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Abstract

Wood decay mechanisms in Agaricomycotina have been traditionally separated in two categories 

termed white and brown rot. Recently the accuracy of such a dichotomy has been questioned. 

Here, we present the genome sequences of the white rot fungus Cylindrobasidium torrendii and 

the brown rot fungus Fistulina hepatica both members of Agaricales, combining comparative 

genomics and wood decay experiments. Cylindrobasidium torrendii is closely related to the white-

rot root pathogen Armillaria mellea, while F. hepatica is related to Schizophyllum commune, 

which has been reported to cause white rot. Our results suggest that C. torrendii and S. commune 

are intermediate between white-rot and brown-rot fungi, but at the same time they show 

characteristics of decay that resembles soft rot. Both species cause weak wood decay and degrade 

all wood components but leave the middle lamella intact. Their gene content related to lignin 

degradation is reduced, similar to brown-rot fungi, but both have maintained a rich array of genes 
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related to carbohydrate degradation, similar to white-rot fungi. These characteristics appear to 

have evolved from white-rot ancestors with stronger ligninolytic ability. Fistulina hepatica shows 

characteristics of brown rot both in terms of wood decay genes found in its genome and the decay 

that it causes. However, genes related to cellulose degradation are still present, which is a 

plesiomorphic characteristic shared with its white-rot ancestors. Four wood degradation-related 

genes, homologs of which are frequently lost in brown-rot fungi, show signs of pseudogenization 

in the genome of F. hepatica. These results suggest that transition towards a brown rot lifestyle 

could be an ongoing process in F. hepatica. Our results reinforce the idea that wood decay 

mechanisms are more diverse than initially thought and that the dichotomous separation of wood 

decay mechanisms in Agaricomycotina into white rot and brown rot should be revisited.
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1. Introduction

The plant cell wall (PCW) is a significant carbon pool in terrestrial ecosystems (Albersheim 

et al., 2011). Saprotrophic Agaricomycotina exploit this pool as a carbon and energy source, 

acting as wood or litter decomposers. Wood decomposers follow different strategies of 

decomposition termed white and brown rot. White-rot fungi cause the degradation of all 

wood components including the recalcitrant lignin and crystalline cellulose mainly through 

enzymatic processes (Kersten & Cullen, 2007; Baldrian & Valaskova, 2008). In contrast, 

brown-rot fungi cause complete degradation of polysaccharides, but only partial degradation 

of lignin (Blanchette, 1995; Worrall et al, 1997; Niemenmaa et al., 2007; Yelle et al., 2008).

Enzymes implicated in lignin degradation by white-rot fungi include Class II peroxidases 

(POD), dye-decolorizing peroxidases (DyP) and laccases sensu stricto (Cullen & Kersten, 

2004; Martinez et al., 2005; Bourbonnais et al., 1995; Eggert et al., 1996; Eggert et al., 

1997; Gronqvist et al., 2005; Liers et al., 2010). Enzymes involved in the degradation of 

crystalline cellulose by white-rot fungi include mainly cellobiohydrolases (glycoside 

hydrolases GH6 & GH7) and lytic polysaccharide monooxygenases (LPMO) (Harris et al., 

2010). In addition to those enzymes, white-rot fungi employ diverse sets of other 

carbohydrate active enzymes (CAZY) involved in the degradation of the PCW (Kirk & 

Cullen, 1998). In brown-rot fungi, polysaccharide degradation takes place through non-

enzymatic processes, at least during the initial stages of degradation. Hydroxyl radicals 

generated through the Fenton reaction have been suggested to be the major agent in non-

enzymatic degradation of polysaccharides by brown-rot species (Kirk & Highley, 1973; 

Illman, 1991).

Recent genome investigations (Martinez et al., 2004; Martinez et al., 2009; Eastwood et al., 

2011; Floudas et al., 2012) revealed that white-rot species are enriched in genes related to 

the degradation of lignin (POD, DyP, laccases s.s.), crystalline cellulose (GH6, GH7, 

LPMO) and other carbohydrates (GH43, GH74). Furthermore, white-rot species are rich in 

copies of the cellulose-binding module 1 (CBM1), which facilitates attachment of enzymes 

to crystalline cellulose (Boraston et al., 2004). In contrast, brown-rot fungi appear to have 
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few or no gene copies in these families and CBM1. It has been suggested that the role of 

hydroxyl radicals in carbohydrate degradation renders extensive enzymatic lignin and 

carbohydrate degradation redundant (Worrall et al., 1997). Thus, gene losses accompanied 

the transitions from a white-rot to a brown-rot lifestyle. Less is known regarding such 

processes in litter decomposers, but it has been suggested that the latter group causes mostly 

white rot (Osono, 2007).

The separation of lignicolous Agaricomycotina into white-rot and brown-rot categories 

could be an oversimplification. Species that do not seem to follow typical brown-rot or 

white-rot strategies have been noted, for example in the Boletales. Even though the order 

includes saprotrophic brown-rot species, species of Coniophora and Serpula appear to be 

able to degrade cellulose in a similar manner to white-rot species (Redhead & Ginns 1985; 

Nilsson, 1974; Nilsson and Ginns, 1979). In addition, Schizophyllum commune (Agaricales) 

(Ohm et al., 2010), Jaapia argillacea (Jaapiales) and Botryobasidium botryosum 

(Cantharellales) (Riley et al., 2014) have reduced numbers of POD, DyP and laccases s.s., 

similar to brown-rot species, but they are enriched in genes related to the degradation of the 

PCW carbohydrates, including enzymes involved in the degradation of crystalline cellulose, 

similar to white-rot species. Schizophyllum commune and B. botryosum have been associated 

with white rot, but the former species appears to cause only weak wood degradation (Ginns 

& Lefebvre, 1993; Schmidt & Liese, 1980).

Most studies on wood decay mechanisms have focused on model species such as Rhodonia 

placenta (Postia placenta, Polyporales), Phanerochaete chrysosporium (Polyporales) and 

Gloeophyllum trabeum (Gloeophyllales). Less attention has been given to members of 

Agaricales, except for the genus Pleurotus, which has been mainly studied for its 

ligninolytic potential (Cerniglia, 1997; Pointing, 2001; Ruiz-Duenas et al., 2007; Faraco et 

al., 2007).

The Agaricales is a diverse order with more than 13,000 described species (Kirk et al., 2008) 

that manifest diverse lifestyles, including biotrophs and saprotrophs (Matheny et al., 2006). 

Saprotrophic Agaricales comprise litter decomposing, coprophilous, humicolous, and 

lignicolous species. The latter group is mostly associated with white rot (Kaarik, 1965; 

Worrall et al., 1997). Brown rot is a rare nutritional strategy in Agaricales, associated with 

the small genera Fistulina, Ossicaulis, and Hypsizygus (Redhead & Ginns, 1985). Ossicaulis 

and Hypsizygus are members of Lyophylleae and they seem to be closely related (Moncalvo 

et al., 2002), but Fistulina is an isolated brown-rot genus closely related to Schizophyllum, 

and the little-known Auriculariopsis and Porodisculus (Ginns, 1997; Binder et al., 2004). 

Until recently, sequenced genomes of Agaricales species related to PCW degradation 

included only the cacao pathogen Moniliophthora perniciosa (Mondego et al., 2008), the 

litter decomposer Coprinopsis cinerea (Stajich et al., 2010) and the lignicolous S. commune 

(Ohm et al., 2010). This picture has been changing with an increasing number of sequenced 

Agaricales genomes (Morin et al., 2012; Wawrzyn et al., 2012; Bao et al., 2013; Aylward et 

al., 2013; Collins et al., 2013; Hess et al., 2014).

Here, we report the newly sequenced draft genomes of the “beefsteak fungus” Fistulina 

hepatica and Cylindrobasidium torrendii. Both species are members of the Agaricales, but 

Floudas et al. Page 3

Fungal Genet Biol. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the former species causes brown rot on hardwood (Schwarze et al., 2000a), while the latter 

species is associated with white rot most frequently on hardwood (Ginns & Lefebvre, 1993). 

We compare the wood degradation strategies of each species with those of other wood-

degrading fungi and we explore the evolution of plant cell-wall degradation strategies in 

Agaricales based on gene tree/species tree reconciliation analyses.

2. Materials and Methods

2.1 Strain info and nucleic acid extraction

We sequenced the single spore isolates of F. hepatica (ATCC 64428, isolated from a 

sporophore growing on a Castanea dentata rootstock, North Carolina) and C. torrendii 

(HHB-15055, ss-10, isolated from an Acer rubrum log, WI, USA, deposited at the Forest 

Products Laboratory culture collection).

RNA was isolated from F. hepatica by the incubation of liquid nitrogen-ground mycelia 

from YM agar plates in a CTAB-SDS extraction buffer at 65°C, with sequential LiCl and Na 

acetate precipitations, DNAase treatment, and a phenol-chloroform extraction. DNA from F. 

hepatica was isolated from similarly pulverized tissue pretreated with methanol+1% β-

mercaptoethanol and lyophilized. The tissue was slurried in TES buffer, incubated with 

proteinase K, and then heated with a high salt - 0.9% CTAB buffer at 65 °C. The mixture 

was extracted with phenol/chloroform/isoamyl alcohol, and centrifuged to remove the 

organic soluble components and debris. Nucleic acids were precipitated with ammonium 

acetate and then, following an RNase A treatment, DNA was pelleted with isopropanol. 

High-quality genomic DNA was isolated by passage through Qiagen genomic DNA 

columns.

Culturing of C. torrendii was done in 0.25 l liquid media of malt extract (20 g/l) and yeast 

extract (0.5 g/l) at 30 C in darkness. Harvested mycelium was filtered, washed and 

immediately stored at −80 C until the time of DNA or RNA extraction. Genomic DNA 

extraction from liquid cultures of C. torrendii was done using Qiagen 500/G tips and 

following the lysis protocol for tissue in the Qiagen Blood & Cell Culture DNA Kit. RNA 

extractions were done using the Qiagen RNeasy Midi Kit. The protocol for animal tissue 

(Qiagen) was followed for isolation of total RNA including on-column DNase digestion.

2.2 Genome and transcriptome sequencing

General aspects of library construction and sequencing can be found at the JGI website 

http://www.jgi.doe.gov/. The genome of F. hepatica was sequenced using two constructed 

libraries. A 4 kb library was made from LFPE (ligation-free paired end) mate pair fragments 

generated using the 5500 SOLiD Mate-Paired Library Construction Kit (SOLiD®). 15μg of 

genomic DNA was sheared using the Covaris g-TUBE™ (Covaris), and gel size was 

selected for 4kb. The sheared DNA was end-repaired, and ligated with biotinylated internal 

linkers. The DNA was circularized using intra-molecular hybridization of the internal 

linkers. The circularized DNA was then treated with Plasmid-Safe (Epicentre) to remove 

non-circularized products, and nick-translated and treated with T7 exonuclease and S1 

nuclease to yield fragments containing internal linkers with genomic tags on each end. The 

mate pair fragments were A-tailed and purified using Streptavidin bead selection 
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(Invitrogen). The purified fragments were ligated with Illumina adaptors and amplified 

using 10 cycles of PCR with Illumina primers (Illumina) to generate the final library. qPCR 

was used to determine the concentration of the libraries and were sequenced on the Illumina 

Hiseq.

A 270 bp library was prepared by shearing 1 μg of DNA using the Covaris E210 (Covaris), 

and size-selected using SPRI beads (Beckman Coulter). The fragments were treated with 

end-repair, A- tailing, and ligation of Illumina-compatible adapters (IDT, Inc.) using the 

KAPA-Illumina library creation kit (KAPA biosystems). qPCR was used to determine the 

concentration of the libraries to be sequenced on the Illumina Hiseq.

The 4 kb and 270 bp libraries of F. hepatica genomic DNA were then sequenced using the 

Illumina HiSeq platform. An additional sequencing run using PacBio v2 chemistry, 3 kb, 42 

SMRT cells provided an additional 1610382 post-filtered reads for H. hepatica.

The genome of C. torrendii was sequenced from a 270 bp fragments library following the 

same methodology used for the construction of the 270 bp library for F. hepatica.

The transcriptome libraries of both organisms were prepared by purifying 2 μg (5 μg for C. 

torrendii) of total RNA using Dynabeads® mRNA Purification Kit (Invitrogen) and 

chemically fragmented to 200–250 bp (Ambion). mRNA was reverse transcribed with 

SuperScript II using random hexamers. Second Strand cDNA was synthesized using dNTP/

dUTP mix (Thermo Scientific), E. coli DNA Ligase, E. coli DNA polymerase I, and E coli 

RnaseH (Invitrogen). The fragmented cDNA was treated with end-pair, A-tailing, adapter 

ligation using the TruSeq Sample Preparation Kit (Illumina). Second strand cDNA was 

removed by AmpErase UNG (Applied Biosystems) to generate strandedness. qPCR was 

used to determine the concentration of the unamplified libraries. Libraries were sequenced 

on the Illumina Hiseq.

2.3 Genome assembly and annotation

The F. hepatica genome was assembled with AllPathsLG release version R42328 (Gnerre et 

al., 2011). PBJelly (English et al., 2012), was then used to fill and reduce gaps by aligning 

PacBio data to draft assemblies. This resulted in a 137.9 X coverage assembly with 588 

scaffolds.

The C. torrendii genome was initially assembled with Velvet (Zerbino, 2010). The resulting 

assembly was used to create a long mate pair library with insert 3 kb +/− 300 bp, which was 

then assembled with the original Illumina reads with AllPathsLG release version R42328. 

This resulted in a 134.3 X coverage assembly with 1149 scaffolds. Additional statistics on 

both genome assemblies are given in Table S1.

Transcriptome reads for both organisms were assembled into contigs with Rnnotator (Martin 

et al., 2010) and mapped to genome contigs using BLAT (Kent, 2002). Table S2 

summarizes the transcriptome data, and mapping to the genome, for each organism.

Both genomes were annotated using the JGI annotation pipeline (Grigoriev et al., 2006), 

which combines several gene prediction and functional annotation methods with 

Floudas et al. Page 5

Fungal Genet Biol. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



transcriptome data and integrates the result in Mycocosm (Grigoriev et al., 2014), a web-

based resource for fungal comparative genomics. Before gene prediction, assembly scaffolds 

were masked using RepeatMasker (http://www.repeatmasker.org), RepBase library (Jurka et 

al., 2005), and frequent (>150 times) repeats were recognized by RepeatScout (Price et el., 

2005). The following combination of gene predictors was run on the masked assembly: ab 

initio Fgenesh (Salamov & Solovyev, 2000) and GeneMark (Ter-Hovhannisyan et al, 2008), 

homology-based Fgenesh+ (Salamov & Solovyev, 2000) and Genewise (Birney & Durbin, 

2000) seeded by BLASTx (Altschul et al., 1990) alignments against NCBI NR database 

(http://www.ncbi.nlm.nih.gov), and, in the case of C. torrendii, transcriptome-based 

assemblies. Transcriptome data for F. hepatica, were not used for gene prediction. In 

addition to protein coding genes for both genomes, tRNAs were predicted using tRNAscan-

SE (Lowe & Eddy, 1997). All predicted proteins were functionally annotated using SignalP 

(Nielsen et al., 1997) for signal sequences; TMHMM (Melen et al., 2003) for 

transmembrane domains; InterProScan (Quevillon et al., 2005) for integrated collection of 

functional and structure protein domains; and protein alignments to the NCBI nr, SwissProt 

(http://www.expasy.org/sprot/), KEGG (Kanehisa et al., 2006), and KOG (Koonin et al., 

2004) databases. Interpro and SwissProt hits were used to map gene ontology (GO) terms 

(Ashburner et al., 2000). For each genomic locus, the best representative gene model was 

selected based on a combination of protein homology and (in the case of C. torrendii) EST 

support, which resulted in the final sets of genes analyzed in this work. Table S3 

summarizes, for both organisms, the predicted gene sets and support metrics.

2.4 Clustering

For comparative purposes we clustered the predicted protein sequences from F. hepatica and 

C. torrendii with the predicted proteins from eleven additional genomes of saprotrophic 

Agaricales and one species of Amylocorticiales (Plicaturopsis crispa, Binder et al., 2010), 

which served as an outgroup. The clustering was done using the MCL clustering algorithm 

(Enright et al., 2002) and an inflation parameter of 2.0. Genome sampling included the 

genomes of Agaricus bisporus var. bisporus (H97) v 2.0 (Agabi), Amanita thiersii Skay4041 

v 1.0 (Amath), Armillaria mellea (Armme), C. cinerea (Copci), Galerina marginata v 1.0 

(Galma), Gymnopus luxurians v 1.0 (Gymlu), Hypholoma sublateritium v 1.0 (Hypsu), 

Omphalotus olearius (Ompol), Pleurotus ostreatus PC15 v 2.0 (Pleos), P. crispa v 1.0 

(Plicr), S. commune v 2.0 (Schco), and Volvariella volvacea (Volvo) (Ohm et al., 2010; 

Stajich et al., 2010; Morin et al., 2012; Wawrzyn et al., 2012; Bao et al., 2013; Collins et al., 

2013; Riley et al. 2014; Hess et al., 2014; Kohler et al., unpublished data). The 390,268 

protein sequences from these organisms were grouped into 32,532 clusters. The results can 

be browsed at http://genome.jgi.doe.gov/clustering/pages/cluster/clusters.jsf?runId=2610.

2.5 Data assembly of single copy genes and wood-degrading enzymes

We selected twenty-six single-copy genes from a subset of a larger dataset of 71 genes that 

we have previously used (Floudas et al., 2012) for organismal phylogenetics. We assembled 

each of the 26 gene datasets by identifying its cluster in the cluster run mentioned in section 

2.3 (Table S4). Four of the identified clusters included distantly related paralogs that we 

separated based on phylogenetic analyses. We also removed the paralogs from potential 

recent gene duplications in four genes. Two genes were not present in the gene catalog and 
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we retrieved them by performing blastp searches on all predicted models. We replaced 

fragmented models by complete ones, when this was possible (Table S4).

We also assembled datasets for 33 gene families thought to be involved in various ways in 

PCW degradation across the 14 genomes, using the same cluster run (Table 1). The 

oxidative enzymes dataset consists of six gene families (Table 1), four of which are related 

to degradation of lignin or lignin-like compounds by white-rot fungi (Cullen & Kersten, 

2004; Martinez et al., 2005; Bourbonnais et al., 1995; Eggert et al., 1996; Eggert et al., 

1997; Gronqvist et al., 2005; Liers et al., 2010; Hofrichter & Ullrich, 2006, Gutierrez et al., 

2011). The other two families include copper radical oxidases (CRO) and cellobiose 

dehydrogenases (CDH), which are involved in production of hydrogen peroxide and 

hydroxyl radicals respectively (Cullen & Kersten, 2004; Henriksson et al., 2000). Hydrogen 

peroxide or hydroxyl radical production is accomplished through various pathways in 

Agaricomycetes (Cullen & Kersten, 2004; Daniel et al., 1994; Guillen et al., 1994; Volc et 

al, 1996; Daniel et al., 2007, Arantes et al., 2012). However, we included here only datasets 

for CRO and CDH, which appear to be differentially maintained between white-rot and 

brown-rot fungi (Floudas et al., 2012). The other twenty-seven gene families are separated 

into bulk carbohydrate active enzymes (CAZY) and accessory CAZY (De Vries et al., 2010) 

and show diverse catalytic activity on carbohydrates (Table 1).

Each dataset was assembled using the JGI cluster run mentioned above, and the use of 

InterPro and PFAM domains (Table S5). We also identified the CBM1-containing gene 

copies by searching for the corresponding PFAM domain PF00734 (Table 2). We used 

proteins annotated by CAZYbase (Lombard et al., 2014, Kohler et al., unpublished data) to 

identify gene families without a specific PFAM or InterPro domain, and to verify the 

recovered gene numbers for all annotated genomes. For a subset of 15 gene families and the 

CBM1, we obtained data from 18 additional Agaricomycotina genomes from previous 

studies (Floudas et al., 2012; Riley et al., 2014). We replaced low quality models by 

improved ones found on the genome browser of each genome or otherwise we excluded 

them from the datasets (Table S6). We subclassified MCO and CRO based on characterized 

sequences and preliminary phylogenetic analyses (Table S7). We also subclassified POD 

into manganese peroxidases (MnP), versatile peroxidases (VP), lignin peroxidases (LiP), 

generic peroxidases (GP) and also the atypical MnP and VP (Table S7), based on the 

completeness of the manganese binding site and the presence of the long range electron 

transfer tryptophan, as we have previously done (Floudas et al., 2012). Finally, we separated 

the MnP into the short and long/extra long types based on preliminary phylogenetic analyses 

(data not shown) with other previously characterized sequences (Floudas et al., 2012).

2.6 Alignments and phylogenetics

We aligned all the datasets using the online version of PRANK (http://www.ebi.ac.uk/

goldman-srv/webprank/) with the default settings (Löytynoja & Goldman, 2010). We 

removed poorly aligned areas of the alignments for each of the 26 datasets for the 

organismal phylogeny using Gblocks v. 0.91b (http://molevol.cmima.csic.es/castresana/

Gblocks_server.html) with less stringent settings (Castresana, 2000). We manually 

examined and removed poorly aligned areas of the alignments of wood-degrading enzymes 
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datasets using MacClade v.4.08 (Maddison and Maddison 2002). Maximum likelihood (ML) 

analyses were performed for each alignment using RAxML v. 7.6.6 (Stamatakis et al., 2008) 

under the GTR model with CAT distributed rate heterogeneity and the WAG substitution 

matrix with 500 rapid bootstrap replicates (200 replicates for ML analyses of wood 

degradation enzymes datasets). Bayesian analyses were performed using MrBayes 3.2.2 

(Ronquist et al., 2012) for seven million generations, with four chains and sampling every 

1000 generations. The burn-in proportion was set to 0.25, which was found to be adequate 

after examining the likelihood scores using Tracer v1.5 (http://tree.bio.ed.ac.uk/software/

tracer/). All phylogenetic analyses were performed at Cipres (Miller et al., 2010; http://

www.phylo.org/index.php/portal/).

2.7 Species tree/Gene tree reconciliation

We estimated the number of gene copies for each gene family related to wood degradation at 

the ancestral nodes of the organismal phylogeny using Notung (Durand et al., 2006). 

Midpoint rooting was used to root gene trees prior to reconciliation. Reconciliation analyses 

were performed using the default cost of duplications and losses and the edge weight 

threshold was set to 90.

2.8 Wood decay experiments

Studies used to determine wood decay mechanisms by Cylindrobasidium torrendii, Fistulina 

hepatica or Schizophyllum commune were set up using 10 × 10 × 1 mm wood wafers of 

aspen (Populus sp.). Fifteen wafers were used for each isolate and each time point. 

Following determination of oven dry weight, wafers were hydrated to 80–100% and 

sterilized in an autoclave for 60 minutes at 120°C. Wafers were then placed on mycelium 

growing on 2% malt yeast extract agar (15 g malt extract, 2 g yeast extract, 15 g agar, 1000 

ml water). After 45 and 90 days, 12 wafers were removed and dried to determine mass loss 

and 3 wafers were frozen at −20° C for microscopy. Micromorphological characteristics 

were described using scanning electron microscopy methods as previously described 

(Blanchette et al. 2010). Samples were examined and photographed using a Hitachi S3500 N 

(Hitachi, Tokyo, Japan) scanning electron microscope.

3. Results

3.1 Gene copies of wood-degrading enzymes in Agaricales and P. crispa

We collected in total 1997 protein models from 14 genomes, which can be separated into 

429 oxidative enzymes, 731 bulk CAZYs, and 837 accessory CAZYs (Table 2). Fistulina 

hepatica has 74 copies across only 22 gene families, which is the smallest number of copies 

seen in the Agaricales, while C. torrendii has 144 copies across 29 gene families, which is 

close to the average number of copies across the 14 genomes. Fistulina hepatica and C. 

torrendii are the only species of the 14 genomes dataset that lack a CBM1.

The POD, MCO and CRO were subclassified recognizing 6 categories of genes for POD and 

5 categories for both MCO and CRO (Table S7). PODs represent mostly different types of 

manganese peroxidases (MnP), while 7 genes were fragments and could not be assigned to 

any type. MCO are dominated by laccases s.s. (LAC s.s.), while other types of MCOs such 
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as laccase-like genes (LAC-like), L-ascorbate oxidases, and melanin synthesis related genes 

(MS) are found only in marasmioid species. Glyoxal oxidase (GLX) is the only category of 

CRO that has scattered representation in our dataset. We reconciled laccases s.s and GLX 

within the MCO and CRO respectively. The reason for that choice was based on the role of 

these subsets of enzymes during wood degradation (Kersten & Kirk, 1987; Kües & Rühl, 

2011). Laccase-like enzymes appear to play a similar role to laccases s.s. for some species 

(Rodriguez-Rincon et al., 2010) but they were excluded from reconciliation because of their 

scarce presence in the dataset.

3.2 Organismal phylogeny and reconciliation results using Notung

We performed gene tree/species tree reconciliation analyses using the species tree we 

generated based on the dataset of 26 single copy genes (Table S4). The final concatenated 

alignment included 21167 amino acid characters after exclusion of the poorly aligned 

regions. The resulting phylogenetic trees from ML and Bayesian analyses have identical, 

fully resolved topology (Fig. 1). Our results largely agree with a previous study in 

Agaricales based on five genes (Matheny et al., 2006). Fistulina hepatica is closely related 

to S. commune, as has been shown before (Matheny et al., 2006; Binder et al., 2004), while 

C. torrendii appears to be related to the white-rot A. mellea. Both F. hepatica and C. 

torrendii belong in the Marasmioid clade, which includes here six species.

The common ancestor of Agaricales is estimated to have had 21 copies of oxidative 

enzymes (Fig. 2a). Seven of these copies represent PODs (Fig. S1). The ancestor is also 

suggested to have had a rich repertoire of CAZY (61 bulk and 73 accessory enzymes, Fig. 

2b and 2c). Among the largest CAZY families suggested to have been present are the 

LPMO, GH28, and GH43 (Fig. S2a and S3a), while 3 and 2 copies of GH6 and GH7 were 

present respectively (Fig. S2a). In comparison to the ancestor of Agaricales, both F. 

hepatica and C. torrendii have reductions for oxidative enzymes (Fig. 2). These reductions 

are mainly related to POD and DyP (Fig. S1). Fistulina hepatica has additional reductions 

for bulk and accessory CAZY (Figs. 2b, 2c) especially related to LPMOs and GH43 genes 

(Figs. S2, S3a, S5, S6), while C. torrendii has maintained CAZY copy numbers similar to 

the Agaricales ancestor (Fig. 2b and 2c).

3.3 Comparison of Agaricales with brown-rot and white-rot species from other orders

To place the PCW degradation machineries of the 13 Agaricales genomes in a broader 

context we compared them with 18 genomes from 11 orders across Agaricomycotina. Eight 

of the genomes belong to white-rot species, while eight genomes represent brown-rot 

species from 4 independently evolved brown-rot lineages. We focused on the CBM1 and a 

subset of 15 families of the 33 gene-families dataset (Fig. 3). White-rot species possess 46 to 

118 gene copies in eleven to fifteen gene families. At the same time, brown-rot species 

possess only 10 to 50 copies in four to twelve gene families (Fig. 3). The litter decomposers 

A. bisporus and A. thiersii are intermediate between white-rot and brown-rot species, while 

V. volvacea and C. cinerea have gene repertoires similar to typical white-rot species.
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3.4 Pseudogenization of genes related to wood degradation in F. hepatica

Four decay-related pseudogenes were detected in F. hepatica. Three are represented in the 

gene catalog by protein models Fishe 57906 (DyP), Fishe 73885 (GH74 xyloglucanase), and 

Fishe 71082 (GH5-7 endomannanase). The fourth pseudogene was identified during a 

manual search of all the predicted models for cellobiohydrolase GH6 genes using the 

identifier PF01341. One to two predicted protein models represent each one of the four loci 

(except for the GH6 locus, which is represented by 5 predicted protein models). All 

predicted models are either fused with an adjacent gene, which is a gene prediction artifact 

due to the incomplete reading frame of the gene, or represent fragments (Fig S4a–b). 

Additionally, the automated functional annotation for DyP and GH5-7 failed to recognize 

the expected domains IPR006314 and IPR001547, respectively. Phylogenetic analyses of all 

the predicted models from the four putative pseudogenes with homologs from other 

genomes that the F. hepatica genes are on long branches, suggesting accumulation of many 

amino acid changes on the predicted proteins (Figs. 4, S7a–S7c).

To assess whether the inferred pseudogenes could be artifacts resulting from poor assembly 

quality, we inspected alignments of the Illumina read data to the assembled consensus 

produced by AllPathsLG R42328 and called variant bases using SAMtools 1.19. Although 

the scaffolds harboring the pseudogenes contained varying numbers of SNPs (scaffold_92 

336 SNPs; scaffold_142 159 SNPs; scaffold_272 99 SNPs; scaffold_437 8 SNPs), none of 

these SNPs lay within the boundaries of any of the four proposed pseudogenes, suggesting 

that the genome assembly is of high quality in the relevant regions.

Additionally, we examined genes upstream and downstream of each of the four loci. We 

generated phylogenetic trees from the flanking genes and their homologs in the 13 other 

genomes. Seven of the 8 genes adjacent to the four potential pseudogenes on the genome of 

F. hepatica do not result in long branches (Figs. 4, S7a–S7c), suggesting good quality 

sequencing at these areas of the genome. Model Fishe1 43738 (upstream of xyloglucanase 

Fishe1 73885) is the only gene placed on a longer branch and it is coupled with model 

Schco2 1215620, which is also on a long branch (Fig. S7a). The fragmented predicted 

models of the four loci, combined with the good quality of the assembly of the genome in 

these areas and the good quality of the predicted models for adjacent genes suggest that the 

four loci represent pseudogenes. However, additional experimental data are needed to verify 

that the four loci represent pseudogenes.

3.5 Wood decay by F. hepatica, C. torrendii and S. commune

Wood colonized in the laboratory by Cylindrobasidium torrendii, Fistulina hepatica or 

Schizophyllum commune was examined using scanning electron microscopy. After 45 days 

of colonization, all three fungi did not cause appreciable decay alteration of the wood cell 

walls, but after 90 days evidence of cell wall attack was observed. The wood substrate had 

relatively small amounts of biomass lost corresponding to 17.8% 2.3% and 7.2% for C. 

torrendii, F. hepatica and S. commune, respectively, after 90 days.

Transverse sections of wood decayed by C. torrendii after 90 days, showed a pattern of cell 

wall attack that was typical for white rot fungi that cause a simultaneous degradation of all 
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cell wall components (Figs. 5A, 5B). In localized areas of the wood, fibers and vessels had 

eroded secondary cell walls. As the fungus removed the secondary wall, the middle lamella 

became weak, cells separated and voids in the wood cells were formed. This attack, 

however, was limited and occurred in some cells, while adjacent cells remained unaltered. 

Degradation by S. commune after 90 days, presented for comparison with C. torrendii, also 

appeared to be a white rot type of cell wall degradation (Figs. 5E, 5F). The secondary walls 

were eroded and thinned leaving the middle lamella intact in most cells. Some breakage of 

the residual middle lamella was evident in a few cells causing voids to be seen in the wood 

but in most cell walls the middle lamella remained in areas that were degraded (Fig. 5F).

Decay by F. hepatica was evident in wood cells near the surface of the wood wafers after 90 

days. Decay observed had an appearance of a typical brown rot with cell walls that 

displayed a diffuse attack resulting in slightly swollen secondary walls and a loss of cell wall 

integrity (Figs. 5C, 5D). The weakened fiber cell walls lost rigidity and assumed convoluted 

shapes.

4. Discussion

4.1 The common ancestor of Agaricales had similar types of wood decay genes with those 
seen in extant white-rot Agaricales species

The ancestor of Agaricales is estimated to have had genes from all 6 oxidative gene families 

examined here, including 7 POD and 3 DyP (Fig. S1), which is similar to white-rot species 

of Agaricales, even though the overall number of oxidative enzymes is lower than that of 

some extant white-rot Agaricales such as G. marginata or G. luxurians (Fig. 2). 

Additionally, the reconstructed 19 LPMOs, GH6 and GH7 cellobiohydrolases (Fig. S2a) and 

CDH (Fig. S1) suggests the presence of a rich system for utilization of crystalline cellulose 

and cellobiose. Taken together these results suggest that gene networks related to white-rot 

wood decay are plesiomorphic in Agaricales, as in the Agaricomycotina as a whole (Floudas 

et al., 2012).

4.2 Plant cell-wall decomposition similarities between litter decomposers and white-rot 
species

Litter decomposers in Agaricales (A. bisporus, A. thiersii, C. cinerea and V. volvacea) have 

maintained the plesiomorphic enzymatic degradation of cellulose and other large 

carbohydrates. This is shown by the presence of complete enzymatic systems for cellulose 

degradation (GH6, GH7, LPMO) and the diverse set of CAZYs involved in hemicellulose 

degradation (Table 1) similar to the Agaricales ancestor (Fig. 2b and 2c) and to white-rot 

species from other orders (Fig. 3).

The picture of lignin degradation is more complex among litter decomposers in Agaricales. 

Volvariella volvacea has a complete system of lignin-degrading enzymes including POD, 

DyP and laccases s.s. However, A. thiersii, A. bisporus and C. cinerea lack or have reduced 

numbers of POD or DyP, suggesting weaker ability for lignin degradation. The numbers of 

copies of shared oxidative gene families among litter decomposers show variation. 

Volvariella volvacea has 5 or 6 ligninolytic PODs (Table S7), but has only 3 HTPs, while A. 

bisporus has 24 HTPs, but only two PODs. Laccases s.s. are represented by abundant copies 
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in all litter decomposers, suggesting an important role in their lifestyle (Theuerl & Buscot, 

2010).

Lignin concentration increases from the upper towards the lower layers of the soil, but in 

addition its structure changes as result of decomposition (Osono, 2007; Osono et al., 2008). 

The differences in types and copy numbers of lignin degrading enzymes present in litter 

decomposers could be connected to the diverse microenvironments found in the soil that 

provide different forms and amounts of recalcitrant carbon.

The shared gene content for the enzymatic degradation of lignin, cellulose and other 

carbohydrates between litter decomposers and white-rot Agaricales suggests that transitions 

between the two nutritional strategies are possible across Agaricales. Volvariella volvacea is 

the litter decomposer in the dataset closest to white-rot species regarding its wood-degrading 

apparatus. In agreement with this observation, it has been suggested that the transition from 

a litter decomposing towards a lignicolous white-rot lifestyle has happened twice in the 

genus (Justo et al., 2010). Additionally, G. luxurians appears to be one of the richest in 

PCW-degrading enzymes of the white-rot species in this dataset and is nested within a clade 

that contains both white-rot species and litter decomposers (Mata et al., 2004; Arnolds, 

1995).

4.4 Cylindrobasidium torrendii and S. commune do not fit in the white-rot/brown-rot 
dichotomy

The wood-degrading apparatus of C. torrendii shows similarities to that of S. commune. 

Both species carry a complete set of enzymes for the enzymatic degradation of crystalline 

cellulose (GH6, GH7, LPMO), including large number of LPMO copies (Table 2, Fig. 3) 

and they have rich repertoires of other CAZY enzymes (Table 2, Fig. 3, Ohm et al., 2010). 

These characteristics may be plesiomorphic and indicate similarities of S. commune and C. 

torrendii with white-rot fungi and the common ancestor of Agaricales (Fig. 2). In spite of 

the rich CAZY content seen for both species, CBM1 copies are absent (C. torrendii) or very 

few are present (S. commune). In addition, both species have reduced ligninolytic gene 

content (Table 2). The reduced ligninolytic gene content for the two species shows 

similarities to brown-rot fungi (Fig. 3) and appears to be an apomorphic characteristic that 

has independently evolved in the two lineages from ancestors with more diverse repertoire 

of ligninolytic enzymes (Figs. 2, S1). The gene content of both species related to wood 

degradation places them in an intermediate position between white rot and brown rot 

species.

Microscopy, especially scanning electron microscopy, can provide a precise characterization 

for the type of decay present (Eriksson et al., 1990). The decay caused by C. torrendii and S. 

commune, appeared to be a simultaneous white rot causing degradation of all cell wall 

components. The secondary wall was attacked and the erosion of the wall progressed from 

the lumen toward the middle lamella. In some cells, the secondary wall had been completely 

degraded, but the middle lamella remained. The middle lamella between cells was detached 

or degraded in some areas. This may be due to a very localized attack that destroyed this 

region of the middle lamella or from the weakened condition of the thinned cell wall that 

remained. This caused small voids in the wood as cells separated. There appeared to be 
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limited effect on the middle lamellae as compared to results from other studies of 

degradation patterns produced by different species of white rot fungi. The overall pattern of 

decay appeared more similar to a Type II form of soft rot where in advanced stages of 

degradation entire secondary walls are completely degraded but the middle lamella is not 

(Eriksson et al. 1990). As has been found with other white rot fungi, the type and amount of 

lignin within cell walls can influence how white rot fungi can attack certain types of cells 

(Blanchette et al. 1988).

The ability of C. torrendii to decay wood has not been studied previously. More information 

is available for Cylindrobasidium laeve (syn. Corticium laeve), a closely related species to 

C. torrendii. Both C. laeve and S. commune have been grouped with brown-rot fungi in 

oxidative enzymes tests (Kaarik, 1965). However, both species of Cylindrobasidium and S. 

commune have been associated with white rot (Ginns & Lefebvre, 1993). Schizophyllum 

commune does not seem to cause extensive wood degradation (Schmidt & Liese, 1980), and 

it has been shown to have a preference for degrading ray parenchyma cells with other cells 

such as fibers and fiber tracheids being more resistant to attack (Padhiar and Albert 2011). 

Additionally, wood decay by Cylindrobasidium laeve (syn. Corticium laeve), was shown to 

resemble soft rot showing similarities to wood degradation caused by Fusarium 

(Henningsson, 1967). The idea of soft rot caused by basidiomycetes has been suggested 

more recently as well (Schwarze et al., 2000b).

The decay mechanisms of C. torrendii and S. commune resemble those of J. argillacea 

(Jaapiales) and B. botryosum (Cantharellales), which are described by Riley et al. (2014). 

All four species cause weak and localized wood decay that resembles white rot. At the same 

time they share the reduced ligninolytic gene content, typical of brown rot species, but have 

enriched CAZY gene content related to carbohydrate degradation, which is usually 

characteristic of white rot fungi.

The phylogenetic placement of the four species and the reconciliation results for Agaricales 

suggest that this mode of decay has evolved multiple times across Agaricomycotina from 

white-rot ancestors through losses of their lignin decay related genes. In agreement with 

their intermediate wood decay characteristics, S. commune and J. argillacea are placed in 

areas where transitions from white-rot to brown-rot could have taken place such as the 

lineage leading towards F. hepatica and the lineage leading towards the Gloeophyllales 

respectively (Fig. 1; Riley et al., 2014).

The reasons behind these intermediate characteristics and how they are related to the species 

biology are largely unknown. A possible explanation could be that some of these species act 

along with other wood degraders or they take advantage of the presence of efficient wood 

decayers at the same substrate. Fruitbodies of S. commune frequently appear with fruitbodies 

of other basidiomycetes on wood (Essig 1922, personal observations) and the species can act 

as destructive mycoparasite on other fungi (over 50 species) of different phyla (Tzean and 

Estey 1978). Alternatively, some of these species may act as plant parasites that rely 

selectively on living tissues of the plant stem such as the sap or the bark of living trees 

(Takemoto et al., 2010). Our results suggest that wood degradation strategies in 

Agaricomycotina as traditionally viewed should be revisited, as the potential exists that such 
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strategies could be more diverse than previously thought and highlight the need for more 

functional studies of wood degradation strategies (Ohm et al., 2014).

4.5 Fistulina hepatica and brown-rot Boletales still possesses complete or partial systems 
for the enzymatic degradation of crystalline cellulose

Our results confirm the placement of F. hepatica as an isolated brown-rot lineage in the 

Marasmioid clade (Fig. 1) related to S. commune (Binder et al., 2004; Binder et al., 2010). 

The wood-degrading apparatus of F. hepatica is reduced compared to those of other PCW 

decomposing Agaricales (Table 2). Fistulina hepatica has the smallest sets of oxidative 

enzymes and bulk CAZYs and among the smallest sets of accessory CAZYs. The types of 

enzymes missing largely agree with what has been shown for other brown-rot fungi (Fig. 3, 

Floudas et al., 2012; Martinez et al., 2009). The major similarities include the reduced 

enzymatic content related to lignin (POD, DyP, GLX) and bulk carbohydrates degradation 

such as crystalline cellulose (GH6, LPMO, CBM1).

Despite the overall similarity of the gene content related to wood degradation among brown-

rot fungi, differences exist. Sequenced species in Polyporales, Gloeophyllales and 

Dacrymycetales lack GH6 and GH7 cellobiohydrolases and they have few copies of 

LPMOs. This suggests that they largely lack the ability to enzymatically degrade crystalline 

cellulose, even though GH5 processive endoglucanases could degrade crystalline cellulose 

in some of those species (Cohen et al., 2005; Yoon et al., 2008). Therefore, these species 

represent typical brown rotters. However, F. hepatica and saprotrophic members of the 

Boletales harbor complete (H. pinastri and C. puteana) or partial (F. hepatica and S. 

lacrymans) sets of cellobiohydrolases, CDH, intermediate numbers of LPMO genes (except 

for S. lacrymans), and in the case of H. pinastri increased CBM1 copies. These results 

suggest that F. hepatica and members of the Boletales still possess genes related to the 

degradation of cellulose, similar to the white-rot fungi from which brown-rot fungi have 

been suggested to have evolved (Floudas et al., 2012).

The ability of members of Boletales to degrade cellulose has been shown before (Nilsson, 

1974; Nilsson and Ginns, 1979; Schmidhalter & Canevascini, 1993), while some Boletales 

have been shown to produce weaker iron-reducing potential on wood in comparison with 

brown-rot species from other lineages, similarly to white-rot species (Goodell et al., 2006). 

Less is known about the wood decay strategy of F. hepatica. In agreement with its reduced 

ligninolytic gene content, F. hepatica caused brown rot in the wood decay experiments. 

However, wood decay was limited with 2.3% loss observed after 90 days. The limited 

weight loss indicates that any degradation observed would be restricted to localized areas of 

the wood. Small number of decayed cells were observed. Previous investigations with F. 

hepatica indicate that this fungus can readily colonize wood and impart a brownish stain but 

biomass loss is minimal (Schwarze et al. 2000a). In a study of wood artificially inoculated in 

the laboratory, only 1.2% weight loss was observed after 6 months and 4.1% loss after 18 

months (Schwarze et al. 2000a). This reduced capacity for decaying wood as compared to 

other brown rot fungi is the likely reason that no appreciable loss of strength is associated 

with decay by Fistulina in wood affected in natural environments (Schwarze et al. 2000a). 

The limited amount of decay and its localization within wood caused by F. hepatica 
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suggests that this type of brown rot is different from that produced by other brown rot fungi 

with only small zones of cells being attacked while adjacent cells remain unaltered. 

Additionally, it raises the question whether F. hepatica makes any use of the cellulose 

degradation related genes and under what conditions.

4.6 Gene losses and pseudogenization of GH5-7, GH6, GH74, and DyP genes in F. hepatica 
could be associated with transition to brown rot

The smaller content of wood-degrading enzymes seen for F. hepatica is suggested to be the 

result of gene losses. These losses are associated with transition from a potential white-rot 

towards a brown-rot lifestyle, as has been suggested for other brown-rot lineages (Martinez 

et al., 2009; Floudas et al., 2012). In addition, our results suggest that this transition could 

have taken place in two stages. The first stage consists of a shared reduction of oxidative 

enzymes in the common ancestor of S. commune and F. hepatica. The last common ancestor 

of the Marasmioid clade is suggested to have had 23 copies of enzymes from the six gene 

families similar to extant white-rot species (Fig. 2). In contrast, the common ancestor of S. 

commune and F. hepatica is suggested to have lost 16 members of those gene families, 

including all PODs and DyPs (Fig. S1). This ancestor appears to be more similar to S. 

commune in its overall wood-degrading enzymes diversity (Fig. 2). The second stage might 

have taken place in the lineage leading to F. hepatica and included mainly losses of CAZYs. 

During this second step 16 and 28 gene losses might have taken place for the bulk and 

accessory CAZYs (Figs. 2b–c), which represent 38% and 40% of the CAZYs present at the 

ancestral species respectively. The most extensive gene losses were inferred for GH61, 

GH43, and CE1 (Figs. S2a, S3a, S5, S6), similar to other brown-rot lineages (Floudas et al., 

2012).

Our results support the presence of four wood decay-related genes with signs of 

pseudogenization in the genome of F. hepatica, but it is known if these genes are still 

functional. Low quality predicted genes or potential pseudogenes are not rare especially for 

the draft version of sequenced genomes (Table S6). However, the original genes appear to 

have been members of the DyP, GH6, GH74 and GH5-7 families. The first 3 gene families 

are frequently absent or are represented in low copies in brown-rot species (Fig. 3). At the 

same time F. hepatica seems to belong in the second category of brown-rot fungi having 

GH7 cellobiohydrolases and an intermediate number of LPMO copies. Taken together, these 

results suggest that the partial maintenance of enzymatic cellulolysis, along with the 

potential pseudogenization events in wood-degrading gene families, could be part of an 

ongoing transition of F. hepatica towards the brown-rot lifestyle.

5. Conclusions

The wood decay gene networks of F. hepatica and C. torrendii deviate from typical brown-

rot and white-rot species respectively. Fistulina hepatica has undergone extensive gene 

losses related to the enzymatic degradation of lignocellulose, but we found few remaining 

genes related to the degradation crystalline cellulose. Furthermore, we found four potential 

pseudogenes of genes that are frequently lost in brown-rot fungi, suggesting that transition 

towards a brown-rot lifestyle could be an ongoing process for F. hepatica. The genome of C. 

torrendii is enriched in CAZYs similar to white-rot species, but lacks most of the genes 
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related to the degradation of lignin similar to brown-rot species. Therefore, it takes an 

intermediate placement between white-rot and brown-rot fungi, sharing this characteristic 

with S. commune, J. argillacea and B. botryosum, which have been suggested to belong in a 

grey zone of rot types (Riley et al., 2014). Our results suggest that such transitions could 

have taken place multiple times across Agaricomycotina. Wood decay experiments largely 

support our results. Fistulina hepatica causes brown rot, while C. torrendii causes a 

simultaneous white-rot. However, both species do not show complete brown-rot and white-

rot characteristics, since they are weak wood decayers and decay wood only locally, while 

decay by C. torrendii has soft-rot characteristics as well. The reasons behind the limited 

wood decay are not completely understood and need to be further studied, but they could be 

related to alternative strategies these species follow to gain nutrients in addition to the weak 

wood decay they cause.
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Highlights

• We sequenced the genomes of Cylindrobasidium torrendii and Fistulina 

hepatica.

• We examined the evolution of wood decay mechanisms in Agaricales.

• We performed wood decay experiments for both species and Schizophyllum 

commune.

• Both species do not have typical white or brown rot characteristics.

• Atypical wood decayers are more frequent than initially thought.
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Figure 1. 
Species phylogeny of 13 Agaricales species and P. crispa (Amylocorticiales) as outgroup. 

Both ML and Bayesian analyses of 21167 amino acid characters from 26 single copy genes 

resulted in identical topologies and received maximum bootstrap and posterior probability 

support at all nodes. The ML tree is shown here. WR, white rot; BR, brown rot; LD, litter 

decomposer; (WR), reported as white rot, but wood decay strategy is uncertain.
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Figure 2. 
Species tree/gene tree reconciliation results. Summed reconciliation results of oxidative 

enzymes related to lignin degradation (a), bulk carbohydrate CAZY (b), and accessory 

CAZY (c). Numbers at the tips represent the summed number of copies for the 

corresponding category of gene families in the genome of each species. Numbers at internal 

nodes represent the predicted summed number of copies for the corresponding category of 

gene families for each ancestral species. The size of the circles is proportional to these 

numbers (shaded in dark green for the common ancestor of Agaricales). Nutritional 

strategies are coded as in Figure 1.
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Figure 3. 
Copy numbers for fifteen gene families and CBM1 across 32 Agaricomycotina genomes. 

The columns on the right side of the table represent the summed number of genes for the 

fifteen gene families. Species on the table have been grouped in three categories; brown-rot 

(brown), litter decomposers (grey), white-rot (yellow) or uncertain type of rot (orange). 

Within each category, the species have been arranged based on the total number of gene 

copies they have. White-rot and uncertain type of rot have been grouped together for this 

purpose. Light blue indicates copy number below or equal to the average number of copies 

for the gene family, while dark blue indicates copy number above the average number of 

copies for the gene family. * One potential pseudogene is found for each of these gene 

families on the genome of F. hepatica. Data from: **Floudas et al., 2012, *** Kohler et al., 

unpublished data.
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Figure 4. 
Phylogenetic relationships of the five predicted models of the potential GH6 pseudogene 

from F. hepatica with homologs from the 14 genomes showing the resulting long branch (in 

red color) and comparison with similar analyses of the adjacent genes. Numbers on the 

branches represent branch length. The scaffold graph shows the orientation of each potential 

pseudogene with its adjacent genes. Red dots for GH6 models of F. hepatica indicate 

models interrupted by stop codons. The protein models that represent the product of the 

adjacent genes are shown in blue on their corresponding phylogeny.
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Figure 5. 
Scanning electron micrographs of transverse sections of aspen (Populus) wood decay by 

Cylindrobasidium torrendii (A and B), Fistulina hepatica (C and D) and Schizophyllum 

commune (E and F). A and B. Localized degradation of all cell wall components with 

erosion of the wall taking place from the cell lumen towards the middle lamella. Small voids 

occurred in the wood cells where all cell wall layers were degraded. C and D. A diffuse 

attack on wood cells resulted in cells with altered walls. No cell wall erosion took place but 

walls were slightly swollen and cells were partially collapsed and appeared convoluted. E 

and F. Thinning and eroded secondary wall layers were evident in wood cells. In some cells, 

the secondary wall was completely degraded but the middle lamella between cells remained. 

The thinned cell wall broke and detached in some areas resulting in small voids. Bar = 100 

μm in A, 20 μm in B and 50 μm in C, D, E, F.
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Table 1

Gene families sampled in the study and their proposed functions in wood degradation.

Gene family Abbreviation Activity related to PCW degradation literature

Class II peroxidases POD lignin degradation Cullen & Kersten, 2004; Martinez et 
al., 2005

Dye decolorizing peroxidases DyP lignin degradation Liers et al., 2010

Heme-thiolate peroxidases HTP potential lignin degradation Hofrichter & Ullrich, 2006

Multicopper oxidases MCO lignin degradation Kües & Rühl, 2011

Copper radical oxidases CRO hydrogen peroxide generation Cullen & Kersten, 2004

Cellobiose dehydrogenases CDH hydroxyl radical generation and iron reduction Henriksson et al., 2000

Bulk carbohydrate CAZY

GH5-5 endoglucanase De Vries et al., 2010

GH5-7 endomannanase De Vries et al., 2010

GH6 cellobiohydrolase De Vries et al., 2010

GH7 cellobiohydrolase De Vries et al., 2010

LPMO (GH61) monoxygenase activity on cellulose Harris et al., 2010

GH10 endoxylanase De Vries et al., 2010

GH11 endoxylanase De Vries et al., 2010

GH12 endoglucanase De Vries et al., 2010

GH28 pectinase activity Marcovic & Janecek, 2001

GH45 endoglucanase De Vries et al., 2010

GH74 xyloglucanase De Vries et al., 2010

Accessory CAZY

GH1 β-mannosidase/β-glucosidase De Vries et al., 2010

GH2 β-mannosidase De Vries et al., 2010

GH3 β-glucosidase/β-xylosidase De Vries et al., 2010

GH27 α-galactosidase De Vries et al., 2010

GH29 α-fucosidase De Vries et al., 2010

GH35 β-galactosidase De Vries et al., 2010

GH43 α-arainofuranosidase/β-xylosidase De Vries et al., 2010

GH51 α-arabinofuranosidase De Vries et al., 2010

GH95 α-fucosidase De Vries et al., 2010

GH115 α-glucuronidase De Vries et al., 2010

CE1 acetyl-xylan-esterase, ferruloyl esterase, 
cinnamoyl esterase Crepin et al., 2003; Kroon et al., 2000

CE5 cutinase Rubio et al., 2008

CE8 pectin methylesterase Marcovic & Janecek, 2004

CE12 acetylesterase Molgaard et al., 2000

CE15 4-O-methyl-glucuronoyl methylesterase Li et al., 2007

CE16 acetyl-xylan-esterase, ferruloyl esterase, 
cinnamoyl esterase Li et al., 2008
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