search 

parameters and settings were the same as described above.

Isotopic pattern validation of glycopeptide identifications

Identification of N-linked glycopeptides relies on detection of asparagine deamidation due to 

PNGase F treatment which causes a small mass shift (0.984 Da). The mass shift is close to 

the mass difference between the isotopic peaks which could lead to false identification of a 

peptide as deamidated if an “M+1” isotopic peak is mis-recognized as a true monoisotopic 

peak. In another scenario, if there is a noise signal at “M-1” Da of a deamidated ion that is 

mis-recognized as the monoisotopic peak, the deamidated peptide would be mis-identified 

as an unmodified peptide ion. To remove these erroneous identifications, we applied a two-

step filtering strategy. All confident identifications from DIA-Umpire were first grouped if 

their precursor features shared an isotopic peak at same retention time (see Supplementary 

Fig. 25 for one such example). We then removed grouped precursor features if the observed 

MS1 isotopic peak distribution did not fit the theoretical isotopic pattern (chi-squared 

goodness of fit probability < 0.8). This first stage filtering was able to remove 

misidentifications in the second scenario. To remove the cases in the first scenario, the 

precursor masses of peptides identified in each group were compared, and only the 

identification with the smallest mass in the group was kept.

SAINT interaction scoring for AP-SWATH interactome dataset

AP-SWATH interactome dataset was processed using the entire DIA-Umpire pipeline 

including feature detection, untargeted identification, targeted re-extraction, peptide ion and 

fragment selection, and protein quantification (Figure 5a). Protein and peptide 

identifications were filtered at 1% and 5% FDRs, respectively. Missing identification across 

replicates and samples were re-extracted by the peptide-centric matching with a 0.99 

probability threshold as the filter. For protein quantitation, we used the “Top6pep/Top6fra, 

Freq > 0.5” approach to determine protein intensity using only peptides unique to a 

Tsou et al. Page 19

Nat Methods. Author manuscript; available in PMC 2015 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



particular protein group (ProteinProphet computed group weights above 0.9). Protein 

quantification data from EIF4A2 and MEPCE bait experiments with GFP negative controls 

were analyzed using SAINT (intensity model; v2.3.4)35 to determine high confidence 

protein-protein interactions (here, SAINT probability above 0.95).

Code and data availability

The program was developed in the cross-platform Java language and is available at http://

diaumpire.sourceforge.net/. All mass spectrometry files (Supplementary Table 11) along 

with DIA-Umpire results presented in this paper have been deposited to the 

ProteomeXchange Consortium40 (http://proteomecentral.proteomexchange.org) via the 

PRIDE partner repository with the dataset identifier PXD001587.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank Brendan MacLean for help with Skyline, Hannes Röst and Ben Collins for help with OpenSWATH, and 
Stephen Tate and for useful discussions. We also thank Steven Danielson at Thermo Scientific for access to the Q 
Exactive Plus and Zhen-Yuan Lin for the acquisition of the DIA samples for MEPCE, EIF4A2 and GFP. This work 
was supported by the US National Institutes of Health grants 5R01GM94231 (to A.I.N and A.-C.G), 
R01GM107148 and U24DK097153 (to A.I.N.), the Canadian Institutes of Health Research (to A.-C.G.; 
MOP-84314), a Genome Canada Bioinformatics and Computational Biology grant (to A.-C.G and A.I.N) and 
Singapore Ministry of Education grant (to H.C.; R-608-000-088-112).

References

1. Bantscheff M, Lemeer S, Savitski MM, Kuster B. Quantitative mass spectrometry in proteomics: 
critical review update from 2007 to the present. Anal Bioanal Chem. 2012; 404:939–965. [PubMed: 
22772140] 

2. Nesvizhskii AI. A survey of computational methods and error rate estimation procedures for peptide 
and protein identification in shotgun proteomics. Journal of Proteomics. 2010; 73:2092–2123. 
[PubMed: 20816881] 

3. Bailey DJ, McDevitt MT, Westphall MS, Pagliarini DJ, Coon JJ. Intelligent data acquisition blends 
targeted and discovery methods. J Proteome Res. 2014; 13:2152–2161. [PubMed: 24611583] 

4. Weisbrod CR, Eng JK, Hoopmann MR, Baker T, Bruce JE. Accurate Peptide Fragment Mass 
Analysis: Multiplexed Peptide Identification and Quantification. J Proteome Res. 2012; 11:1621–
1632. [PubMed: 22288382] 

5. Michalski A, Cox J, Mann M. More than 100,000 Detectable Peptide Species Elute in Single 
Shotgun Proteomics Runs but the Majority is Inaccessible to Data-Dependent LC-MS/MS. J 
Proteome Res. 2011; 10:1785–1793. [PubMed: 21309581] 

6. Gillet LC, et al. Targeted data extraction of the MS/MS spectra generated by data-independent 
acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics. 
2012; 11:O111 016717. [PubMed: 22261725] 

7. Tate S, Larsen B, Bonner R, Gingras AC. Label-free quantitative proteomics trends for protein-
protein interactions. Journal of proteomics. 2013; 81:91–101. [PubMed: 23153790] 

8. Venable JD, Dong MQ, Wohlschlegel J, Dillin A, Yates JR. Automated approach for quantitative 
analysis of complex peptide mixtures from tandem mass spectra. Nat Methods. 2004; 1:39–45. 
[PubMed: 15782151] 

Tsou et al. Page 20

Nat Methods. Author manuscript; available in PMC 2015 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://diaumpire.sourceforge.net/
http://diaumpire.sourceforge.net/
http://proteomecentral.proteomexchange.org


9. Silva JC, Gorenstein MV, Li GZ, Vissers JP, Geromanos SJ. Absolute quantification of proteins by 
LCMSE: a virtue of parallel MS acquisition. Mol Cell Proteomics. 2006; 5:144–156. [PubMed: 
16219938] 

10. Panchaud A, et al. Precursor acquisition independent from ion count: how to dive deeper into the 
proteomics ocean. Anal Chem. 2009; 81:6481–6488. [PubMed: 19572557] 

11. Geiger T, Cox J, Mann M. Proteomics on an Orbitrap benchtop mass spectrometer using all-ion 
fragmentation. Mol Cell Proteomics. 2010; 9:2252–2261. [PubMed: 20610777] 

12. Egertson JD, et al. Multiplexed MS/MS for improved data-independent acquisition. Nat Methods. 
2013; 10:744–746. [PubMed: 23793237] 

13. Distler U, et al. Drift time-specific collision energies enable deep-coverage data-independent 
acquisition proteomics. Nat Methods. 2014; 11:167–170. [PubMed: 24336358] 

14. Purvine S, Eppel JT, Yi EC, Goodlett DR. Shotgun collision-induced dissociation of peptides using 
a time of flight mass analyzer. Proteomics. 2003; 3:847–850. [PubMed: 12833507] 

15. Colangelo CM, Chung L, Bruce C, Cheung KH. Review of software tools for design and analysis 
of large scale MRM proteomic datasets. Methods. 2013; 61:287–298. [PubMed: 23702368] 

16. Rost HL, et al. OpenSWATH enables automated, targeted analysis of data-independent acquisition 
MS data. Nat Biotech. 2014; 32:219–223.

17. Rosenberger G, et al. A repository of assays to quantify 10,000 human proteins by SWATH-MS. 
Scientific Data. 2014; 1:140031.

18. Li GZ, et al. Database searching and accounting of multiplexed precursor and product ion spectra 
from the data independent analysis of simple and complex peptide mixtures. Proteomics. 2009; 
9:1696–1719. [PubMed: 19294629] 

19. Pak H, et al. Clustering and filtering tandem mass spectra acquired in data-independent mode. J 
Am Soc Mass Spectrom. 2013; 24:1862–1871. [PubMed: 24006250] 

20. Craig R, Cortens JP, Beavis RC. Open source system for analyzing, validating, and storing protein 
identification data. J Proteome Res. 2004; 3:1234–1242. [PubMed: 15595733] 

21. Eng JK, Jahan TA, Hoopmann MR. Comet: an open-source MS/MS sequence database search tool. 
Proteomics. 2013; 13:22–24. [PubMed: 23148064] 

22. Kim S, et al. The generating function of CID, ETD, and CID/ETD pairs of tandem mass spectra: 
applications to database search. Mol Cell Proteomics. 2010; 9:2840–2852. [PubMed: 20829449] 

23. Keller A, Nesvizhskii AI, Kolker E, Aebersold R. Empirical statistical model to estimate the 
accuracy of peptide identifications made by MS/MS and database search. Anal Chem. 2002; 
74:5383–5392. [PubMed: 12403597] 

24. Shteynberg D, et al. iProphet: multi-level integrative analysis of shotgun proteomic data improves 
peptide and protein identification rates and error estimates. Mol Cell Proteomics. 2011; 10:M111 
007690. [PubMed: 21876204] 

25. Nesvizhskii AI, Keller A, Kolker E, Aebersold R. A statistical model for identifying proteins by 
tandem mass spectrometry. Anal Chem. 2003; 75:4646–4658. [PubMed: 14632076] 

26. Lambert JP, et al. Mapping differential interactomes by affinity purification coupled with data-
independent mass spectrometry acquisition. Nat Methods. 2013; 10:1239–1245. [PubMed: 
24162924] 

27. Lam H, et al. Building consensus spectral libraries for peptide identification in proteomics. Nat 
Methods. 2008; 5:873–875. [PubMed: 18806791] 

28. Reiter L, et al. mProphet: automated data processing and statistical validation for large-scale SRM 
experiments. Nat Methods. 2011; 8:430–435. [PubMed: 21423193] 

29. Liu Y, et al. Glycoproteomic analysis of prostate cancer tissues by SWATH mass spectrometry 
discovers N-acylethanolamine acid amidase and protein tyrosine kinase 7 as signatures for tumor 
aggressiveness. Mol Cell Proteomics. 2014; 13:1753–1768. [PubMed: 24741114] 

30. Schwanhausser B, et al. Global quantification of mammalian gene expression control. Nature. 
2011; 473:337–342. [PubMed: 21593866] 

31. Ludwig C, Claassen M, Schmidt A, Aebersold R. Estimation of absolute protein quantities of 
unlabeled samples by selected reaction monitoring mass spectrometry. Mol Cell Proteomics. 2012; 
11:M111 013987. [PubMed: 22101334] 

Tsou et al. Page 21

Nat Methods. Author manuscript; available in PMC 2015 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



32. Collins BC, et al. Quantifying protein interaction dynamics by SWATH mass spectrometry: 
application to the 14-3-3 system. Nat Methods. 2013; 10:1246–1253. [PubMed: 24162925] 

33. Nesvizhskii AI. Computational and informatics strategies for identification of specific protein 
interaction partners in affinity purification mass spectrometry experiments. Proteomics. 2012; 
12:1639–1655. [PubMed: 22611043] 

34. Choi H, et al. SAINT: probabilistic scoring of affinity purification-mass spectrometry data. Nat 
Methods. 2011; 8:70–73. [PubMed: 21131968] 

35. Choi H, Glatter T, Gstaiger M, Nesvizhskii AI. SAINT-MS1: protein-protein interaction scoring 
using label-free intensity data in affinity purification-mass spectrometry experiments. J Proteome 
Res. 2012; 11:2619–2624. [PubMed: 22352807] 

36. Chatr-Aryamontri A, et al. The BioGRID interaction database: 2013 update. Nucleic Acids Res. 
2013; 41:D816–823. [PubMed: 23203989] 

37. Jeronimo C, et al. Systematic analysis of the protein interaction network for the human 
transcription machinery reveals the identity of the 7SK capping enzyme. Mol Cell. 2007; 27:262–
274. [PubMed: 17643375] 

38. Prakash A, et al. Hybrid data acquisition and processing strategies with increased throughput and 
selectivity: pSMART analysis for global qualitative and quantitative analysis. J Proteome Res. 
2014; 13:5415–5430. [PubMed: 25244318] 

39. MacLean B, et al. Skyline: an open source document editor for creating and analyzing targeted 
proteomics experiments. Bioinformatics. 2010; 26:966–968. [PubMed: 20147306] 

40. Vizcaino JA, et al. ProteomeXchange provides globally coordinated proteomics data submission 
and dissemination. Nat Biotechnol. 2014; 32:223–226. [PubMed: 24727771] 

41. Chambers MC, et al. A cross-platform toolkit for mass spectrometry and proteomics. Nature 
biotechnology. 2012; 30:918–920.

42. Tautenhahn R, Bottcher C, Neumann S. Highly sensitive feature detection for high resolution 
LC/MS. BMC Bioinformatics. 2008; 9:504. [PubMed: 19040729] 

43. Nesvizhskii AI, et al. Dynamic spectrum quality assessment and iterative computational analysis of 
shotgun proteomic data: toward more efficient identification of post-translational modifications, 
sequence polymorphisms, and novel peptides. Mol Cell Proteomics. 2006; 5:652–670. [PubMed: 
16352522] 

44. Kryuchkov F, Verano-Braga T, Hansen TA, Sprenger RR, Kjeldsen F. Deconvolution of mixture 
spectra and increased throughput of peptide identification by utilization of intensified 
complementary ions formed in tandem mass spectrometry. J Proteome Res. 2013; 12:3362–3371. 
[PubMed: 23725413] 

45. Deutsch EW, et al. A guided tour of the Trans-Proteomic Pipeline. Proteomics. 2010; 10:1150–
1159. [PubMed: 20101611] 

46. Tsou CC, et al. IDEAL-Q, an automated tool for label-free quantitation analysis using an efficient 
peptide alignment approach and spectral data validation. Mol Cell Proteomics. 2010; 9:131–144. 
[PubMed: 19752006] 

47. Lam H, Deutsch EW, Aebersold R. Artificial decoy spectral libraries for false discovery rate 
estimation in spectral library searching in proteomics. J Proteome Res. 2010; 9:605–610. 
[PubMed: 19916561] 

48. Cox J, Michalski A, Mann M. Software lock mass by two-dimensional minimization of peptide 
mass errors. J Am Soc Mass Spectrom. 2011; 22:1373–1380. [PubMed: 21953191] 

49. Barsnes H, et al. compomics-utilities: an open-source Java library for computational proteomics. 
BMC Bioinformatics. 2011; 12:70. [PubMed: 21385435] 

50. Escher C, et al. Using iRT, a normalized retention time for more targeted measurement of peptides. 
Proteomics. 2012; 12:1111–1121. [PubMed: 22577012] 

Abbreviations

LC Liquid chromatography
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MS Mass spectrometry

DDA Data Dependent Acquisition

DIA Data Independent Acquisition

SWATH Sequential Window Acquisition of all THeoretical Mass Spectra

FDR False Discovery Rate

AP Affinity Purification

SAINT Significance Analysis of INTeractome

XIC Extracted Ion Chromatogram

UPS Universal Protein Standard
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Fig. 1. Untargeted and targeted data analysis strategies and DIA-Umpire hybrid framework
(a)Conventional analysis of DDA data is based on matching MS/MS spectra against a 

proteome-wide sequence database or a spectral library (spectrum-centric search). Peptides 

(and then proteins) are quantified using MS1 signal intensity or spectral counts (label-free 

quantification) (b) Current methods for DIA analysis are based on targeted data extraction, 

in which peptide ions from a spectral library are queried against experimental data (peptide-

centric search) to find the best matching fragment ion signals and their intensities (MS2 

based quantification). (c) DIA-Umpire hybrid workflow performs signal extraction from 

DIA MS1 and MS2 spectra to construct precursor–fragment groups (see Fig. 2 and Online 

Methods for details). Each precursor–fragment group is then analyzed using spectrum-

centric searching to identify the peptides, as in (a). Peptide-centric matching is then 

performed to query unidentified precursor–fragment groups against a spectral library, as in 

(b). The spectral library can be built from the initial untargeted (spectrum-centric) results 

using the same DIA data, or can be combined (replaced) with an external spectral library 

built using DDA data. Quantification can be done from either MS1 precursor- or MS2 

fragment-ion intensities.
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Fig. 2. DIA-Umpire signal processing algorithms
The feature detection algorithm is applied to DIA MS1 and MS2 spectra to detect all 

possible MS1 peptide precursor ions and MS2 fragment signals. Each detected precursor 

feature is grouped with corresponding co-eluting fragment ion features based on Pearson 

correlation of LC elution peaks and retention times of peak apexes to form precursor-

fragments groups. These precursor–fragment groups are used to construct pseudo MS/MS 

spectra (separated into different quality tiers based on the quality of detected precursor ion 

signal) for untargeted spectrum-centric database search and identification. The precursor–

fragment groups are stored and are again queried during the second, peptide-centric targeted 

data extraction stage.
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Fig. 3. Untargeted peptide and protein identification using DDA and DIA data from UPS2, E. 
coli, and human cell lysate samples
(a) The number of peptide ions and proteins identified by X! Tandem search engine at 1% 

FDR in DDA and in DIA (SWATH) data from UPS2, E. coli, and human cell lysate 

samples. (b) The number of peptide ions and protein identifications (X! Tandem) in each 

replicate of the UPS2 sample DDA and DIA data plotted separately for proteins of different 

abundance (in UPS2 samples 48 proteins span 5 orders of magnitude of abundance ranging 

from 0.5 to 50,000 fmoles with 8 proteins in each abundance range).
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Fig. 4. Comparative analysis of peptide identifications from DDA and DIA data from human cell 
lysate samples
(a) The numbers of proteins and peptide ions identified at 1% FDR by X! Tandem search 

engine in DDA and in DIA (SWATH) data. Left: the number of protein identifications. 

Right: the number of peptide ion identifications (9,272 peptide ions identified from DDA 

data, 8,757 from DIA, 12,660 in total). Of the peptide ions identified by DIA and not DDA 

at 1% FDR (3,388), the majority were not identified by DDA because no MS/MS spectrum 

was acquired (2,326). Of the peptide ions identified from DDA data and not from DIA at 1% 

FDR (3,903), DIA-Umpire was able to detect precursor features for 3,338 of these peptide 

ions. (b) Fraction of fragment ions matched in pseudo MS/MS spectra extracted from DIA 

data as a function of MS1 peptide ion intensity in DDA data. Data points (peptide ions) and 

the summary density plots (“Frequencies”) are colored according to the two categories of 

peptide ions: those identified from DIA data at 1% FDR (high scoring in DIA, blue), and 

unidentified in DIA (orange; these ions were found in DIA data as described in Online 

Methods). (c) Comparison between DDA and DIA in terms of fraction of fragments 

matched among the two categories of peptide ions described in (b), showing that peptide 

ions identified with confidence from DDA but not from DIA have fewer matched fragments.
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Fig. 5. Illustration of the entire DIA-Umpire workflow using affinity purification – SWATH 
interactome dataset
(a) Two bait proteins (EIF4A2 and MEPCE) and the negative control (GFP) samples were 

analyzed in biological triplicates using AP-SWATH. The complete DIA-Umpire pipeline 

was applied to quantify proteins in these samples. The quantified proteins were further 

analyzed using SAINT (intensity model) to compute protein-protein interaction 

probabilities. (b) The distribution of scores (U-score) computed by the targeted re-extraction 

algorithm of DIA-Umpire. Data shown are from one biological replicate of MEPCE AP-

SWATH run. The observed distribution was modeled using the mixture modeling approach 

(blue curve: false identification model; red curve: correct identifications) to compute the 

posterior probability for each match. Peptide ions with a computed probability above 0.99 

were considered confidently identified and contributed, together with the peptide ions 

identified at the initial untargeted identification stage, to protein quantification for their 

corresponding protein. (c) The numbers of proteins identified in only one, two, or all three 

biological replicates for each experiment after the initial untargeted search and after targeted 

data re-extraction. Comparison between the sets of proteins identified in each experiment 

(all biological replicates combined) after the untargeted search and after targeted data re-

extraction, showing an increase in the number of proteins quantified across all three 

samples. (d) High reproducibility of protein intensities between two MEPCE AP-SWATH 
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biological replicates computed by DIA-Umpire using the “MS2 Top6pep/Top6fra, 

Freq>0.5” quantification approach.
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