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Abstract

Cervical cancer remains the third most frequently diagnosed and fourth leading cause of
cancer death in women worldwide. We sought to develop a micro-RNA signature that was
prognostic for disease-free survival, which could potentially allow tailoring of treatment for
cervical cancer patients. A candidate prognostic 9-micro-RNA signature set was identified
in the training set of 79 frozen specimens. However, three different approaches to validate
this signature in an independent cohort of 87 patients with formalin-fixed paraffin-embedded
(FFPE) specimens, were unsuccessful. There are several challenges and considerations
associated with developing a prognostic micro-RNA signature for cervical cancer, namely:
tumour heterogeneity, lack of concordance between frozen and FFPE specimens, and plat-
form selection for global micro-RNA expression profiling in this disease. Our observations
provide an important cautionary tale for future miRNA signature studies for cervical cancer,
which can also be potentially applicable to miRNA profiling studies involving other types of
human malignancies.

Introduction

Micro-RNAs (miRNAs) are a class of small, non-coding RNAs that play important roles in reg-
ulating target genes by binding to complementary sequences in mRNA transcripts [1]. Deregu-
lation of miRNA expression has been reported for numerous solid and hematological
malignancies, which is not surprising given their involvement in multiple critical biological
processes, including development, proliferation, and apoptosis [2, 3]. miRNAs have been de-
scribed to be extremely stable, and can be readily extracted from cell lines and various types of
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clinical specimens, including frozen and formalin-fixed paraffin embedded (FFPE) tissues,
blood, serum, plasma, urine, and saliva [4-9]. miRNA expression profiling of solid and hema-
tological human malignancies has identified disease-specific miRNA signatures associated with
diagnosis, progression, staging, prognosis and response to therapy [10]. Numerous prognostic
miRNA signatures have since been described for various malignancies, including: lung
[11-13], colorectal [14], gastric [15], esophageal [16], hepatocellular [17], prostate [18], naso-
pharyngeal [19], and cervical cancers [20].

Cervical cancer is the third most frequently diagnosed cancer, and the fourth leading cause
of cancer mortality in women worldwide, with an estimated 530,000 new cases and 175,000
deaths each year [21]. Although cervical cancer incidence and mortality have declined over the
past 30 years in the United States [22], the 5-year survival rate remains less than 40% for pa-
tients diagnosed with Stage III disease and above [23]. A number of groups have investigated
the role of miRNAs in cervical cancer, including Wang et al., who reported that miR-143 and
miR-145 suppressed cell growth, whereas miR-146a promoted cell proliferation in cervical can-
cer [24]. Li et al. identified miR-29 to be the most highly enriched HPV-associated miRNA in
cervical cancer, which functions by restraining cell cycle progression and inducing apoptosis
via YY1 and CDK6 [25]. More recently, Wang et al. reported that oncogenic HPVs induce ab-
errant expression of host cell miRNAs, but do not produce any detectable viral miRNA [26]. A
two-miRNA signature that could predict overall survival in cervical cancer patients was re-
ported by Hu et al. [20], and remains the only reported miRNA signature for cervical cancer to
date. This signature, which consisted of miR-200a and miR-9, was developed using a qRT-PCR
assay measuring 96 cancer-related miRNAs in a training cohort of 60 cervical cancer patients,
and was internally validated in a testing cohort of 42 patients. However, we were unable to in-
dependently corroborate this signature with our own cohort of patients. Given these limita-
tions and the poor survival for patients with advanced stages of cervical cancer, we sought to
develop an independent miRNA signature that could predict disease-free survival (DES) for
cervical cancer patients; and potentially allow tailoring of treatment according to risk. Herein,
we describe the challenges and considerations associated with developing such a prognostic
miRNA signature for cervical cancer.

Materials and Methods
Ethics Statement

Written informed consent was obtained from all human subjects, according to a protocol ap-
proved for this study by the University Health Network Research Ethics Board.

Clinical specimens

Pre-treatment cancer samples were collected from patients with cervical cancer prior to under-
going curative chemo-radiation, consisting of external-beam radiotherapy to the primary cervi-
cal tumour and pelvic lymph nodes (45 to 50 Gy total, in 1.8-to-2-Gy daily fractions using 18
or 25MV photons), combined with weekly cisplatin (40 mg/m2 total, 5 doses). Patients were
staged using the FIGO (International Federation of Gynecologists and Obstetricians) system,
with additional clinical information gathered using computed tomography (CT) scans of the
abdomen and pelvis and magnetic resonance imaging (MRI) of the pelvis to assess local and
lymphatic disease. Pelvic and para-aortic lymph nodes were classified as positive for metastatic
disease if the MRI short-axis dimension was >1 cm, and equivocal if it was 8 to 10 mm.

The training cohort comprised of flash-frozen punch biopsies obtained from 79 patients
treated at the Princess Margaret Cancer Centre between 2000 to 2007, inclusively. The biopsy
specimens were placed in a storage medium (optimal cutting temperature (OCT) compound)
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for histopathologic examination, then flash-frozen in liquid nitrogen. H&E-stained tissue sec-
tions were cut from the OCT-embedded material, and evaluated by a gynecological pathologist
(B. Clarke). The total cell content (stroma and tumour cells) was estimated for all tissue sam-
ples using a light microscope, and only samples containing at least 70% tumour cells were con-
sidered for further analysis. Flash-frozen normal cervix tissues obtained from 11 patients who
underwent total hysterectomy for benign causes served as the normal comparators. The clinical
data for the patients in the training cohort are found in S1 Table.

The validation cohort comprised of diagnostic FFPE blocks collected from 87 cervical pa-
tients treated between 1999 and 2007, inclusively. There was no overlap of patients between the
training and validation cohorts. All samples contained at least 70% malignant epithelial cells,
as determined by a gynecologic pathologist (B. Clarke), or were macro-dissected prior to RNA
purification. FFPE normal cervix tissues obtained from 9 patients who underwent hysterecto-
my for benign causes served as the normal comparators. The clinical data for the patients in
the validation cohort are found in S2 Table.

Sample processing

For the training cohort specimens, two sections of 50-um thickness were cut from the OCT-
embedded flash-frozen tissues and placed in a nuclease-free microtube. Total RNA was isolated
using the Norgen Total RNA Purification Kit (Norgen Biotek), according to the manufacturer’s
instructions. Global miRNA expression was measured in both the cervical cancer and normal
cervix tissues with the TagMan Low Density Array (TLDA) Human MicroRNA A Array v2.0
(Applied Biosystems) using the Applied Biosystems 7900HT Real-Time PCR System, as previ-
ously described [4].

For the validation cohort specimens, ten sections of 5-um thickness were cut from the FFPE
tissues and placed in a nuclease-free microtube. Total RNA was isolated using the Norgen
Total RNA Purification Kit (Norgen Biotek), according to the manufacturer’s instructions. We
measured the expression of the 9 miRNAs in our prognostic signature using three methods: 1)
Applied Biosystems TLDA Human MicroRNA A Array v2.0 with 300 ng of total RNA per
sample; 2) NanoString nCounter Human miRNA Expression Assay v1.6.0 with 200 ng of total
RNA per sample; and 3) individual single-well QRT-PCR using Applied Biosystems TaqgMan
MicroRNA Assays with 10 ng of total RNA per sample, as previously described [4]. The
TagMan MicroRNA Assay includes a reverse transcription step wherein a stem-loop reverse
transcription primer specifically hybridises with its target miRNA molecule, which is then re-
verse-transcribed with a MultiScribe reverse transcriptase. Briefly, each reverse transcription
reaction contained 50 nM stem-loop reverse transcription primer, 1x reverse transcription
buffer, 0.25 nM dNTPs, 3.33 U/ul MultiScribe reverse transcriptase, 0.25 U/pl RNase inhibitor,
and 10 ng total RNA. This reverse transcription reaction was incubated in an Applied Biosys-
tems 7900 Thermocycler for 30 min at 16°C, 30 min at 42°C, 5min at 85°C, and then held at
4°C. The product of this reverse transcription reaction was then amplified with miRNA-
specific primers using the Applied Biosystems 7900HT Real-Time PCR system. The PCR reac-
tion consisted of 0.67 pl reverse transcription product, 1x TagMan Universal PCR Master Mix,
and 1x TagMan miRNA assay. The reactions were loaded onto a 384-well plate and incubated
at 95°C for 10 min followed by 40 cycles of 95°C for 15 s and 60°C for 1 min.

Data normalization

To normalize the miRNA expression data from TLDA, the raw miRNA abundances were loaded
into the R statistical environment (v2.15.2). Three control genes were utilized for normalization:
RNU44, RNU48, and U6. Normalized miRNA abundances were calculated as —log2(2’(Cch)),
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where Cr represents the threshold cycle, and Cc represents the mean threshold cycle of the
control genes.

To normalize the miRNA expression data from NanoString, the R package ‘NanoString-
Norm’ [27] was utilized with the following settings:

1. Probe level correction.
2. Code Count Correction = "geo.mean" (geometric mean)

3. Background Correction = "mean.2sd", i.e. mean +/- 2 standard deviations (Background is
calculated based on negative controls, the calculated background is subtracted from each
sample)

4. Sample Content Correction = "top.geo.mean" (The option 'top.geo.mean' is a method which
ranks miRNAs based on the sum of all samples and then takes the geometric mean of the
top 75)

5. log, transformation

Survival analysis

The normalized data were filtered to remove miRNAs with low expression (C; > 35) in over
20% of samples. Least Absolute Shrinkage and Selection Operator (LASSO) regression was ap-
plied to the normalized TLDA miRNA expression data for the training cohort [28], to select a
subset of miRNAs associated with DFS. The parameter was obtained through cross-validation
(0.087942). LASSO regression is a method used for variable selection and shrinkage in Cox’s
proportional hazards model. This technique shrinks the coefficients and allows some of them
to reach zero, which reduces the estimation variance while producing an interpretable final
model. The DFS estimates were calculated based on the Kaplan-Meier method. The hazard ra-
tios were obtained from the unadjusted Cox regression method; miRNAs significant for DFS
were selected, leading to a 9-miRNA signature prognostic for DFS. The expression of the nine
miRNAs were validated in the training cohort and normal control group with individual sin-
gle-well qRT-PCR using Applied Biosystems TagMan MicroRNA Assays.

A risk score was calculated using the coefficients obtained in LASSO regression and the nor-
malized miRNA expression levels. The risk scores were dichotomized at the median, and the
cohort was divided into low and high risk groups. Kaplan-Meier survival analysis was used to
illustrate the difference in DFS between the high and low risk groups. Validation was also at-
tempted by dividing the validation cohort into three groups based on risk scores: high-risk, me-
dium-risk, low-risk). The p-value associated with the two curves was determined using the log-
rank test. All statistical analyses were performed with R statistical environment (v2.15.2) using
the “Survival” package for survival analysis, and “glmnet” for LASSO analysis. Significance was
defined as p-values below 0.05.

Publically-available cervical cancer Illumina Small RNA-Seq data from The Cancer Genome
Atlas (TCGA) Data Portal was utilized as another independent validation cohort (n = 48).
Level three Small RNA-Seq (isoform_expression) data and clinical information for the 48 cer-
vical cancer patients were downloaded from the Broad Firehose (stddata run 2013_06_06).
Reads-per-million (RPM) data were log2 transformed and z-score standardized before the
9-miRNA signature equation was applied to calculate risk scores. Patients were dichotomized
by the previously established cut-point (median risk score in training cohort) and compared
using a log-rank test.
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Results

The majority of significantly differentially-expressed miRNAs were
downregulated

The clinical characteristics of the patients in the training (n = 79) and validation (n = 87) co-
horts are provided in Table 1. Analysis of tumour-normal (T/N) fold changes revealed that the
majority of significantly differentially-expressed miRNAs (P < 0.01) were downregulated in
our cervical cancer samples (S3 Table). Of the 29 significantly differentially-expressed miR-
NAs, only 2 were upregulated (miR-21 and miR-187).

Patient miRNA expression was associated with disease-free survival

Using LASSO regression on the normalized TLDA data from the training cohort (54 Table),
we derived the following model to calculate the risk score for each patient using the expression
values of nine miRNAs:

Risk Score = (0.197109 x E,, ) — (0.07048 X E, . ,) + (0.045797 X E, .. ,,,) — (0.56469
X Epp_a) + (0171838 X B sy 50) — (0.01725 X E e 1y,) + (0.506956

X Eminl48a) + (0203466 X EmiR7218) + (022355 X Eminf)UO)

Where Ex represents the normalized expression level of X, and X represents one of the nine
miRNAs in the prognostic signature.

Table 1. Clinical parameters of patients in the training and validation cohorts.

Age (years)
Median
Range
Tumour size
<5cm
>5cm
FIGO stage
1B
1A
1IB
1A
1B
Pelvic or para-aortic node involvement
Positive
Equivocal
Negative
Overall survival
Deaths
Disease-free survival
Relapses or deaths
Follow-up (years)
Median
Range

doi:10.1371/journal.pone.0123946.1001

Training cohort Validation cohort
(n=79) (n =87)

P =0.95
48 48
26-84 19-83

P=0.29
48 (61%) 43 (52%)
31 (39%) 39 (48%)

P=0.28
24 (30%) 22 (25%)
2 (3%) 5 (6%)
35 (44%) 31 (36%)
0 2 (2%)
18 (23%) 27 (31%)

P =0.91
25 (32%) 29 (33%)
15 (19%) 18 (21%)
39 (49%) 40 (46%)

P =0.94
24 (31%) 26 (30%)

P=0.74
28 (35%) 33 (38%)
6.0 5.3
0.7-10.6 1.0-10.5
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Fig 1. Kaplan-Meier analysis of DFS according to 9-miRNA signature. A risk score was calculated for each patient in the training cohort (n = 79) using
our 9-miRNA signature for DFS in cervical cancer. The median risk score was used to divide patients into the high vs. low risk groups. HR; hazard ratio, DFS;
disease-free survival, Cl; 95% confidence interval.

doi:10.1371/journal.pone.0123946.g001

In this prediction model, a higher risk score would predict for poorer DFS. The risk score
was calculated for each patient in the training set, and the median risk score (-0.05373) was
used to dichotomize the low vs. high risk groups. Our 9-miRNA signature was significantly
predictive of DFS for the 79 patients in the training cohort, with a hazard ratio of 9.26 and log-
rank p-value of 6.9 x 107 (Fig 1), and was independent of FIGO stage, tumour size and

nodal status.

Validation of miRNA signature

In our attempts to validate the 9-miRNA signature, we used three different methods to measure
miRNA expression in the validation cohort: 1) TLDA (n = 87); 2) NanoString (n = 87); and 3)
qRT-PCR (n = 68; 19 samples omitted due to insufficient RNA). A risk-score was calculated
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Fig 2. Application of 9-miRNA signature to validation cohort. Kaplan-Meier analysis of DFS. A risk score was calculated for each patient in the validation
cohort, by applying our 9-miRNA signature for DFS to the miRNA expression data generated using A) TLDA, B) NanoString, and C) individual gRT-PCR. The
same cut-off point from the training set was used. HR; hazard ratio, DFS; disease-free survival, Cl; 95% confidence interval.

doi:10.1371/journal.pone.0123946.9002

for each of the patients by applying the miRNA TLDA expression values (S5 Table) to our pre-
diction model. The patients were divided into the high vs. low risk groups based on their risk

score, using the same cut-off point as defined in the training cohort (Fig 2A). This analysis was
repeated for the NanoString (56 Table) and the qRT-PCR (S7 Table) datasets (Fig 2B and 2C).
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Regardless of the method used for measuring miRNA expression, the 9-miRNA signature was
not significant when applied to the patients in the validation cohort. In addition, dividing the
validation cohort into three groups based on risk scores (high-risk, medium-risk, low-risk) did
not lead to a significant result in the TLDA, NanoString or qRT-PCR datasets (S1 Fig). We also
utilized publically-available cervical cancer Illumina Small RNA-Seq data derived from The
Cancer Genome Atlas (TCGA) Data Portal as another independent validation cohort (n = 48).
Interestingly, this validation attempt approached statistical significance (p = 0.05251) (S2A Fig).

Independent Corroboration of the Hu et al. 2-miRNA signature

We attempted to perform an independent corroboration of the only published prognostic
miRNA signature to date for cervical cancer by Hu, et al. (§ =17.9 — 0.284 x EmiR-9
—0.376 x EmiR-200a, where S represents the risk score for each patient, and EmiR-9 and EmiR-
200a represent the normalized expression levels of miR-9 and miR-200a in each patient, respec-
tively) [20]. This 2-miRNA signature was first applied to the miRNA TLDA expression values
from our training frozen samples (n = 79) to calculate a risk-score for each patient. Although
the authors used 0 as the cut-off point with their training set, we were not able to use this value
for corroboration because the risk scores were all above 0. We thus divided our patients into
high vs. low risk groups, with 1/3 in the former and 2/3 in the latter categories, which reflected
the Hu et al. population when 0 was used as their cut-off. Based on the Kaplan-Meier analysis,
the 2-miRNA signature was not significant when applied to the patients in our frozen cohort
utilizing the TLDA platform (Fig 3A). This analysis was repeated for the FFPE TLDA, and
FFPE NanoString datasets; neither of which could corroborate the 2-miRNA signature (Fig 3B
and 3C). In a final attempt to corroborate the Hu et al. signature, we utilized Small RNA-Seq
data derived from the TCGA Data Portal as yet another independent cohort (n = 48). Using the
same analytical methods, again, the 2-miRNA signature could not be corroborated (S2B Fig), al-
though at least the trend was in the correct direction, in contrast to the other 3 datasets.

An attempt was also made to cross-validate our own 9-miRNA signature with the miRNA
expression data from the Hu, et al. study; unfortunately, access to their raw data was not pro-
vided; hence no further analysis was possible.

Discussion

In the clinical management of cancer patients, prognostic evaluation is essential to guide ap-
propriate treatment decisions. Unfortunately, in cervical cancer, there remains significant dif-
ferences in patient survival despite being assigned to the same clinical stage; underscoring the
gaps in the current system, as well as the need to develop more useful prognostic biomarkers.
We developed a candidate 9-miRNA signature that was prognostic for DFS in patients with
cervical cancer. A number of the miRNAs in this signature have been previously characterized
in cervical cancer and other diseases, such as miR-218, which downregulates survivin (BIRC5)
in nasopharyngeal carcinoma [29], and miR-21, which regulates PTEN expression in hepato-
cellular carcinoma [30]. According to our analysis, our validation cohort (n = 87) was large
enough to detect a signature with a HR of 2.5 with 83% power. However, we could not validate
our signature (HR = 9.26) in our validation cohort, despite trying three separate techniques.
Furthermore, attempts to corroborate the only published miRNA signature to date for cervical
cancer [20] in three independent patient cohorts were also unsuccessful.

We believe that there are three key reasons as to why we could not validate our candidate
9-miRNA prognostic signature for cervical cancer: i) intra-tumour heterogeneity; ii) miRNA
expression data from frozen and FFPE samples could not be directly compared in this disease;
and iii) the current platforms for global miRNA expression profiling are not sufficiently robust.
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Fig 3. Kaplan-Meier analysis of DFS according to Hu et al. 2-miRNA signature. Using the Hu et al. 2-miRNA signature, a risk score was calculated for
each patient from: A) TLDA frozen cohort (n = 79), B) TLDA FFPE cohort (n = 87), and C) NanoString FFPE cohort (n = 87). HR; hazard ratio, DFS; disease-
free survival, Cl; 95% confidence interval.

doi:10.1371/journal.pone.0123946.g003
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Firstly, it is well-established that human tumours are intrinsically heterogeneous. Two types
of tumour heterogeneity exist: a) inter-tumour heterogeneity, with differences between tu-
mours arising from different patients; and b) intra-tumour heterogeneity, with differences be-
tween distinct sub-populations of cancer cells within a single individual’s tumour. In cervical
cancer, intra-tumour heterogeneity has been described on various levels. Many studies have
demonstrated significant variations in interstitial fluid pressure [31], blood perfusion [32], and
oxygen tension [33] in different regions within an individual tumour. At the chromosomal
level, intra-tumour heterogeneity has been described with respect to specific genetic mutations
and chromosomal abnormalities such as gains and deletions, reflecting the polyclonal deriva-
tion of cervical cancer [34-38]. At the mRNA transcript level, Bachtiary et al. evaluated intra-
tumoural heterogeneity across 11 cervical cancer patients, and demonstrated that multiple bi-
opsies from distinct areas of an individual tumour were necessary to reduce sampling bias,
with genes displaying low intra-tumour heterogeneity requiring two to three biopsies, and
genes with high intra-tumour heterogeneity requiring more than six biopsies per tumour [39].

To date, intra-tumoural heterogeneity of miRNA expression has only been reported in
breast cancer thus far [40]. However, natural inter-patient variability has been shown to exist
among normal cervix samples, which complicates miRNA expression profiling studies [41].
Given that intra-tumour heterogeneity exists in cervical cancer at the macroscopic, chromo-
somal and transcript levels, it would be a logical extension to assume that this would also apply
to miRNAs. In our study, we only utilized one biopsy from each patient in the training and val-
idation cohorts, which is therefore probably insufficient to obtain a representative measure of
miRNA expression for the patient’s entire tumour.

A second reason for the lack of signature validation is the lack of concordance with respect to
the tissue preservation method used for the two patient cohorts; specifically, the training and val-
idation sets consisted of frozen and FFPE samples, respectively. This experience would appear to
contradict several previous studies that have reported high concordance in the miRNA expres-
sion data from tissue-matched frozen and FFPE samples derived from various types of human
tissues, including: breast [4], lung [42], kidney [43], skin [44], glioblastoma [45], melanoma [46,
471], prostate [48, 49], and lymph nodes [50]. However, with the exception of our own single
study that used the TLDA platform [4], the remaining reports utilized other miRNA profiling
technologies, such as microarray [42, 44, 46, 47, 50], deep sequencing [42, 43], custom PCR array
[48], and qRT-PCR using stem-loop [49] or locked-nucleic-acid primers [45]. There has only
been one report to date that evaluated miRNA expression data from tissue-matched frozen and
FFPE cervix samples, which only analyzed 3 cervix specimens, in addition to 3 breast and 2 gall
bladder samples [51]. This report by Doleshal et al. analyzed 3 miRNAs (miR-24, miR-103, miR-
191) using qQRT-PCR, and only calculated the ACt values between frozen and matched FFPE
samples without performing any correlation tests. Furthermore, several of these published re-
ports have demonstrated that although there were high correlations (> 0.5) between tissue-
matched frozen and FFPE samples for the overall panel of miRNAs tested, there were specific in-
dividual miRNAs that were poorly correlated between the matched samples [43, 45, 47], and
sometimes even miRNAs that demonstrated opposing patterns of under- or over-expression in
tissue-matched sample pairs [48, 49]. The reasons behind these discrepancies, as to why some
miRNAs correlate between frozen and FFPE samples; yet others do not, remain unclear.

Lastly, we believe that the current methods used for global miRNA expression profiling are
not sufficiently robust. We used the TLDA and NanoString platforms for global miRNA ex-
pression profiling, which are both widely-used for miRNA expression profiling. However, in
our own recent analyses, the correlation in miRNA expression levels between these two plat-
forms, even using the same FFPE RNA samples, had only a p of 0.65 (manuscript in prepara-
tion), underscoring the challenges in the technologies to be able to reliably identify clinically
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useful biomarkers in this disease. This might also provide one technical explanation for the re-
cent review describing the difficulties in validating miRNAs for human malignancies [52].
Given that the majority of miRNAs that were detected in our training cohort by TLDA were
expressed at low levels, the detection accuracy may have been limited in this study. Deep se-
quencing may likely be a more suitable platform to identify and validate a prognostic miRNA
signature, since more recent reports have demonstrated the advantages of deep sequencing, in-
cluding increased sensitivity and specificity with few false-positive calls [53, 54].

Our validation attempt using Small RNA-Seq data from the TCGA data portal was promis-
ing, with our 9-miR signature predicting worse outcome for high-risk patients than low-risk
patients (p = 0.053). Interestingly, the datasets from the TCGA cohort and our training cohort
were both generated from frozen tissues. With the addition of more cervical cancer samples to
the TCGA data portal with survival information and miRNA expression data, we could poten-
tially obtain a statistically significant result in a future validation attempt.

In conclusion, a prognostic miRNA signature for cervical cancer could not be validated, due
to intra-tumoural heterogeneity, incompatibilities between miRNA expression data from fro-
zen and FFPE samples, and insufficiently robust technical platforms for global miRNA expres-
sion profiling. We propose that this could potentially be resolved in the near future, with the
advancement of technologies for miRNA expression profiling such as deep-sequencing. At
present, the TCGA Data Portal contains deep sequencing miRNA expression data with clinical
annotation for only 48 cervical cancer patients; when this dataset is expanded to include more
samples, it could potentially be utilized as an important resource to identify and corroborate
potential miRNA signature sets. Our observations provide an important cautionary tale for fu-
ture miRNA signature studies for cervical cancer, which can also be potentially applicable to
miRNA profiling studies involving other types of human malignancies.

Supporting Information

S$1 Table. Clinical Data, Training Cohort. Clinical data for 79 frozen cervix samples.
(TXT)

$2 Table. Clinical Data, Validation Cohort. Clinical data for 87 FFPE cervix samples.
(XLSX)

S3 Table. Significantly differentially-expressed miRNAs in cervical cancer. Fold changes
(log,) of 29 miRNAs that were significantly differentially-expressed in cancer vs. normal cervix
samples, in order of increasing P-value.

(PDF)

$4 Table. TLDA Data, Training Cohort. miRNA expression in 79 frozen cervix samples.
(XLSX)

S5 Table. TLDA Data, Validation Cohort. miRNA expression in 87 FFPE cervix samples.
(TXT)

S6 Table. NanoString Data, Validation Cohort. NanoString data for 87 FFPE cervix samples.
(TXT)

S7 Table. PCR Data, Validation Cohort. PCR data for 68 FFPE cervix samples.
(XLS)

S1 Fig. Application of 9-miRNA signature to validation cohort divided into three risk
groups. Kaplan-Meier analysis of DFS. A risk score was calculated for each patient in the vali-
dation cohort by applying our 9-miRNA signature for DES to the miRNA expression data

PLOS ONE | DOI:10.1371/journal.pone.0123946  April 16,2015 11/14


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0123946.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0123946.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0123946.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0123946.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0123946.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0123946.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0123946.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0123946.s008

@ PLOS | one

Prognostic Micro-RNA Signature for Cervical Carcinoma

generated using A) TLDA, B) NanoString, and C) individual qRT-PCR. The validation cohort
was divided into three groups based on risk scores: high-risk, medium-risk, and low-risk. HR;
hazard ratio, DFS; disease-free survival, CI; 95% confidence interval.

(TIF)

S2 Fig. Application of TCGA Small RNASeq data to cervical cancer miRNA signatures.
miRNA expression data from the TCGA miRNASeq cohort (n = 48) was used to test: A) our
9-miR signature, and B) the Hu et al. 2-miR signature. HR; hazard ratio, CI; 95%

confidence interval.

(PDF)

Acknowledgments

The authors thank Ms. Trudey Nicklee for preparing the cervix tissue samples.

Author Contributions

Conceived and designed the experiments: CH FFL ABYH. Performed the experiments: CH.
Analyzed the data: JPB MP PW SY RY. Contributed reagents/materials/analysis tools: DW
PCB RPH DH MM AF BAC FFL. Wrote the paper: CH.

References

1. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRBase: microRNA se-
quences, targets and gene nomenclature. Nucleic Acids Res. 2006; 34: D140—4. PMID: 16381832

2. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004; 116: 281-97.
PMID: 14744438

3. Harfe BD. MicroRNAs in vertebrate development. Curr Opin Genet Dev. 2005; 15: 410-5. PMID:
15979303

4. HuiAB, Shi W, Boutros PC, Miller N, Pintilie M, Fyles T, et al. Robust global micro-RNA profiling with
formalin-fixed paraffin-embedded breast cancer tissues. Lab Invest. 2009; 89: 597—606. doi: 10.1038/
labinvest.2009.12 PMID: 19290006

5. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating
microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008; 105:
10513-8. doi: 10.1073/pnas.0804549105 PMID: 18663219

6. Cortez MA, Calin GA. MicroRNA identification in plasma and serum: a new tool to diagnose and monitor
diseases. Expert Opin Biol Ther. 2009; 9: 703—11. doi: 10.1517/14712590902932889 PMID: 19426115

7. Gilad S, Meiri E, Yogev Y, Benjamin S, Lebanony D, Yerushalmi N, et al. Serum microRNAs are prom-
ising novel biomarkers. PLoS One. 2008; 3: €3148. doi: 10.1371/journal.pone.0003148 PMID:
18773077

8. Hanke M, Hoefig K, Merz H, Feller AC, Kausch |, Jocham D, et al. A robust methodology to study urine
microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer.
Urol Oncol. 28: 655-61. doi: 10.1016/j.urolonc.2009.01.027 PMID: 19375957

9. Park NJ, Zhou H, Elashoff D, Henson BS, Kastratovic DA, Abemayor E, et al. Salivary microRNA: dis-
covery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res. 2009; 15:
5473-7. doi: 10.1158/1078-0432.CCR-09-0736 PMID: 19706812

10. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006; 6: 857—66.
PMID: 17060945

11.  Yu SL, Chen HY, Chang GC, Chen CY, Chen HW, Singh S, et al. MicroRNA signature predicts survival
and relapse in lung cancer. Cancer Cell. 2008; 13: 48-57. doi: 10.1016/j.ccr.2007.12.008 PMID:
18167339

12. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, et al. Unique microRNA molecular
profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006; 9: 189-98. PMID: 16530703

13. Raponi M, Dossey L, Jatkoe T, Wu X, Chen G, Fan H, et al. MicroRNA classifiers for predicting progno-
sis of squamous cell lung cancer. Cancer Res. 2009; 69: 5776—83. doi: 10.1158/0008-5472.CAN-09-
0587 PMID: 19584273

PLOS ONE | DOI:10.1371/journal.pone.0123946  April 16,2015 12/14


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0123946.s009
http://www.ncbi.nlm.nih.gov/pubmed/16381832
http://www.ncbi.nlm.nih.gov/pubmed/14744438
http://www.ncbi.nlm.nih.gov/pubmed/15979303
http://dx.doi.org/10.1038/labinvest.2009.12
http://dx.doi.org/10.1038/labinvest.2009.12
http://www.ncbi.nlm.nih.gov/pubmed/19290006
http://dx.doi.org/10.1073/pnas.0804549105
http://www.ncbi.nlm.nih.gov/pubmed/18663219
http://dx.doi.org/10.1517/14712590902932889
http://www.ncbi.nlm.nih.gov/pubmed/19426115
http://dx.doi.org/10.1371/journal.pone.0003148
http://www.ncbi.nlm.nih.gov/pubmed/18773077
http://dx.doi.org/10.1016/j.urolonc.2009.01.027
http://www.ncbi.nlm.nih.gov/pubmed/19375957
http://dx.doi.org/10.1158/1078-0432.CCR-09-0736
http://www.ncbi.nlm.nih.gov/pubmed/19706812
http://www.ncbi.nlm.nih.gov/pubmed/17060945
http://dx.doi.org/10.1016/j.ccr.2007.12.008
http://www.ncbi.nlm.nih.gov/pubmed/18167339
http://www.ncbi.nlm.nih.gov/pubmed/16530703
http://dx.doi.org/10.1158/0008-5472.CAN-09-0587
http://dx.doi.org/10.1158/0008-5472.CAN-09-0587
http://www.ncbi.nlm.nih.gov/pubmed/19584273

@ PLOS | one

Prognostic Micro-RNA Signature for Cervical Carcinoma

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.
24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, Yanaihara N, et al. MicroRNA expression
profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA. 2008;
299: 425-36. doi: 10.1001/jama.299.4.425 PMID: 18230780

Li X, Zhang Y, Ding J, Wu K, Fan D. Survival prediction of gastric cancer by a seven-microRNA signa-
ture. Gut. 2010; 59: 579-85. doi: 10.1136/gut.2008.175497 PMID: 19951901

Guo Y, Chen Z, Zhang L, Zhou F, Shi S, Feng X, et al. Distinctive microRNA profiles relating to patient
survival in esophageal squamous cell carcinoma. Cancer Res. 2008; 68: 26—33. doi: 10.1158/0008-
5472.CAN-06-4418 PMID: 18172293

Budhu A, Jia HL, Forgues M, Liu CG, Goldstein D, Lam A, et al. Identification of metastasis-related
microRNAs in hepatocellular carcinoma. Hepatology. 2008; 47: 897-907. doi: 10.1002/hep.22160
PMID: 18176954

Tong AW, Fulgham P, Jay C, Chen P, Khalil |, Liu S, et al. MicroRNA profile analysis of human prostate
cancers. Cancer Gene Ther. 2009; 16: 206—16. doi: 10.1038/cgt.2008.77 PMID: 18949015

Liu N, Chen NY, Cui RX, Li WF, Li Y, Wei RR, et al. Prognostic value of a microRNA signature in naso-
pharyngeal carcinoma: a microRNA expression analysis. Lancet Oncol. 2012; 13: 633—41. doi: 10.
1016/S1470-2045(12)70102-X PMID: 22560814

Hu X, Schwarz JK, Lewis JS Jr, Huettner PC, Rader JS, Deasy JO, et al. A microRNA expression sig-
nature for cervical cancer prognosis. Cancer Res. 2010; 70: 1441-8. doi: 10.1158/0008-5472.CAN-09-
3289 PMID: 20124485

Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin.
2011; 61: 69-90. doi: 10.3322/caac.20107 PMID: 21296855

Ries LAG EM, Kosary CL, Hankey BF, Miller BA, Clegg L, Mariotto A, Fay MP, Feuer EJ, Edwards BK
(eds). SEER Cancer Statistics Review, 1975-2000.: National Cancer Institute; 2003; Available: http://
seer.cancer.gov/csr/1975_2000/. doi: 10.1016/j.healun.2014.01.862 PMID: 24630406

Cancer Facts and Figures 2012. Atlanta, GA: American Cancer Society, 2012.

Wang X, Tang S, Le SY, Lu R, Rader JS, Meyers C, et al. Aberrant expression of oncogenic and tumor-
suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One. 2008; 3:
e2557. doi: 10.1371/journal.pone.0002557 PMID: 18596939

LiY,WangF, Xu J, Ye F, Shen Y, Zhou J, et al. Progressive miRNA expression profiles in cervical car-
cinogenesis and identification of HPV-related target genes for miR-29. J Pathol. 2011; 224: 484-95.
doi: 10.1002/path.2873 PMID: 21503900

Wang X, Wang HK, Li Y, Hafner M, Banerjee NS, Tang S, et al. microRNAs are biomarkers of oncogen-
ic human papillomavirus infections. Proc Natl Acad Sci U S A. 2014; 111: 4262—7. doi: 10.1073/pnas.
1401430111 PMID: 24591631

Waggott D, Chu K, Yin S, Wouters BG, Liu FF, Boutros PC. NanoStringNorm: an extensible R package
for the pre-processing of NanoString mRNA and miRNA data. Bioinformatics. 2012; 28: 1546-8. doi:
10.1093/bioinformatics/bts188 PMID: 22513995

Tibshirani R. The lasso method for variable selection in the Cox model. Stat Med. 1997; 16: 385-95.
PMID: 9044528

Alajez NM, Lenarduzzi M, Ito E, Hui AB, Shi W, Bruce J, et al. MiR-218 suppresses nasopharyngeal
cancer progression through downregulation of survivin and the SLIT2-ROBO1 pathway. Cancer Res.
2011;71:2381-91. doi: 10.1158/0008-5472.CAN-10-2754 PMID: 21385904

Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expres-
sion of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;
133: 647-58. PMID: 17681183

Fyles A, Milosevic M, Hedley D, Pintilie M, Levin W, Manchul L, et al. Tumor hypoxia has independent
predictor impact only in patients with node-negative cervix cancer. J Clin Oncol. 2002; 20: 680-7.
PMID: 11821448

Lyng H, Vorren AO, Sundfor K, Taksdal |, Lien HH, Kaalhus O, et al. Intra- and intertumor heterogeneity
in blood perfusion of human cervical cancer before treatment and after radiotherapy. Int J Cancer.
2001; 96: 182-90. PMID: 11410887

Wong RK, Fyles A, Milosevic M, Pintilie M, Hill RP. Heterogeneity of polarographic oxygen tension
measurements in cervix cancer: an evaluation of within and between tumor variability, probe position,
and track depth. Int J Radiat Oncol Biol Phys. 1997; 39: 405—12. PMID: 9308944

Lyng H, Beigi M, Svendsrud DH, Brustugun OT, Stokke T, Kristensen GB, et al. Intratumor chromosom-
al heterogeneity in advanced carcinomas of the uterine cervix. Int J Cancer. 2004; 111: 358-66. PMID:
15221962

PLOS ONE | DOI:10.1371/journal.pone.0123946  April 16,2015 13/14


http://dx.doi.org/10.1001/jama.299.4.425
http://www.ncbi.nlm.nih.gov/pubmed/18230780
http://dx.doi.org/10.1136/gut.2008.175497
http://www.ncbi.nlm.nih.gov/pubmed/19951901
http://dx.doi.org/10.1158/0008-5472.CAN-06-4418
http://dx.doi.org/10.1158/0008-5472.CAN-06-4418
http://www.ncbi.nlm.nih.gov/pubmed/18172293
http://dx.doi.org/10.1002/hep.22160
http://www.ncbi.nlm.nih.gov/pubmed/18176954
http://dx.doi.org/10.1038/cgt.2008.77
http://www.ncbi.nlm.nih.gov/pubmed/18949015
http://dx.doi.org/10.1016/S1470-2045(12)70102-X
http://dx.doi.org/10.1016/S1470-2045(12)70102-X
http://www.ncbi.nlm.nih.gov/pubmed/22560814
http://dx.doi.org/10.1158/0008-5472.CAN-09-3289
http://dx.doi.org/10.1158/0008-5472.CAN-09-3289
http://www.ncbi.nlm.nih.gov/pubmed/20124485
http://dx.doi.org/10.3322/caac.20107
http://www.ncbi.nlm.nih.gov/pubmed/21296855
http://seer.cancer.gov/csr/1975_2000/
http://seer.cancer.gov/csr/1975_2000/
http://dx.doi.org/10.1016/j.healun.2014.01.862
http://www.ncbi.nlm.nih.gov/pubmed/24630406
http://dx.doi.org/10.1371/journal.pone.0002557
http://www.ncbi.nlm.nih.gov/pubmed/18596939
http://dx.doi.org/10.1002/path.2873
http://www.ncbi.nlm.nih.gov/pubmed/21503900
http://dx.doi.org/10.1073/pnas.1401430111
http://dx.doi.org/10.1073/pnas.1401430111
http://www.ncbi.nlm.nih.gov/pubmed/24591631
http://dx.doi.org/10.1093/bioinformatics/bts188
http://www.ncbi.nlm.nih.gov/pubmed/22513995
http://www.ncbi.nlm.nih.gov/pubmed/9044528
http://dx.doi.org/10.1158/0008-5472.CAN-10-2754
http://www.ncbi.nlm.nih.gov/pubmed/21385904
http://www.ncbi.nlm.nih.gov/pubmed/17681183
http://www.ncbi.nlm.nih.gov/pubmed/11821448
http://www.ncbi.nlm.nih.gov/pubmed/11410887
http://www.ncbi.nlm.nih.gov/pubmed/9308944
http://www.ncbi.nlm.nih.gov/pubmed/15221962

@ PLOS | one

Prognostic Micro-RNA Signature for Cervical Carcinoma

35.

36.

37.

38.

39.

40.

4.

42,

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

Guo Z, Wu F, Asplund A, Hu X, Mazurenko N, Kisseljov F, et al. Analysis of intratumoral heterogeneity
of chromosome 3p deletions and genetic evidence of polyclonal origin of cervical squamous carcinoma.
Mod Pathol. 2001; 14: 54—61. PMID: 11235906

Chang AR, Grignon DJ, Keeney MM, Koster JL, Kirk ME. DNA content in cervical carcinoma: a flow
cytometric assessment of DNA heterogeneity. Int J Gynecol Pathol. 1994; 13: 330—6. PMID: 7814194

Nguyen HN, Sevin BU, Averette HE, Ramos R, Ganjei P, Perras J. Evidence of tumor heterogeneity in
cervical cancers and lymph node metastases as determined by flow cytometry. Cancer. 1993; 71:
2543-50. PMID: 8453577

Koopman LA, Corver WE, van der Slik AR, Giphart MJ, Fleuren GJ. Multiple genetic alterations cause
frequent and heterogeneous human histocompatibility leukocyte antigen class | loss in cervical cancer.
J Exp Med. 2000; 191: 961-76. PMID: 10727458

Bachtiary B, Boutros PC, Pintilie M, Shi W, Bastianutto C, Li JH, et al. Gene expression profiling in cer-
vical cancer: an exploration of intratumor heterogeneity. Clin Cancer Res. 2006; 12: 5632—40. PMID:
17020965

Raychaudhuri M, Schuster T, Buchner T, Malinowsky K, Bronger H, Schwarz-Boeger U, et al. Intratu-
moral heterogeneity of microRNA expression in breast cancer. J Mol Diagn. 2012; 14: 376-84. doi: 10.
1016/j.jmoldx.2012.01.016 PMID: 22704963

Pereira PM, Marques JP, Soares AR, Carreto L, Santos MA. MicroRNA expression variability in human
cervical tissues. PLoS One. 2010; 5: e11780. doi: 10.1371/journal.pone.0011780 PMID: 20668671

Kolbert CP, Feddersen RM, Rakhshan F, Grill DE, Simon G, Middha S, et al. Multi-platform analysis of
microRNA expression measurements in RNA from fresh frozen and FFPE tissues. PLoS One. 2013; 8:
e€52517. doi: 10.1371/journal.pone.0052517 PMID: 23382819

Weng L, Wu X, Gao H, Mu B, Li X, Wang JH, et al. MicroRNA profiling of clear cell renal cell carcinoma
by whole-genome small RNA deep sequencing of paired frozen and formalin-fixed, paraffin-embedded
tissue specimens. J Pathol. 2010; 222: 41-51. doi: 10.1002/path.2736 PMID: 20593407

Lovendorf MB, Zibert JR, Hagedorn PH, Glue C, Odum N, Ropke MA, et al. Comparison of microRNA
expression using different preservation methods of matched psoriatic skin samples. Exp Dermatol.
2012;21: 299-301. doi: 10.1111/j.1600-0625.2012.01445.x PMID: 22417307

de Biase D, Visani M, Morandi L, Marucci G, Taccioli C, Cerasoli S, et al. miRNAs expression analysis
in paired fresh/frozen and dissected formalin fixed and paraffin embedded glioblastoma using real-time
pCR. PL0oS One. 2012; 7: €35596. doi: 10.1371/journal.pone.0035596 PMID: 22530056

Liu A, Tetzlaff MT, Vanbelle P, Elder D, Feldman M, Tobias JW, et al. MicroRNA expression profiling
outperforms mRNA expression profiling in formalin-fixed paraffin-embedded tissues. Int J Clin Exp
Pathol. 2009; 2: 519-27. PMID: 19636399

Glud M, Klausen M, Gniadecki R, Rossing M, Hastrup N, Nielsen FC, et al. MicroRNA expression in
melanocytic nevi: the usefulness of formalin-fixed, paraffin-embedded material for miRNA microarray
profiling. J Invest Dermatol. 2009; 129: 1219-24. doi: 10.1038/jid.2008.347 PMID: 19005486

Nonn L, Vaishnav A, Gallagher L, Gann PH. mRNA and micro-RNA expression analysis in laser-
capture microdissected prostate biopsies: valuable tool for risk assessment and prevention trials. Exp
Mol Pathol. 2009; 88: 45-51. doi: 10.1016/j.yexmp.2009.10.005 PMID: 19874819

Leite KR, Canavez JM, Reis ST, Tomiyama AH, Piantino CB, Sanudo A, et al. miRNA analysis of pros-
tate cancer by quantitative real time PCR: comparison between formalin-fixed paraffin embedded and
fresh-frozen tissue. Urol Oncol. 2011; 29: 533-7. doi: 10.1016/j.urolonc.2009.05.008 PMID: 19734068

Zhang X, Chen J, Radcliffe T, Lebrun DP, Tron VA, Feilotter H. An array-based analysis of microRNA
expression comparing matched frozen and formalin-fixed paraffin-embedded human tissue samples.
J Mol Diagn. 2008; 10: 513-9. doi: 10.2353/jmoldx.2008.080077 PMID: 18832457

Doleshal M, Magotra AA, Choudhury B, Cannon BD, Labourier E, Szafranska AE. Evaluation and vali-
dation of total RNA extraction methods for microRNA expression analyses in formalin-fixed, paraffin-
embedded tissues. J Mol Diagn. 2008; 10: 203—11. doi: 10.2353/jmoldx.2008.070153 PMID: 18403610

Nair VS, Maeda LS, loannidis JP. Clinical outcome prediction by microRNAs in human cancer: a sys-
tematic review. J Natl Cancer Inst. 2012; 104: 528—40. doi: 10.1093/jnci/djs027 PMID: 22395642

Glazov EA, Cottee PA, Barris WC, Moore RJ, Dalrymple BP, Tizard ML. A microRNA catalog of the de-
veloping chicken embryo identified by a deep sequencing approach. Genome Res. 2008; 18: 957-64.
doi: 10.1101/gr.074740.107 PMID: 18469162

Kelly AD, Hill KE, Correll M, Hu L, Wang YE, Rubio R, et al. Next-generation sequencing and microar-
ray-based interrogation of microRNAs from formalin-fixed, paraffin-embedded tissue: Preliminary as-
sessment of cross-platform concordance. Genomics. 2013; 102: 8—14. doi: 10.1016/j.ygeno.2013.03.
008 PMID: 23562991

PLOS ONE | DOI:10.1371/journal.pone.0123946  April 16,2015 14/14


http://www.ncbi.nlm.nih.gov/pubmed/11235906
http://www.ncbi.nlm.nih.gov/pubmed/7814194
http://www.ncbi.nlm.nih.gov/pubmed/8453577
http://www.ncbi.nlm.nih.gov/pubmed/10727458
http://www.ncbi.nlm.nih.gov/pubmed/17020965
http://dx.doi.org/10.1016/j.jmoldx.2012.01.016
http://dx.doi.org/10.1016/j.jmoldx.2012.01.016
http://www.ncbi.nlm.nih.gov/pubmed/22704963
http://dx.doi.org/10.1371/journal.pone.0011780
http://www.ncbi.nlm.nih.gov/pubmed/20668671
http://dx.doi.org/10.1371/journal.pone.0052517
http://www.ncbi.nlm.nih.gov/pubmed/23382819
http://dx.doi.org/10.1002/path.2736
http://www.ncbi.nlm.nih.gov/pubmed/20593407
http://dx.doi.org/10.1111/j.1600-0625.2012.01445.x
http://www.ncbi.nlm.nih.gov/pubmed/22417307
http://dx.doi.org/10.1371/journal.pone.0035596
http://www.ncbi.nlm.nih.gov/pubmed/22530056
http://www.ncbi.nlm.nih.gov/pubmed/19636399
http://dx.doi.org/10.1038/jid.2008.347
http://www.ncbi.nlm.nih.gov/pubmed/19005486
http://dx.doi.org/10.1016/j.yexmp.2009.10.005
http://www.ncbi.nlm.nih.gov/pubmed/19874819
http://dx.doi.org/10.1016/j.urolonc.2009.05.008
http://www.ncbi.nlm.nih.gov/pubmed/19734068
http://dx.doi.org/10.2353/jmoldx.2008.080077
http://www.ncbi.nlm.nih.gov/pubmed/18832457
http://dx.doi.org/10.2353/jmoldx.2008.070153
http://www.ncbi.nlm.nih.gov/pubmed/18403610
http://dx.doi.org/10.1093/jnci/djs027
http://www.ncbi.nlm.nih.gov/pubmed/22395642
http://dx.doi.org/10.1101/gr.074740.107
http://www.ncbi.nlm.nih.gov/pubmed/18469162
http://dx.doi.org/10.1016/j.ygeno.2013.03.008
http://dx.doi.org/10.1016/j.ygeno.2013.03.008
http://www.ncbi.nlm.nih.gov/pubmed/23562991

