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Abstract

Low back pain is a major physical and socioeconomic problem. Degeneration of the intervertebral 

disc and especially that of nucleus pulposus (NP) has been linked to low back pain. In spite of 

much research focusing on the NP, consensus among the research community is lacking in 

defining the NP cell phenotype. A consensus agreement will allow easier distinguishing of NP 

cells from annulus fibrosus (AF) cells and endplate chondrocytes, a better gauge of therapeutic 

success, and a better guidance of tissue-engineering-based regenerative strategies that attempt to 

replace lost NP tissue. Most importantly, a clear definition will further the understanding of 

physiology and function of NP cells, ultimately driving development of novel cell-based 

therapeutic modalities. The Spine Research Interest Group at the 2014 Annual ORS Meeting in 

New Orleans convened with the task of compiling a working definition of the NP cell phenotype 

with hope that a consensus statement will propel disc research forward into the future. Based on 

evaluation of recent studies describing characteristic NP markers and their physiologic relevance, 

we make the recommendation of the following healthy NP phenotypic markers: stabilized 

expression of HIF-1α, GLUT-1, aggrecan/collagen II ratio >20, Shh, Brachyury, KRT18/19, 

CA12, and CD24.
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Low back pain (LBP) is a major crippling problem, both physically and socioeconomically. 

The United States alone spends between $ 100 and $ 200 billion annually in health care 

costs treating LBP, a condition that affects up to 80% of adults at least once during their 

lifetime, and has a one-month prevalence of 23.2% of the global population.1–3 

Degeneration of the intervertebral disc is associated with, and has been proposed to be a 

cause of, a large percentage of these cases of LBP.4 Disc degeneration is a chronic, 

progressive disease, and current clinical strategies, including both surgical as well as non-

surgical approaches aimed at symptomatic relief, have done very little to improve mental, 

physical, or social health of those patients affected.5,6 As a result, the research community 

continues to focus on understanding the molecular nature of the healthy intervertebral disc 

and its degeneration, with the hope that novel therapeutic and regenerative strategies will 

eventually be developed to more adequately treat patients with the disabling condition of 

excessive and pathological disc degeneration.

The intervertebral disc contains three distinct tissue compartments. The outer 

fibrocartilaginous annulus fibrosus (AF) and the superior and inferior cartilaginous 

endplates completely enclose the gel-like nucleus pulposus (NP), an avascular, aggrecan-

rich tissue. The NP is frequently implicated in disc degeneration and, as such, has been the 

focus of much research in the basic science and tissue engineering fields. In spite of this, a 

consensus is lacking in defining the young healthy, NP cell phenotype. We define the NP 

cell phenotype as a collection of “markers”—genes, proteins, and metabolic characteristics 

that are representative and distinguishing of NP cells. It is important to focus on defining a 

phenotype, rather than merely a genotype, since phenotypic characteristics likely have 

physiologic consequences and dictate NP cell function. With such a definition, we will be 

able to more easily distinguish NP cells from AF cells and other related cell types, better 

diagnose degenerate conditions and gauge therapies while comparing healthy and 

degenerate samples, and better guide stem cell and tissue engineering strategies that attempt 

to replace lost NP cells and tissue. Perhaps most important, a clear identification of 

phenotype will allow us to better understand the physiology and function of NP cells, 

ultimately driving development of novel cell-based therapeutic modalities. Phenotypic 

characterization of NP cells at all stages of development, growth, maturation, and disease 

warrant further characterization and identification. This study focused on defining the 

phenotype of the young healthy NP cell because regenerative strategies focused on 

recapitulating this healthy phenotype are likely to have greatest likelihood of successful 

clinical outcomes. The Spine Research Interest Group at the 2014 Annual ORS Meeting in 

New Orleans convened with the task of discussing the phenotype of the NP cell and the 

hope that a consensus statement will help propel disc research forward into the future. 

Presented here is the outcome of that meeting and discussions that followed.
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ONTOGENY AND HETEROGENEITY OF NP CELLS

There is controversy and a long-held debate over the ontogeny and heterogeneity of the cells 

that make up the mature, human adult NP. Early anatomical studies recognized a 

morphological heterogeneity of cells within the NP.7 A population of larger (25–85 μm), 

vacuolated cells has been considered “notochordal,”, because of their resemblance to 

embryonic notochord cells, whereas a population of smaller (10 μm), rounder cells has been 

considered “chondrocyte-like”. Fluorescence-activated cell sorting (FACS) of these two 

different populations has revealed differential expression of certain genes.8 Although the 

human embryonic notochord and juvenile NP possess populations of “notochordal” cells, 

these cells gradually disappear or change their appearance and are replaced by the 

“chondrocyte-like” cells in the adult.9,10 Different animal models have been described as 

possessing either “notochordal” or “chondrocyte-like” mature NP cells, and as a result, some 

authors have argued against using animal models with distinctly “notochordal” cells (e.g., 

rat, mouse, non-chondrodystrophic dogs, porcine) and rather favor animal models with 

distinctly “chondrocyte-like” cells (e.g., bovine, ovine, chondrodystrophic dog), due to their 

resemblance to mature human NP. Although these cells exhibit different morphologies, 

recent fate-mapping studies in mice using notochord-specific Cre recombinase driven by 

either Sonic hedgehog (Shh)11 or Noto12 promoters have convincingly revealed that all cells 

of the adult NP derive from the embryonic notochord. Additionally, “notochordal” cells of 

porcine,13 rabbit,14 as well as mouse,15 NP have been shown to transition into 

“chondrocyte-like” cells both in vitro and in vivo. This transition was favored by both 

physiological stimuli, such as dynamic loading 13 and standard tissue culture conditions,14 

as well as pathological stimulus like needle puncture injury15 (Fig. 1). Importantly, a robust 

expression of brachyury, an unequivocal marker of notochord, has been seen in adult human 

NP tissues.16 These results suggest that morphological differences between “notochordal” 

and “chondrocyte-like” cells represent different stages of cellular activity or differentiation, 

rather than a different lineage. Although some evidence exists suggesting that during 

degeneration, cells from the endplate or AF may migrate into the degenerate NP,17 most 

convincing evidence indicates that the overwhelming majority of cells within the NP at all 

points have differentiated along the notochordal lineage, and morphological differences seen 

represent different physiological or pathological stages of aging and degeneration.10–16 

Accordingly, discounting certain animal models based solely on differences in cellular 

morphology may not be appropriate.

This must be kept in mind when considering potential markers that define the NP phenotype. 

Characteristic markers with important physiological consequences and relevance would be 

most helpful to better understand NP cell function and subsequently guide regenerative 

strategies. Therefore, proposed markers that show certain interspecies variability are less 

likely to be physiologically important, and should perhaps not be considered critical, 

defining NP markers. Instead, we reviewed the literature to identify a list of markers that 

show no or very little interspecies differences and could be used to unequivocally describe 

the young healthy NP phenotype.
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MARKERS THAT RELATE TO NP CELL PHYSIOLOGY

The NP resides in a unique hypoxic and hyperosmotic niche.18,19 Additionally, all cells of 

the NP appear to derive from the embryonic notochord, making them quite unlike any other 

cell type in the body.11,12,16 As a result, NP cells have developed distinguishing 

characteristics that adapt them well to their environment. These characteristics of distinctive 

protein expression, though perhaps not classified as traditional “markers” per se, should 

certainly not be overlooked when describing the NP phenotype. Such non-traditional 

markers reflect the function of the NP cell, and speak directly to its metabolism and 

physiology, which is critical when monitoring and assessing the success of stem cell and 

regenerative therapies.

Hypoxia-Inducible Factors

The NP is the largest avascular tissue in the body and is physiologically hypoxic.18 Cells of 

the body are attuned to survive hypoxic settings through expression of the transcription 

factors hypoxia-inducible factor-1α and -2α (HIF-1/2). In most cells of the body, HIF-α 

protein stability and activity are independently regulated by different molecular 

dioxygenases.20 HIF-α is normally degraded in the presence of oxygen via hydroxylation of 

specific proline residues (Pro 402 and Pro 564 in HIF-1α, and Pro 405 and Pro 531 in 

HIF-2α) by members of the iron-dependent prolyl-hydroxylase domain (PHD) family, and 

subsequent degradation through 26 S proteasome. Additionally, activity of HIF-α in the 

presence of oxygen is usually regulated by another molecular dioxygenase, factor inhibiting 

HIF-1 (FIH-1), which hydroxylates an asparagine residue (Asn 803 in HIF-1α and Asn 851 

in HIF-2α) in the C-terminus transactivation domain of the protein, disrupting interaction 

with essential transcriptional co-activator p300/CBP. However, this standard model of HIF-

α regulation does not apply to NP cells. NP cells constitutively and robustly express HIF-1α 

and HIF-2α, even when cultured under normoxia.21,22 Noteworthy, these HIF-α proteins are 

either partially or wholly refractory to PHD-mediated regulation in NP and show reliance on 

other non-oxemic pathways for their turnover.23–25 Of importance to the discussion of 

phenotypic markers, this constitutive expression of HIF-1α in NP is consistent across 

multiple species.22 Similarly, in NP cells FIH-1 does not control HIF-1α transcriptional 

activity.26 This constitutive HIF-1 activity in NP cells has important metabolic 

consequences - NP cells are obligate glycolytic, and rely very little on aerobic respiration, 

even when oxygen is abundant, e.g., under normoxic culture conditions,27 suggesting that 

HIF-1 strongly drives glycolytic metabolism. HIF-1/2 promotes survival and function of NP 

cells through upregulation of crucial genes including: glucose transporter (GLUT) 1 and 3, 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH), aggrecan,27,28 β-1,3-

glucuronyltransferase 1,29 galectin-3,30 and vascular endothelial growth factor-A (VEGF-

A).21 Of note, higher expression of GLUT-1 in rat NP compared to AF and endplate 

chondrocytes has been shown at the protein level by Rajpurohit et al.,28 an observation 

supported by a later study in human tissues.31 HIF-1/2 has also been shown in NP to 

suppress expression of progressive ankylosis protein homolog (ANK), a pyrophosphate 

transporter, expression of which is sensitive to the disease process, possibly playing a role in 

preventing dystrophic mineralization of the NP.32 Importantly, recent work by Merceron 

and colleagues has conclusively demonstrated that HIF-1 is indispensable for NP cell 
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survival.33 Conditional deletion of HIF-1α in mouse notochord by Foxa2-driven Cre 

recombinase results in early morphologic changes in the NP beginning at E15.5. 

Specifically, the mutant NP is smaller and comprises non-vacuolated cells. Postnatally, there 

is massive apoptotic cell death in the NP after HIF-1α deletion, likely due to energetic 

failure by decreased glycolysis. Eventually the NP is replaced with a fibrocartilaginous 

tissue with inferior biomechanical properties. Importantly, lineage-tracing studies clearly 

showed the notochordal lineage of the NP cells, and their replacement with non-notochordal 

cells, likely migrating into the tissue from the inner AF (Fig. 2). Thus, because of the 

absolute indispensability of HIF-1α in maintaining NP cell survival and function, the 

constitutive expression of HIF-α subunits should be considered a crucial and necessary 

marker of NP cell phenotype.

Sonic Hedgehog

Sonic hedgehog (Shh) is a ligand of the hedgehog family that is expressed specifically in the 

developing notochord. Studies by Brian Harfe’s group using conditional deletion of both 

Smoothened (Smo) as well as Shh itself in Shh-expressing cells elegantly showed that this 

signaling pathway is required for the formation of notochordal sheath and patterning of the 

NP.34,35 Importantly, Shh expression remains active in the postnatal NP, at least for the first 

few weeks, and is required for proper functioning of NP cells.36,37 Although Shh expression 

and signaling are decreased with aging and degeneration, a very recent study has 

demonstrated that reactivation of Shh signaling in aged discs through activation of Wnt 

signaling can increase expression of brachyury and aggrecan, as well as accumulation of 

chondroitin sulfate.38 Because of its specificity in NP and promising results in reversing the 

aging and degenerative phenotype, Shh should be considered as a critical NP phenotypic 

marker.

Brachyury

Brachyury (T) is the founding-member of the T-box family of transcription factors. It is 

necessary for development of the embryonic mesoderm, in particular the morphogenesis of 

the notochord. Although previously considered only a notochordal gene and studied in a 

developmental context, the expression of brachyury has been recently reported in postnatal 

and mature NP cells using various techniques.16,39–41 Whereas one of these studies showed 

that, in comparison to non-chondrodystrophic dogs, in chondrodystrophic breeds 

“chondrocyte-like” cells showed decreased brachyury expression relative to “notochordal” 

cells with aging and degeneration,40 correlation with degeneration was not seen in other 

human studies.16,39 Of note, transition from “notochordal” to “chondrocyte-like” 

morphology in organ-cultured porcine discs by continuous pressurization did not involve a 

decrease in brachyury expression.13 Despite importance of this transcription factor in 

notochord development and function, direct causative studies establishing the role of 

brachyury exclusively in maintenance of postnatal NP have not been performed.

Relevant to this discussion of brachyury function, recent studies using chromatin-

immunoprecipitation approaches in mouse embryonic stem cells42 and a human chordoma 

cell line43 have given insight into the direct gene targets of brachyury binding in mammals. 

Targets identified by these studies that are of potential importance to NP physiology include 
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fibroblast growth factor 8 (FGF8), which has been implicated in pathogenesis of 

osteoarthritis44; Axin2, a negative regulator of the Wnt pathway with altered expression in 

degenerative NP40,45; pleiotrophin, which is expressed in NP (see below)46,47; and 

connective tissue growth factor (CTGF, also called CCN2), an extracellular matrix protein 

that is necessary for post-natal NP function48 and is also capable of suppressing the 

catabolic effects of IL-1β in NP cells.49 Although there are yet few studies specifically 

investigating the role of brachyury in the post-natal NP, it deserves attention and should 

nevertheless be considered as a physiologically relevant NP cell phenotype marker.

Aggrecan/Collagen II Ratio

The biomechanical role of the NP is to resist compressive loads of the spine. Hydration of 

the NP is responsible for resisting these compressive forces, and the extracellular matrix of 

the NP is responsible for maintaining hydration. During aging and degeneration, change in 

matrix composition is responsible for loss of hydration and subsequent exacerbation of 

degeneration.50–52 The NP matrix comprises proteoglycans and collagens—the major 

aggregating proteoglycan in the NP is aggrecan while the major collagen is collagen II.53 

Although chondrocytes also express aggrecan and collagen II, the NP matrix can be 

distinguished from cartilage by a distinct glycosaminoglycan (GAG): hydroxyproline ratio. 

While the GAG:hydroxyproline ratio in juvenile cartilage is ~3:1 and decreases to ~2:1 with 

age, in NP the ratio is much higher at all ages. In juvenile (2–5 years) and young adult (15–

25 years) NP, the ratio is ~25:1 and ~27:1, respectively. Again, the ratio decreases with age 

and degeneration, but not to the level of articular cartilage, reaching ~5:1 in the elderly (60–

80 years).54 Because of the physiologic importance of extracellular matrix production by NP 

cells, aggrecan and collagen II, specifically at the high ratio (>20) seen in healthy juvenile 

and young adult NP, should be included in any discussion about NP phenotypic markers.

Matrix-Binding Proteins

Because of the importance of the extracellular matrix in the biological and biomechanical 

function of the NP, some groups have begun investigating matrix-binding proteins of NP 

cells, namely integrins. Studies have shown elevated expression in porcine and human NP 

cells compared to AF cells of integrins α3, α6, and β4, and laminin α5.55,56 Integrins α3β4 

and α6β4 bind laminin, suggesting a high level of integrin-lamin binding in NP cells. 

Follow-up studies observed NP-specific expression of laminin-111, -511, and -322, and that 

NP cells adhere strongly to these laminins, suggesting their crucial role in cell-matrix 

interactions.57,58 Although in the porcine NP integrin α6β1 mediates laminin-111 

attachment, in human NP this interaction is mediated by integrins α3β1 and α5β1.59 This 

interspecies variability suggests that although cell-matrix adhesion may play a major role in 

NP cell function and development, the exact underlying nature of this interaction maybe not 

be as critical.

Worth noting are observations that α5β1 expression increased in human lumbar herniated 

discs,60 and that the anti-catabolic role of CCN2 in suppressing effects of IL-1β requires 

CCN2 binding to α5β1 and αvβ3 integrins.49 Additionally, it is known that the vacuolated 

notochordal phenotype of NP cells is very sensitive to the surrounding microenvironment in 

culture,61 and differences in cell-matrix connectivity of the notochordal NP cells is culture 
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functionally impact the cells they contact.62 As more physiological roles of integrins in NP 

cells are elucidated, especially those that exhibit an NP-distinctive expression pattern, the 

more important they will become in the discussion of NP phenotypic markers.

“-OMICS” APPROACHES AND PROGENITOR STUDIES

Because of the wealth of data microarrays provide, it would be prudent to use results of NP 

cell microarray profiling to help define the NP phenotype. We must be wary and recognize, 

however, that protein and mRNA expression do not always correlate, and all proposed 

markers described from transcript expression profiles should indeed be validated and 

informed by protein level measurements.

One of the earliest studies using microarray to analyze NP cells specifically looked for 

differential expression of cell surface markers and found CD24 as such a marker.63 Another 

important early use of microarray was reported by Lee et al.46 Comparing NP cells to AF 

cells and articular chondrocytes harvested from rats, the authors described genes with 

significantly higher mRNA expression in NP cells, including annexin A3, the cell-surface 

heparan sulfate proteoglycan glypican-3 (GPC3), keratin-19 (KRT19), and pleiotrophin 

(PTN). Authors did validate differences in GPC3 and KRT19 expression at the protein level 

through immunohistochemistry. Interestingly, Rutges et al. in a subsequent analysis of 

human tissues observed that pleiotrophin was more highly enriched in articular chondrocytes 

than NP cells.47

Noteworthy, a follow-up study by the same group using a dog model could not replicate the 

significant differential expression for GPC3 and KRT19 seen in rat.64 Instead, when 

comparing NP to AF, they found significantly higher expression of α2-macroglobulin 

(A2M), desmocollin-2 (DSC2), CD56, and keratin-18 (KRT18), all of which were 

confirmed at the protein level with immunohistochemistry. Of potential importance to disc 

physiology, α2-macroglobulin is a protease inhibitor, and has been shown to play a role in 

osteoarthritis prevention.65 Specifically, α2-macroglobulin has been proposed as an 

endogenous inhibitor of the aggrecanases ADAMTS-4 and -5, as well as MMP-13, all of 

which exhibit increased expression during degenerative disc disease.53 While an elevated 

A2M gene expression in NP compared to AF cells was also reproduced in human disc 

cells,47 it must be noted, however, that Güner et al. were unable to show protein expression 

of α2-macroglobulin in human surgical disc specimens using rate nephelometry 

techniques.66 This therefore suggests that expression and physiological relevance of α2-

macroglobulin requires further investigation.

A microarray study by Minogue et al. using bovine NP cells39 found NP-specific expression 

of several genes compared to AF, including keratin-8, -18, and -19, the t-SNARE protein 

SNAP25, cadherin-2 (CDH2), brain acid soluble protein 1 (BASP1), and sclerostin domain-

containing protein 1 (SOSTDC1). The authors were able to validate differential expression 

of CDH2 by qPCR in human NP cells compared to human AF and articular chondrocytes; 

expression at the protein level, however, was not investigated. Still worth noting is the 

observation that SNAP25, KRT-8, -18, and CDH2 mRNA expression decreased in 

degenerate human NP cells. A follow-up microarray study from the same group using 
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human NP cells67 compared expression between NP cells and articular chondrocytes and 

found NP-specific mRNA expression of transcription factors PAX1 and FOXF1, 

hemoglobin β-chain (HBB), carbonic anhydrase XII (CA12), and ovostatin 2 (OVOS2).

A later study by Power et al. independently validated NP-specific expression of carbonic 

anhydrase XII by both microarray and immunohistochemistry and showed strong disease-

dependence of expression levels.68 Carbonic anhydrase proteins are involved in acid-base 

balance. Because of the avascular and glycolytic nature of the NP, there is elevated lactic 

acid found in the tissue.69 It is therefore expected that acid-base physiology plays an 

important role in NP cell survival and function. Carbonic anhydrase XII may be a key player 

in buffering acidic environments, and, as such, should be considered an NP marker and 

should be investigated further for its contribution to NP cell survival. Also worth noting, an 

early study by Lyons et al. observed robust expression of carbonic anhydrase III in mouse 

notochord and postnatal NP, a CA family member previously considered to be tissue-

specific with expression predominantly limited to skeletal muscle.70 Although the authors 

also found prenatal expression of CAIII transcript in a few other non-muscle tissues, post-

partum expression was only reported in NP and brown fat, with protein expression in NP 

equal to that of hindlimb muscle at two days post-partum. Despite no recent gene profiling 

techniques recommending carbonic anhydrase III as an NP marker, its robust expression at 

the protein level, like carbonic anhydrase XII, suggests physiologic importance. As such, 

carbonic anhydrase III should perhaps enter into the NP marker discussion.

A recent study used immortalized human NP cell lines to uncover “subpopulations” within 

the NP -different groups of cells with different expression levels of NP-specific genes.71 The 

authors described two subpopulations of NP cells, based on their ability to respond to a 

chondrocytic differentiation protocol and increase expression of Sox9 and collagen II. The 

authors tested expression of six genes described above—KRT19, CA12, CD24, FoxF1, 

PAX1, and PTN. Importantly, both subpopulations of cells expressed all markers, 

supporting the argument that all NP cells have similar ontogeny, and morphological 

differences seen between different populations represent different stages of development. In 

spite of the fact that both subpopulations expressed all of these proposed markers, there were 

significant differences in CA12 and FoxF1 expression between the two subpopulations 

before differentiation, and between FoxF1 and PTN expression after differentiation. 

Although future studies may elucidate potential physiological consequences caused by these 

differences, it is again important to consider the expression of all genes at the protein level. 

Just as is true when comparing cells of different species, variability between subpopulations 

of cells within a single species may show differences at the transcript level but not at the 

protein level, which are much more tightly regulated.72

A study from Dick Heinegård’s lab used quantitative proteomics approaches to analyze 

musculoskeletal tissues, including NP, AF, and articular cartilage. Of note, they reported 

significantly higher lubricin (PRG4) expression in human NP compared to articular cartilage 

of the femoral and humeral head (~9-fold),73 supporting an earlier study reporting lubricin 

expression in human cadaveric NP tissue.74 Additionally, there was a trend of higher 

lubricin expression in NP when compared directly to AF (p = 0.09). Lubricin is a highly 

conserved proteoglycan that is often described in the context of synovial joints, implicated 
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in reducing shear stress, inflammation, and apoptosis, and maintenance of joint health.75 The 

intervertebral disc shares many properties with synovial joints, to such an extent that some 

argue the spinal motion segment should be re-classified as a polyaxial diarthrosis, rather 

than as an amphiarthrosis, as it is often currently described.76 Therefore, while the 

physiologic role of lubricin is yet to be elucidated in the NP, it is likely to have substantial 

relevance, and is certainly worth future investigation.

An important study from Sakai et al. identified a population of progenitor cells within the 

NP compartment.77 The study observed that progenitor cells change expression of specific 

cell-surface markers sequentially from angiopoeitin-1 receptor (Tie2) positive, to 

disialoganglioside 2 (GD2) positive, to CD24 positive cells as they differentiate and lose 

proliferative capacity. Additionally, as reported earlier,78 NP cells at all stages of 

differentiation showed positivity for CD44, CD49f, CD56, CD73, CD90, CD105 and 

CD166, which is helpful for FACS applications. Importantly, although Tie2 positive 

progenitors were found in human discs, the number of Tie2 positive cells decreased with 

aging and degeneration. These markers will certainly have an impact on future regenerative 

strategies, since they help define and identify a specific precursor cell subpopulation within 

the NP.

This discussion would not be complete unless we consider the potential change in NP cell 

phenotype with age. Long has it been known that degeneration of the NP seen with aging is 

associated with a shift in balance from anabolism to catabolism, including decreased 

production of aggrecan and collagen II, increased production of several MMP and 

ADAMTS enzymes, and increased cytokine production.53,79–82 For tissue engineering and 

regenerative strategies, it is therefore important to achieve a young healthy NP cell 

phenotype, rather than an aged, degenerated phenotype, to allow for the optimal outcome. 

Recently, groups have focused on unbiased approaches to better understand the changes in 

gene expression seen with aging. Tang et al.83 demonstrated an increase in expression with 

age of BASP1 in rat NP, confirming its NP cell-specific expression as previously reported,39 

as well as an increase in neurochondrin and CD155. Interestingly, the authors saw no 

difference in T expression between aged and immature rat NP cells. The authors additionally 

identified NP-cell specific markers neuropilin-1 and CD221 through their microarray 

analysis.

Very recent studies have used bioinformatics approaches to identify specific gene networks 

that change with aging. It was noted that differentially expressed genes with aging and 

degeneration are associated with membrane-bound vesicles, calcium-ion binding,84 MAPK 

and Rho families,85 and TGF-β and extracellular matrix networks, particularly focused 

around MMP2.86 While important for understanding the pathogenesis of degeneration, the 

usefulness of such studies in this discussion is limited due to the lack of NP-cell specificity 

of these proteins.

CONCLUSIONS

The current literature evaluates the NP cell phenotype using several techniques and a variety 

of species in development and aging in order to provide primary phenotypic markers (Table 
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1) with greater consensus and secondary phenotypic markers (Table 2) that have been less 

well validated. Until we validate more proposed targets at the protein level or employ more 

large-scale proteomics approaches, we must rely on proposed markers with physiologic 

importance that have not only been investigated through gene expression studies but also 

validated at the protein level using multiple methods. We therefore suggest that markers 

including stabilized expression of HIF-1α, GLUT-1, aggrecan/collagen II ratio >20, Shh, 

Brachyury, KRT18/19, carbonic anhydrase XII, and CD24 should be used to characterize 

and define the phenotype of the healthy NP cell. These markers are not an exhaustive list but 

are characteristic of and relevant to healthy NP cells. By focusing on these cellular markers 

as a starting point when attempting to repair a degenerate or aged NP, we can better hone 

therapeutic strategies to successfully develop and restore a healthy NP phenotype. Although 

few recent studies have used a collection of some of these markers to assess differentiation 

potential of iPSCs87,88 and MSCs89,90 into an NP-cell phenotype, due to the lack of a clear 

phenotypic definition of NP cells, some studies still focus only on expression of collagen II, 

aggrecan, and Sox9.91,92 While some studies have reported promising results, it is still 

unclear, given the unique notochordal origin of NP cells, whether mesoderm-derived MSCs 

will be fully capable of differentiating in the NP cell lineage. Furthermore, it is only after 

rigorous testing of these therapeutic strategies that we will better understand which 

phenotypic markers are sufficient for healthy NP function. Therefore, the phenotypic 

definition of NP markers presented here can help serve as an initial guideline to assess the 

success of MSC-driven cell therapies. We hope that a consensus among the research 

community for use of the above markers to characterize the NP cell phenotype will help 

drive NP cell research into the future.
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Figure 1. 
Morphology of large notochordal cells (NCs) versus small nucleus pulposus cells (SNPCs) 

from organ cultured porcine discs (A). Control group and (B) Pressurization group. Black 

arrows, NCs; blue arrows, SNPCs. A large NC was defined as nuclei in direct contact and 

surrounded by large vacuoles, and an SNPC was defined as nuclei surrounded by matrix 

with no contact with vacuoles. V, vacuoles (green arrows). Scale bar = 50 μm. Image 

licensed under Creative Commons Attribution License 4.0 and reproduced with permission 

from Purmessur D, et al. 2013. Dynamic pressurization induces transition of notochordal 

cells to a mature phenotype while retaining production of important patterning ligands from 

development. Arthritis Res. Ther. 15:R122.
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Figure 2. 
Lineage study in control and mutant IVDs. A, B. Detection of fluorescence in frozen 

sections of NP isolated from E15.5 (A) and 1 month (B) HIF-1αf/f (a,e,i), HIF-1αf/f;mTmG 

(b,f,j), Foxa2iCre;HIF-1αf/+;mTmG (c,g,k) and Foxa2iCre;HIF-1αf/f;mTmG (d,h,l) mice, 

respectively. Red fluorescence (a–d), green fluorescence (e–h) and merged filters (i–l) are 

shown. Red signal is membrane-bound tdtomato fluorescent protein indicating cells in 

which recombination has not occurred. Green signal is membrane-bound EGFP indicating 

cells in which Cre mediated recombination has occurred. Bar = 100 μm. Image reproduced 

with permission from Merceron C, et al. 2014. Loss of HIF-1α in the Notochord Results in 

Cell Death and Complete Disappearance of the Nucleus Pulposus. PLoS One. 9:e110768.
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Table 1

Proposed Primary Markersa of Young Healthy NP Cells and Their Relevance to NP Cell Physiology

Identified NP phenotypic 
marker Relevance to NP physiology Species Method

Stabilized HIF-1/2α Transactivate many pro-survival genes 
in NP; absolutely necessary for post-
natal NP cell survival

Human, mouse rat, sheep21,22,27 Western blot, IF, IHC, qPCR

GLUT-1 Glucose transporter expressed in 
hypoxic tissues; expression controlled 
by HIF-1

Human, rat28,31 Western blot, qPCR, IHC

Shh Signaling ligand necessary for post-
natal function of NP cells

Human, mouse36–38 Western blot, IF, in situ 
hybridization

Brachyury (T) Transcription factor necessary for 
notochordal morphogenesis and 
patterning

Human, mouse, dog, 
bovine16,39–41

Western blot, IHC, in situ 
hybridization, microarray, 
qPCR, flow cytometry

Aggrecan /collagen II ratio >20 High PG content maintains hydration 
to resist loads

Human, many others53,54 DMMB/DMAB, qPCR, 
Western blot, IHC

Carbonic anhydrase 3/12 Acid-base balance Human, mouse67,68,70 Microarray, qPCR, IHC, 
Western blot

Microarray studies

 CD24 Unknown Human, rat, mouse63,77,78 Microarray, flow cytometry, 
IHC, qPCR

 Cytokeratins 8, 18, and 19 Cellular structural integrity and 
possibly signaling

Human, rat, bovine, dog39,46,64 Microarray, IHC

a
Primary markers were chosen based on criteria including: (i) specific expression in young healthy NP cells, (ii) requirement for proper NP cell 

function and relevance to NP cell physiology, and (iii) mRNA and protein expression validated across different species.
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Table 2

Proposed Secondary Markersa of Young Healthy NP and NP Progenitor Cells and Their Relevance to NP Cell 

Physiology

Identified NP phenotypic marker Relevance to NP physiology Species Method

Integrins α3, α6, β4 Cell-matrix adhesion Human, porcine55,56 Flow cytometry, IHC

Microarray and proteomics studies

 Annexin A3 Unknown Rat46 Microarray

 Glypican 3 Rat46 Microarray

 α2-macroglobulin Human, dog47,64 Microarray

 Desmocollin-2 Dog64 Microarray, IHC

 CD56 Dog, mouse64,77 Microarray, flow cytometry, IHC

 SNAP25 Bovine, human39 Microarray, qPCR

 CDH2 Bovine, human39 Microarray, qPCR

 BASP1 Bovine, rat39,83 Microarray

 SOSTDC1 Bovine39 Microarray

 PAX1 Human67,71 Microarray, qPCR

 FOXF1 Human67,71 Microarray, qPCR

 Hemoglobin β-chain Human67 Microarray

 Ovostatin Human67 Microarray

 Neurochondrin Rat79 Microarray, qPCR, IHC

 Neuropilin-1 Rat79 Microarray, IHC

 CD155 Rat79 Microarray

 CD221 Rat79 Microarray, IHC

 Lubricin (PRG4) Human73,74 IHC, LC-MS/MS

Progenitor markers

 Tie2 Receptor for angiopoietin-1; drives 
proliferation of progenitor cells

Human, mouse77 IF, flow cytometry

 GD2 Unknown Human, mouse77 IF, flow cytometry

a
Secondary markers were identified in the literature but less well validated for young healthy NP cells than primary markers.
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