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Abstract

Hypoxia can induce functional and structural vascular remodeling by changing the expression of 

trophic factors to promote homeostasis. While most experimental approaches have been focused 

on functional remodeling, structural remodeling can reflect changes in the abundance and 

organization of vascular proteins that determine functional remodeling. Better understanding of 

age-dependent hypoxic macrovascular remodeling processes of the cerebral vasculature and its 

clinical implications require knowledge of the vasotrophic factors that influence arterial structure 

and function. Hypoxia can affect the expression of transcription factors, classical receptor tyrosine 

kinase factors, non-classical G-protein coupled factors, catecholamines, and purines. Hypoxia’s 

remodeling effects can be mediated by Hypoxia Inducible Factor (HIF) upregulation in most 

vascular beds, but alterations in the expression of growth factors can also be independent of HIF. 

PPARγ is another transcription factor involved in hypoxic remodeling. Expression of classical 

receptor tyrosine kinase ligands, including vascular endothelial growth factor, platelet derived 

growth factor, fibroblast growth factor and angiopoietins, can be altered by hypoxia which can act 

simultaneously to affect remodeling. Tyrosine kinase-independent factors, such as transforming 

growth factor, nitric oxide, endothelin, angiotensin II, catecholamines, and purines also participate 

in the remodeling process. This adaptation to hypoxic stress can fundamentally change with age, 

resulting in different responses between fetuses and adults. Overall, these mechanisms integrate to 

assure that blood flow and metabolic demand are closely matched in all vascular beds and 

emphasize the view that the vascular wall is a highly dynamic and heterogeneous tissue with 

multiple cell types undergoing regular phenotypic transformation.
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INTRODUCTION

Vascular remodeling is crucial in maintaining homeostasis during development, exercise, 

and pregnancy. Blood vessels respond to their constantly changing environment by 

remodeling to match blood flow to local metabolic demand [1, 2]. Without proper regulation 

of perfusion, tissues can become ischemic and deprived of oxygen, resulting in cellular 

apoptosis, organ dysfunction, and eventually necrosis. Over the long term, the vasculature 

matches supply to demand by inducing capillary angiogenesis and by remodeling larger 

vessels upstream. A classic example of physiological remodeling is exercise conditioning, in 

which multiple factors induce long-term increases in maximum blood flow. To match the 

increased demand for oxygen and enable greater blood flow, existing large vessels undergo 

macrovascular remodeling while microvascular remodeling increases capillary density at the 

capillary level [3–6]. Capillary angiogenesis and collateral formation are examples of 

microvascular remodeling, a process distinctly different from macrovascular remodeling, in 

which structural changes occur within the walls of arteries and arterioles upstream from the 

capillaries. The ultimate example of macrovascular adaptation is pregnancy-induced 

remodeling of the uterine artery, a large conduit vessel that undergoes dramatic functional 

and structural changes throughout pregnancy [7]. Multiple types of microvascular and 

macrovascular remodeling are important not only in the mother but also in the developing 

fetus, especially during the transition from fetal to newborn life [8–10]. Given that the 

processes governing both microvascular and macrovascular remodeling remain poorly 

understood, particularly in the fetus and newborn, these processes warrant further research 

in fetal, newborn and adult arteries.

The principles governing homeostatic vascular remodeling also participate in 

pathophysiological remodeling in numerous diseases. For example, chronic hypertension 

can promote hypertrophic arterial remodeling through dynamic mechanisms [11]. Increased 

intraluminal pressures characteristic of chronic hypertension can alter vascular permeability, 

wall thickness, composition, and protein abundance [12]. Some of these changes are 

attributable to genetic factors that enhance inward arteriolar remodeling responses to 

increased luminal pressure [13] (Fig. 1). This type of remodeling of cerebral arteries can 

increase distensibility with reduced internal and external diameters [14] and thereby reduce 

the risk of aneurysms [15]. Other pathologies, such as subarachnoid hemorrhages, also 

induce cerebrovascular remodeling [16, 17] that is not compensatory but instead 

compromises flow-metabolism coupling and can even culminate in vasospasm. Clearly, both 

physiological and pathophysiological patterns of cerebrovascular remodeling are dynamic 

and regionally heterogeneous multifactorial processes influenced by the expression of 

numerous genes, receptors, and growth factors [18–20].

To better understand the mechanisms governing vascular remodeling, it is important to 

differentiate functional from structural effects. Functional remodeling includes changes in 

vascular reactivity and contractility, which are fundamentally important for coupling of 

blood flow to local tissue metabolism. Such changes in function, however, are typically the 

consequence of changes in artery composition and structure. These structural changes can 

alter the abundance and organization of adventitial matrix proteins as well as the numbers 

and composition of individual cell types within the arterial wall [21–23]. Correspondingly, 
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these alterations can increase outer arterial diameter (outward remodeling) or decrease 

luminal diameter (inward remodeling). In addition, total smooth muscle cell mass per unit 

length of artery can increase (hypertrophic remodeling) or remain unchanged (eutrophic 

remodeling) [11, 14, 24]. The extent to which these combined structural effects influence the 

contractile characteristics of the individual smooth muscle cells in the medial layer defines 

their functional consequences.

Smooth muscle cells are an integral component of the arterial wall and exhibit a phenotypic 

heterogeneity that is governed by local mechanical and chemical signals [21, 25, 26]. These 

cells can be classified as migratory, proliferative, synthetic, or contractile, and any single 

cell can exhibit mixtures of these and other characteristics [21]. Transitions among these 

phenotypes can be induced by either receptor tyrosine kinase (RTK) dependent growth 

factors [27, 28] or by non-classical G-protein coupled receptor (GPCR) ligands [29, 30]. In 

addition, smooth muscle cells can also undergo apoptosis, which is an important process in 

vascular remodeling [31]. Ultimately, the integrated effects of changes in the numbers, 

organization, and individual characteristics of the cellular components that make up the 

arterial wall determine the net result of remodeling.

Tissue hypoxia is a common feature shared among many types of both physiological and 

pathophysiological remodeling. This hypoxia drives remodeling to balance oxygen supply 

and demand at the cellular level through parallel microvascular and macrovascular effects. 

Most early studies of hypoxic remodeling focused on the pulmonary circulation, due largely 

to the clinical prevalence of persistent pulmonary hypertension of the newborn [32, 33]. 

These studies have established that mild chronic hypoxia directly increases pulmonary 

arterial pressure and promotes changes in vascular structure and function through 

coordinated actions of multiple vasotrophic factors [34]. Investigations of hypoxic vascular 

remodeling in other vascular beds are more rare and have focused predominantly on the 

functional consequences of varying durations of hypoxia, with emphasis on changes in 

vascular contractility and cardiac output distribution [35]. These effects are particularly 

prominent in the cerebral circulation, where a wide variety of studies have established that 

chronic hypoxia stimulate angiogenesis, increase capillary density, and reduce inter-

capillary distances within the brain parenchyma [36–42]. The cerebral circulation is also 

subject to both functional and structural macrovascular remodeling, particularly in response 

to ischemic insults [43]. Virtually all of these remodeling responses are age-dependent and 

reflect the integrated action of a broad variety of both classical and non-classical vasotrophic 

factors [44].

As in the adult, fetal and newborn hypoxia can stimulate an increase in cerebral capillary 

angiogenesis and permeability [45, 46]. Chronic hypoxia can also compromise 

autoregulation and the dynamics of blood velocity in fetal and neonatal brains [47–49]. In 

addition, reactivity to nitric oxide (NO), a primary endogenous vasodilator released from the 

vascular endothelium, can be depressed by chronic hypoxia through reduced vascular 

soluble guanylate cyclase (sGC) activity [50]. These functional changes reflect underlying 

structural remodeling, including increased protein abundance and vascular smooth muscle 

proliferation in fetal arteries [23, 35, 51, 52]. Not surprisingly, the effects of hypoxia on both 

functional and structural remodeling vary considerably in fetal and adult arteries [53, 54]. 
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The age-related differences are a consequence of the combined actions of multiple 

vasotrophic factors whose release and activity vary with age, vascular bed, and intensity of 

hypoxia.

The roles in vascular remodeling of known vascular growth factors and other non-classical 

vasotrophic factors remain uncertain, but have the potential to further understanding of 

vascular pathologies in both the fetal and adult cerebral circulations. To that end, it will be 

valuable to better appreciate how these factors function not just individually, but in 

combination in response to common pathophysiological stresses such as hypoxia. The 

present review therefore explores the main factors known to play a role in vascular 

remodeling, with emphasis on responses involving the fetal cerebral circulation where 

possible. Given the relative paucity of results directly related to the fetal cerebral circulation, 

the review is organized around the three main families of factors that govern overall 

vascular remodeling. The first of these are the transcription factors that have a global 

influence on vascular growth and differentiation.

TRANSCRIPTION FACTORS IN HYPOXIC VASCULAR REMODELING

An essential first step in the initiation of hypoxic vascular remodeling is the activation of 

pathways that can sense and respond to reduced oxygen availability. Low oxygen can 

function as a trigger, inducing downstream transcriptional and translational events that 

mechanistically regulate both microvascular and macrovascular remodeling. How hypoxia is 

detected and translated into changes in gene and protein expression was uncertain for many 

years prior to the discovery of Hypoxia Inducible Factor (HIF) by Semenza in 1992 [55]. 

The transcription factor HIF is now recognized as the main signal that activates cellular 

responses to hypoxia [56] (Fig. 2). It is a heterodimeric protein composed of α and β 

subunits, both of which are basic-helix-loop-helix (bHLH) proteins classified under the PAS 

family of transcriptional regulators [57]. Under normoxic conditions, HIF-1β is 

constitutively expressed whereas HIF-1α is continuously degraded via the ubiquitin-

proteosome pathway [58]. Hypoxia inhibits prolyl hydroxylase, which is the oxygen-

dependent enzyme governing HIF-1α ubiquitination and degradation [40]. Elevated levels of 

HIF-1α facilitate the formation of the HIF-1 complex, which then can bind to Hypoxia 

Responsive Elements (HRE) in the promoter regions of numerous genes and initiate 

transcription [56].

The effects of elevated HIF are highly heterogeneous among different tissues. This 

variability is due, at least in part, to tissue specific factors that influence HIF half-life and 

degradation. For example, products of HIF-sensitive genes can feedback through tyrosine 

kinase receptors or G-protein coupled receptors and regulate HIF levels [59, 60]. HIF-1α 

also can be upregulated by thrombin-α, PDGF-AB, and TGF-β1 in cultured and renal 

vascular smooth muscle cells [61]. Prostaglandin I2 (PGI2), a vasodilator with 

vasoprotective and antioxidant properties, can stabilize HIF-1α protein in hypoxic human 

umbilical vascular endothelial cells (HU-VECs). PGI2 appear to protect HIF-1α via 

inhibition of NADPH oxidase activity and reduction in levels of reactive oxygen species, 

which retard HIF-1α degradation [62]. HIF can also be regulated by Chloride Intracellular 

Channel 4 (CLIC4), which affects the upstream regulation and promotion of HIF and its 

Silpanisong and Pearce Page 4

Curr Vasc Pharmacol. Author manuscript; available in PMC 2015 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



downstream effectors, therefore influencing active transcription of HIF sensitive genes [63]. 

Studies of HIF turnover and half-life are a logical area for future research, particularly in 

situations where revascularization of transplanted tissues is essential for successful surgical 

outcomes [64, 65].

Another determinant of heterogeneity of local responses to HIF is the compliment of 

different active genes with HRE in their promoters, and the levels of transcription factors for 

the other cis-regulatory elements in each promoter region. For example, endothelial cells 

from various vascular beds differentially respond to hypoxia-induced HIF-1 by variably 

expressing endothelin-1, inducible nitric oxide synthase (iNOS), Fibulin-5, vascular 

endothelial growth factor-A (VEGF-A), VEGF receptors, and angiopoietin receptors [66–

68]. In arterial smooth muscle, HIF can upregulate expression of low-density lipoprotein 

receptor-related protein [69]. Elevated levels of HIF-1α can also induce vascular remodeling 

under normoxic conditions in cultured vascular smooth muscle [70]. This range of effects 

emphasizes the versatility of diversity of HIF as a mediator of vascular responses to 

hypoxia.

In the brain, HIF can be used as a marker to identify hypoxia [71, 72]. Although 

upregulation of HIF-1α and its downstream effectors appear to be involved in vascular 

remodeling and hypoxic conditioning in both adult and neonatal brains [73–76], there have 

been no comparisons between adult and fetal HIF levels. Due to the fact that oxygen 

tensions are dramatically different between fetal and adult tissues, a logical speculation for 

future studies would be that HIF levels are adapted to the lower tissue oxygen tensions 

typical of the fetus. In the developing brain, HIF can directly influence proliferation of 

neuronal precursor cells [77]. HIF can also indirectly promote neuroprotection by 

stimulating expression of erythropoietin and VEGF [77–79]. Regionally, the effects of HIF 

are influenced by local conditions that determine whether HIF exerts either neuroprotective 

effects or neurotoxic effects through stimulation of apoptosis and necrosis [77]. Together, 

these results reflect the potential of HIF as a mediator of hypoxic vascular remodeling in the 

brains of both fetuses and adults.

The basic Helix-Loop-Helix structure of HIF-1α is also characteristic of Endothelial PAS 

protein 1 (EPAS1), a transcription factor closely related to HIF that might also contribute to 

the hypoxic remodeling response [80]. This transcription factor has had an interesting 

history owing to its independent discovery by at least three different research groups. 

Correspondingly, this factor has been named EPAS1 [81], HIF-1α-like factor (HLF) [82], 

and finally HIF-2α [83]. HIF-2α shares a 48% sequence identity with HIF-1α [84] and can 

be expressed during embryogenesis [85]. HIF-2α can induce cellular hypertrophy, reduce 

proliferation, and promote angiogenesis in neuroblastoma cells [86]. HIF-2α might also 

serve as a biomarker in advanced bladder cancer [87]. Interestingly, both HIF-2α and 

HIF-1α mRNA are distributed heterogeneously among all tissue and cell types [88] and can 

be expressed in the heart and lungs of neonates [81]. Both factors are stabilized by hypoxia 

and bind to HRE in multiple gene promoters [80]. As for HIF-1α, HIF-2α influences 

angiogenesis through upregulation of VEGF, and stimulates transcription of genes for EPO 

and the Tie-2 receptor [89–91]. During development, HIF-2α transcripts can be colocalized 

with HIF-1α transcripts, suggesting redundant roles that extend beyond embryogenesis that 
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could include vascular stabilization and remodeling [92]. In relation to hypoxic remodeling, 

mutations of the EPAS-1 gene that codes for HIF-2α may have more beneficial effects for 

high altitude living than mutations of the EPO gene [93]. In addition, HIF-2α can inhibit 

ROS production by stimulation of antioxidant enzyme production [94]. Unlike HIF-1α, very 

little research has examined HIF-2α or its role in vascular development, maintenance or 

remodeling.

Another transcription factor involved in hypoxic remodeling is peroxisome proliferator-

activated receptor gamma (PPARγ). Although traditionally associated with lipid metabolism 

and antioxidant protection during inflammation [95], it also plays a role in hypoxic vascular 

remodeling. Hypoxia stimulates an increase in TGF-β/Smad signaling that then 

downregulates PPARγ expression, functionally releasing a “brake” on remodeling [96, 97]. 

Hypoxic reductions in PPARγ thus promote remodeling and enable functional and structural 

changes to proceed. In the nucleus, PPARγ heterodimerizes with Retinoid X Receptor α 

(RXRα) and can then bind to peroxisome proliferator response elements (PPREs) on the 

promoter region of PPARγ target genes to induce transcription [98, 99]. In contrast to HIF, 

activation of PPARγ helps maintain vascular myogenic tone and attenuates remodeling [100, 

101] by decreasing endothelial-derived ET-1 expression and inhibiting VEGF-induced 

angiogenesis [102]. PPARγ can also decrease VSMC proliferation and stimulate apoptosis 

[102].

In the cerebral vasculature, studies of PPARγ are rare but are attracting growing scientific 

interest. Cerebral arteries from mice with negative mutations in PPARγ exhibited reduced 

PPARγ levels and underwent both functional and structural remodeling [103]. Functionally, 

the arteries demonstrated impaired responses to agonist-induced vasodilation, which was 

attributed to elevated superoxide levels secondary to reduced antioxidant protection by 

PPARγ. Structural changes included increased distensibility, wall thickness, and cross-

sectional area with decreased external diameter, as is typical of hypertrophic inward 

remodeling. Aside from the well-studied effects of PPARγ on lipid metabolism and 

inflammation, virtually nothing is known of the influence of hypoxia on PPARγ expression 

within the fetal cerebrovasculature, making this a promising topic for future investigation.

RECEPTOR TYROSINE KINASE-DEPENDENT VASOTROPHIC FACTORS

Whereas transcription factors exert effects only within the cells where they are synthesized, 

most growth factors are released into the extracellular space where they act as intercellular 

messengers. These messenger molecules, of which there are dozens, then activate cell 

surface receptors in either an autocrine or paracrine manner. One convenient method to 

classify these factors is according to the receptor type they bind and activate. For 

vasotrophic factors, the largest single class of receptors is the Receptor Tyrosine Kinase 

(RTK) family. In turn, the most widely studied vasotrophic factor that acts through RTK 

receptors is Vascular Endothelial Growth Factor [27].

Vascular Endothelial Growth Factor

VEGF was discovered more than six decades ago as the factor responsible for increased 

vascular permeability and was originally named Vascular Permeability Factor [104]. 
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Subsequent studies identified VEGF as the main factor responsible for increased vascular 

permeability in tumors [105] and is now also recognized as the main vascular growth factor 

mediating angiogenesis [106, 107]. VEGF can also promote angiogenic effects, including 

tube formation, in cell cultures and can increase vascular endothelial cell proliferation in rat 

brains [108, 109]. On the other hand, under some conditions endothelial cells do not respond 

robustly to VEGF stimulation [110], suggesting that the role of the endothelium in 

remodeling is both heterogeneous and finely regulated. The VEGF family includes seven 

members (VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, VEGF-F, and PIGF), which 

can act through three known receptor tyrosine kinases, VEGFR-1 (FLT-1), VEGFR-2 

(KDR), and VEGFR-3 [111, 112]. Activation of these receptors can initiate highly variable 

and tissue type-dependent responses. For example, activation of VEGFR-2 can induce cell 

proliferation in endothelial cells [113], but can modulate contractile protein abundance in 

vascular smooth muscle [44]. In contrast, VEGFR-3 is expressed predominantly in 

lymphatic and venous vessels where it regulates lymphangiogenesis and sprouting [114]. 

Regulation of VEGF reactivity can function in an autocrine loop in which activation of 

either VEGF-R1 or VEGF-R2 can enhance mRNA and protein expression for VEGF-R1 in 

either its particulate or soluble form [115]. In turn, expression of VEGF-A, currently the 

most potent angiogenic protein known [112], can also be induced by TGF-β1 during tumor-

induced angiogenesis [116].

A primary physiological stimulus for VEGF synthesis is hypoxia, which acts through 

HIF-1α to upregulate VEGF and other growth factors to promote homeostatic increases in 

capillary angiogenesis and vascular remodeling [117]. Hypoxia-induced HIF-1α can 

increase both VEGF-A and VEGFR-1 expression in endothelial cells derived from multiple 

different vascular beds [66] (Fig. 3). Hypoxic increases in VEGF within adjacent endothelial 

cells and pericytes can yield synergistic paracrine effects that enhance cellular growth and 

proliferation [118]. In some cell types, notably gliomas, hypoxia can also enhance VEGF 

levels through stabilization of VEGF mRNA [119, 120]. Not surprisingly, the effects of 

hypoxia on VEGF are highly tissue specific; VEGF levels can be unresponsive to hypoxia in 

the kidneys [121, 122].

In the brain, the effects of hypoxia on VEGF have been widely studied owing to the 

potential of VEGF to facilitate recovery from ischemic cerebral insults [123]. These benefits 

are due not only to the ability of VEGF to stimulate cerebral angiogenesis [40, 41, 124], but 

are due also to VEGF’s neuroprotective properties in both mature [79, 125] and immature 

brain [126]. An important component of this overall effect is that hypoxia upregulates 

expression of VEGF mRNA and protein in the brain [107, 127, 128]. VEGF also can 

enhance its efficacy in the brain through upregulation of VEGFR-2 mRNA [129]. All 

cerebral cell types appear to participate in this pattern of responses, including astrocytes, 

which exhibit increased expression of VEGF following hypoxic exposure [130]. 

Interestingly, the cellular sources of VEGF are highly age dependent such that VEGF is 

expressed primarily in neurons of the immature brain, but in both neurons and glial cells of 

the mature brain [124]. Aside from these differences, sustained hypoxia increases VEGF 

expression in both neurons and glia, regardless of postnatal age. Based on studies in large 

arteries [44], these hypoxic increases in VEGF could potentially contribute to hypoxic 
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cerebrovascular remodeling in an age-dependent manner. This hypothesis awaits future 

experimental confirmation.

Platelet Derived Growth Factor

Platelet-Derived Growth Factor (PDGF) has long been recognized as a major influence on 

vascular growth and development, particularly in developing tissues [131, 132]. It is a 

dimeric polypeptide with extensive homology to the peptide sequences of VEGF [133]. One 

major consequence of this homology is that receptors for PDGF can be activated not only by 

PDGF, but by VEGF as well [134, 135]. Active PDGF ligands can be composed of any pair 

of four different isoforms, designated as A, B, C, and D. The most common pairs, 

biologically, are PDGF-AA, PDGF-AB, and PDGF-BB [136] and thus the A and B forms 

have been most widely studied. Polypeptides, A and B, are transcribed from different genes 

but can be dimerized by a disulfide bond [137, 138]. The receptors that bind active PDGF 

dimers are composed of two different subunits, an α-subunit (PDGFR-α), which can bind 

both A and B chains, and a β-subunit (PDGFR-β), which can bind B-chain only. These 

subunits can associate reversibly to bind specific PDGF ligands [139]. Most importantly, 

different PDGF ligands produce different cellular responses even when acting on a common 

receptor [140]. PDGF can stimulate mitogenesis in smooth muscle, NO-dependent 

vasorelaxation in endothelium-intact aortic rings [141], and microvascular angiogenesis in 

invasive breast cancer [142]. PDGF-BB can transform smooth muscle to a less contractile 

phenotype, and is crucial for proper lung development of neonatal rats [28, 143].

As for most vasotrophic factors, the levels of PDGF and its receptors in any tissue are 

subject to regulation by many different influences. PDGFR-α levels can be upregulated by 

basic fibroblast growth factor (FGF-2), which can facilitate smooth muscle proliferation 

upon subsequent stimulation with PDGF-AA [144]. Alpha-thrombin can also increase 

mRNA levels for PDGF-A and simultaneously decrease mRNA for PDGFR-β in smooth 

muscle [145]. Hypoxia is also an important modulator of PDGF signaling in many different 

tissues. Although hypoxia has little effect on renal expression of PDGF-A and PDGF-B 

[121, 122], hypoxia can markedly increase transcription of the PDGF-B gene in HU-VEC 

cultures [138]. In rat lung parenchyma, hypoxia can transiently increase PDGF-B mRNA 

levels [146]. In neonatal rat lung, hypoxia increased mRNA for PDGF-B, PDGFR-α and 

PDGFR-β but decreased the apparent protein abundance of PDGF-A, PDGF-B and PDGFR-

α [143], suggesting important hypoxic effects on the stability and translation efficiency of 

these mRNAs. In pulmonary arterial smooth muscle of neonatal rats, chronic hypoxia 

increased proliferation and expression of both PDGF-BB and PDGFR-β [147]. Hypoxia also 

appears to mediate PDGF-dependent hyperphosphorylation of PDGFR-β, and thereby 

enhance pulmonary artery endothelial and smooth muscle proliferation [148, 149].

Within the central nervous system, PDGF is crucial for recruitment of pericytes involved in 

brain capillary angiogenesis during embryonic development [136, 150]. Recruited pericytes 

can produce other vasotrophic factors such as TGF-β and VEGF, and are crucial in 

initiation, guidance, extension, and maturation of vessels [117]. In areas of focal ischemic 

cerebral infarct, injured tissue expresses increased levels of mRNA and protein for both 

PDGF-B and PDGFR-β [136]. More directly, hypoxia can increase mRNA and protein 
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levels for PDGF-B in human glioblastoma cells [151]. In neurons, hypoxia can also increase 

mRNA and protein for PDGF-B and subsequent phosphorylation of PDGFR-β, leading to 

Akt activation and attenuation of apoptosis [152]. Effects of hypoxia in the central nervous 

system also appear to be regionally heterogeneous; chronic hypoxia can depress the 

abundance of PDGFR-β receptors in the dorsocaudal brainstem and simultaneously increase 

mRNA levels for PDGF-B and PDGFR-β in the solitary tract nucleus [153–155]. Together, 

these results demonstrate that, as for VEGF, the effects of hypoxia on PDGF signaling are 

highly dependent on age and cell type. Similarly, the roles of PDGF in hypoxic 

cerebrovascular remodeling remain largely unexplored, particularly in the immature brain.

Angiopoietins

Many of the vascular effects of hypoxia are attributable to the factors whose expression is 

upregulated by the actions of HIF-1α. In addition to VEGF, HIF-1α also drives the 

expression of angiopoietins, growth factors crucial for vascular maintainance and induction 

of vessel sprouting [156]. HIF increases angiopoietin-2 (Ang2) levels via a COX-2 

dependent increase of prostaglandin E2 [157]. Four types of angio-poietin have been 

identified, including Ang1, Ang2, Ang3, and Ang4, all of which play a role in vascular and 

lymphatic remodeling in the adult mice [158, 159]. In endothelial cells, however, Ang1 and 

Ang3 exhibit few mitogenic effects [160, 161]. Expression of angiopoietins in vascular cell 

types is also heterogeneous; vascular smooth muscle expresses both Ang1 and Ang2 but 

endothelial cells primarily express just Ang2 [162]. As for VEGF, angiopoietins can also be 

anti-apoptotic, particularly in endothelia and mesenchymal stem cells [163, 164]. The 

receptors for angiopoietins are members of the RTK family and include Tie1 and Tie2 [162, 

165]. In combination with these receptors, Ang1 and Ang2 operate in a push-pull manner in 

which Ang2 destabilizes, and Ang1 stabilizes, vessels undergoing angiogenesis [166–168]. 

To achieve this effect, Ang2 inhibits binding of Ang1 to Tie2 and thereby destabilizes 

capillaries and helps initiate microvascular angiogenesis. In addition, Tie1 also reciprocally 

regulates the binding of Ang1 and Ang2 to the Tie2 receptor to control responses to 

angiopoietin stimulation [169].

In relation to vascular remodeling, angiopoietins act in concert with VEGF [114]. Together 

with VEGF, Ang1 promotes increased arterial lumen diameter and Ang2 acts to extend 

vessel length and increase propagation of sprouting cells [117, 168]. Both VEGF and FGF-2 

can increase Ang2 in microvascular endothelial cells, which can antagonize the effects of 

Ang1 and promote disassembly of the vascular wall and formation of new vessel sprouts 

[170]. Conversely, TGF-β1 can decrease Ang2 production. Ang1 and Ang2 can also 

decrease Ang2 production through negative feedback at the mRNA level. Correspondingly, 

expression of angio-poietin receptors are also subject to physiological regulation through 

which FGF-2 and VEGF, either alone or in combination, can increase Tie1 expression. 

Similarly, Tie2 expression can be increased by FGF-2, Ang1, or Ang2 [162]. Clearly, the 

angiopoietins are another category of important vasotrophic factors whose complex 

influences are governed by the simultaneous actions of multiple physiological influences.

One key determinant of angiopoietin actions is hypoxia. Hypoxia can upregulate Ang2 

mRNA and protein levels in all major categories of cells [171–173]. In endothelial cells, 
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hypoxia-induced increases in HIF-1 produce reciprocal increases in Ang2 and Tie2 

expression but decreases in Ang1 expression [66, 173, 174]. Hypoxia also can increase both 

the transcription and stability of Ang2 mRNA in HUVECs [157]. Hypoxia can regulate 

Ang2 expression indirectly, at least in HUVEC cultures, through HIF-induced increases in 

COX-2 and subsequent increases in prostacyclin and prostaglandin E2, which in turn can 

increase Ang2 levels under either normoxic or hypoxic conditions [157].

Within the central nervous system, angiopoietins and their receptors can be expressed by 

neurons as well as by cerebrovascular cell types. Ang1 promotes Akt phosphorylation in 

neurons, and thereby inhibits caspase-3 activation and attenuates apoptosis [175]. In 

cerebrovascular endothelial cells, hypoxia and ischemia can increase Ang2 mRNA and 

protein without effects on Ang1 or Tie2 [176, 177]. Cerebral ischemia also can promote 

transient and region specific changes in Tie1 and Tie2 expression that correspond with 

regional changes in cerebral blood flow [178]. Most interestingly, regions exhibiting 

increased angiogenic activity also demonstrated colocalization among Tie2, Ang2, FGF-2 

and VEGF, emphasizing the critical role of interactions among factors involved in vascular 

remodeling [178]. To date, most studies of the roles of angiopoietins in cerebrovascular 

remodeling have focused on their contribution to responses of the cerebral microcirculation 

to ischemia [179]; systematic assessments of the effects of hypoxia alone on participation of 

angiopoietins in cerebrovascular remodeling have yet to be performed. Such studies could 

be particularly illuminating in regards to control of physiological cerebral angiogenesis and 

remodeling, particularly in the immature cerebral circulation where low oxygen tension and 

high prostaglandin concentrations are typical.

Fibroblast Growth Factor

The fibroblast growth factor (FGF) family includes 22 members that can act on any of the 

four FGF tyrosine kinase receptors [180]. As established mitogens for endothelial cells, 

basic fibroblast growth factors (FGF-2) can initiate angiogenesis by inducing endothelial 

cell proliferation and cord formation [181]. As for other angiogenic growth factors, FGFs 

are synergistic with VEGF and other vasotrophic factors in their ability to promote capillary 

formation [167]. The production of FGF-2 by capillary endothelial cells can act in an 

autocrine manner to stimulate further endothelial cell proliferation [182]. In addition to these 

autocrine effects, FGF-2 can regulate expression of other factors. For example, FGF-2 can 

upregulate PDGFR-α levels, allowing smooth muscle cells to become more responsive to 

PDGF-AA stimulation [144]. FGF-2 itself is subject to upregulation by PDGF-BB and TGF-

β in VSMCs [183]. In relation to vascular remodeling, a particularly important effect of 

FGF-2 is its ability to induce morphological, and possibly phenotypic, transformation in 

aortic smooth muscle [184]. Such effects may be particularly important during hypoxia, in 

which FGF-2 can increase ROS production, stabilize HIF-1α and other ROS-sensitive 

transcription factors, and increase its own transcription and translation in an autocrine 

manner [148, 185, 186]. During episodes of postnatal chronic hypoxia, FGF-2 levels can be 

increased heterogeneously among different brain regions and are particularly prominent in 

immature glial cells [187]. In hypoxic neurons, FGF-2 may also improve neuronal survival, 

contribute to hypoxic conditioning and serve a neuroprotective role [186, 188, 189]. These 

neuroprotective effects can be observed also in hypoxic-ischemic neonatal rat brain [190]. 
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Interestingly, FGF-2 appears to increase proliferation, retard maturation, and hinder 

differentiation of neural progenitor cells [191]. How FGF-2 affects vascular smooth muscle 

progenitor cells is unknown. This raises the untested possibility that a portion of the 

neuroprotective effects of FGF-2 following an interval of hypoxia may be attributable to 

potential protective effects on the multiple cell types that make up the arterial wall.

RECEPTOR TYROSINE KINASE-INDEPENDENT VASOTROPHIC FACTORS

The ability of hypoxia to promote vascular remodeling is clearly a consequence of a highly 

dynamic interplay among multiple vasotrophic factors and physiological influences. As 

indicated above, growth factors dependent upon tyrosine kinase receptors constitute a major 

component of this regulation. However, the vasotrophic factors involved in hypoxic 

remodeling also include many other growth factors that act independently of RTKs. One of 

the best studied of these RTK-independent vasotrophic factors in Transforming Growth 

Factor β.

Transforming Growth Factor β

The transforming growth factor beta (TGF-β) superfamily consists of three main isoforms, 

TGF-β1, TGF-β2, and TGF-β3 [192, 193], all of which can promote angiogenesis or vessel 

regression in tumors [194, 195]. TGF-β1 can decrease endothelial tube formation and cause 

capillary-like structures to regress [167]. The receptors for TGF-β molecules are serine-

threonine kinases that phosphorylate Smad proteins, leading to their translocation to the 

nucleus where they alter transcription of numerous genes [196]. In smooth muscle cells, 

TGF-β1 can promote differentiation but is only one of many factors governing this process 

[197]. Of particular importance for vascular remodeling are the antagonistic interactions 

between TGF-β1 and FGF-2. In this context, either decreased FGF-2 or increased TGF-β1 

can induce pericyte differentiation and expression of α-smooth muscle actin, leading to 

differentiation of the contractile smooth muscle phenotype [198].

Hypoxia can increase TGF-β2 mRNA and protein levels and enhance Smad2 and Smad3 

phosphorylation in endothelial cells [199] (Fig. 4). Hypoxia-induced HIF-1 also binds Smad 

proteins, which serve as coactivators and thereby contribute to hypoxic vascular remodeling 

[200, 201]. Increases in TGF-β expression can induce G protein–coupled receptor kinase 2 

(GRK2), a downstream effector of TGF-β, to desensitize G-protein coupled receptors via 

negative feedback, terminate TGF-β/Smad signaling, and inhibit Ang2-induced proliferation 

[202]. In the brain, TGF-β1 secreted by microglia and macrophages contribute to 

cerebrovascular remodeling following a focal ischemic insult [203]. These effects, together 

with the ability of TGF-β1 to inhibit microglial activation, help explain why TGF-β1 can be 

neuroprotective following hypoxic-ischemic insults [204–208]. Despite these many effects 

of TGF-β on vascular development and differentiation, systematic studies of the roles of this 

growth factor in normal growth and development of the cerebral vasculature have yet to be 

undertaken, particularly in relation to the vascular effects of hypoxia.
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Nitric Oxide

The vascular endothelium plays a critical role in regulating active vascular tone under both 

normoxic and hypoxic conditions through the release of two main vasoactive factors, nitric 

oxide (NO) and endothelin (ET), with generally opposing effects on contractility [209, 210]. 

In addition to their well-documented vasomotor roles, however, both of these factors also 

exert continuous and opposing trophic influences on adjacent smooth muscle. Given that 

hypoxia increases endothelin synthesis but decreases NO synthesis and release, both of these 

factors are important contributors to hypoxic vascular remodeling [66, 211].

The vasorelaxant characteristics of nitric oxide arise largely from its ability to activate 

soluble guanylate cyclase and increase cGMP synthesis, which activates the serine-threonine 

kinase Protein Kinase G (PKG) [210, 212, 213]. PKG, in turn, can phosphorylate a broad 

variety of substrates within smooth muscle, including transcription factors such as CREB 

that govern smooth muscle phenotype [214, 215]. Aside from smooth muscle, PKG can also 

play a role in endothelial cell differentiation and tube formation [216]. Apart from PKG, NO 

can also downregulate expression of other vasotrophic factors, including preproET-1 and 

PDGF-B [217].

Physiological release of endothelial nitric oxide is governed primarily by fluid shear stress. 

Not only does shear stress promote the immediate release of NO, it also can upregulate 

eNOS mRNA and the long-term capacity for NO release [218]. Levels of eNOS are also 

increased by FGF-2 [216]. Similarly, stimulation of the insulin receptor can activate PI3K 

and Akt pathways to induce NO production, suggesting that changes in insulin receptor 

density influence NO release [219]. Through activation of the ETA receptor, endothelin can 

also upregulate expression of eNOS in pulmonary vascular endothelium [220]. Because 

oxygen radicals can rapidly inactivate NO [107], any long-term change in anti-oxidant 

activity also changes NO action on adjacent smooth muscle. Statin treatment can also 

increase NO bioavailability in fetal sheep, most probably through an increased capacity for 

NO synthesis [221]. Equally important, the capacity for NO synthesis and release in most 

vascular beds increases with developmental age [222, 223], which helps explain certain age-

related differences in reactivity to endothelium-dependent vasodilators [224] but also 

predicts that the role of NO in vascular remodeling strengthens with advancing postnatal 

age.

Under conditions of hypoxia, changes in NO production are highly heterogeneous and 

depend on the duration and intensity of hypoxia in an organ specific manner. In the hypoxic 

lung, NO can promote angiogenesis and ameliorate hypoxic pulmonary hypertension [225]. 

Hypoxia also increases eNOS mRNA in the pulmonary vasculature, which helps attenuate 

pulmonary remodeling and hypertrophy [220, 226]. In contrast, in the cerebral and femoral 

vasculatures, NO production is depressed, which compromises NO-dependent stabilization 

of contractility and promotes remodeling [227, 228]. Attenuation of the capacity for NO 

release by chronic hypoxia is further enhanced by simultaneous reductions in sGC activity in 

both fetal and adult arteries [50]. In parallel, chronic hypoxia enhanced neuronal NOS 

expression in fetal brain homogenates [229] but depressed nNOS expression in the 

perivascular nerves innervating middle cerebral arteries [230], suggesting that hypoxia 

exerts opposite and tissue specific effects on NO production within the brain. Most 
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interestingly, cerebral expression of eNOS, nNOS and iNOS were all increased following 

recovery from hypoxia, demonstrating that overall regulation of NO production is very 

tightly controlled. Altogether, these findings emphasize that NO stabilizes the contractile 

phenotype but is only one of many factors that contribute to the highly integrated, 

multifactorial processes determining vascular differentiation and remodeling, particularly 

during sustained hypoxia.

Endothelins

The discovery that vascular endothelium mediates acetylcholine-induced vasodilatation 

[231] through the release of NO [232] motivated numerous follow-up studies of other 

possible endothelium-derived vasoactive factors. In 1988, Yanagisawa reported that in 

addition to NO, the endothelium also releases endothelin (ET), one of the most potent 

endogenous vasoconstrictors ever discovered [233]. Three isoforms of endothelin have been 

identified (ET-1, ET-2, and ET-3) and these activate two separate endothelin receptors (ETA 

and ETB) [234]. The two ET receptors display distinct affinities for each ET subtype and 

often exhibit opposing actions; ETA can induce vasoconstriction whereas ETB can stimulate 

vasodilation, depending on the location and distribution of each receptor type [235, 236]. In 

some situations, ET can also induce release of vasodilators [237, 238].

Endothelin is implicated in many diseases, especially in hypertension-induced remodeling 

[239]. ET appears involved in hypertension-induced hypertrophy of cerebral arteries without 

changing their distensibility [240]. Diabetic mice can also display increased ET receptor 

levels and ET-1 dependent matrix metalloproteinase activation, which can facilitate 

cerebrovascular remodeling, especially after hypoxic exposure [241, 242]. Through binding 

to ETA receptor, increased ET levels can activate the transcription factor Nuclear Factor of 

Activated T cells, isoform 3 (NFAT3), resulting in hypertension and vascular remodeling. In 

smooth muscle, NFAT3 can increase smooth muscle α-actin mRNA and contribute to 

increased cross-sectional wall thickness in mesenteric arteries [243].

Expression and release of ETs are regulated by a broad variety of influences. Importantly, 

ETs can be produced by non-endothelial cell types, including vascular smooth muscle, 

although at a much lower rate than by endothelial cells [244]. Levels of ET mRNA in 

cultured human vascular smooth muscle can be enhanced by numerous vasotrophic factors 

including Ang2, TGF-β, and PDGF-AA [245]. In pulmonary artery smooth muscle, TGF-β 

can directly enhance expression of mRNA for preproET-1 (ET-1 precursor) and thereby 

increase ET-1 expression [246, 247]. In feedback fashion, hypoxia-induced increases in 

RTK-dependent growth factors (FGF-1, FGF-2, and PDGF-BB), but not G-protein coupled 

vasotrophic factors (Angiotensin-II and ET-1) can upregulate ETA expression in cultured 

pulmonary artery smooth muscle [248].

Hypoxia is a particularly important regulator of ET expression in many vascular beds. In the 

rat kidney, hypoxia increases ET-1 expression [121]. In the rat pulmonary circulation, 

hypoxia can increase both pulmonary and plasma ET expression [249]. In mouse and human 

pulmonary artery endothelial cells, hypoxia can increase expression of not only ET-1, but 

also Endothelin Converting Enzyme-1, ETA, and ETB [250]. Chronic hypoxia can also 

increase mRNA levels for preproET-1 and ET-1 protein in pulmonary smooth muscle and 
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epithelium together with increased medial thickness of bronchiolar arteries [251]. In turn, 

hypoxic increases in ET-1 can be attenuated by PPARγ activation [250]. Interactions 

between NO and ET, both of which are modulated by hypoxia, also affect the hypoxic 

remodeling response. In this manner, endothelium derived NO can attenuate hypoxic 

remodeling and medial hypertrophy secondary to increased ET-1 levels [226]. NO can also 

downregulate ET-1 levels and this effect can be strong enough to abrogate hypoxia-induced 

increases in ET-1 mRNA and protein in endothelial cells [217]. In feedback fashion, 

hypoxic increases in ET-1 can act through the ETA and ETB receptors to elevate eNOS 

mRNA in the pulmonary vasculature while also increasing circulating hematocrit and ET-1 

levels. These increased ET-1 levels promote thickening of the medial layer in pulmonary 

arteries [220].

In the normoxic central nervous system, neurons and endothelial cells express preproET-1, 

and neurons also express both ETA and ETB receptors [252, 253]. Following a hypoxic-

ischemic insult, ET-1 expression is upregulated primarily in endothelial and glial cells [253, 

254]. Hypoxia-ischemia can also upregulate ETA and ETB receptors in cerebral arteries 

[255]. Such changes in ET-1 signaling pathways can have important consequences for post-

ischemic recovery, given that ET-1 can reduce cerebral perfusion under normoxic, hypoxic, 

and hypercapnic conditions, such as those typical of the post-ischemic brain [256]. 

Consistent with this possibility, overexpression of ET-1 can compromise blood-brain-barrier 

integrity and enhance edema following an ischemic cerebral insult [257]. In addition, by 

virtue of its properties as an endogenous ET antagonist [258], the hormone relaxin has the 

potential to ameliorate ET-induced cerebrovascular remodeling [259]. This hypothesis 

awaits direct experimental confirmation, as does the more general hypothesis that age-

dependent hypoxic cerebrovascular remodeling is mediated, at least in part, by increased 

ET-1 effects on cerebral arteries.

Angiotensin II

The renin-angiotensin system is best known for its critical roles in regulation of salt and 

water balance, and how dysfunction of this regulation can lead to hypertension. 

Hypertension associated with elevated production of angiotension, in turn, can also lead to 

secondary changes in vascular structure and function [260, 261]. Some of this remodeling, 

however, may be due to direct vasotrophic effects of angiotensin II on vascular smooth 

muscle [262, 263]. Correspondingly, any perturbations that alter the levels or activity of 

Angiotensin Converting Enzyme (ACE), responsible for the conversion of angiotensin I to 

angiotensin II, also play a role in hypertensive remodeling and atherosclerosis [264].

Angiotensins include four main molecules (-I, -II, -III, and -IV) that bind and activate two 

isoforms of G-protein coupled receptors, the AT1 and AT2 [265]. AT1 receptors can be 

further sub-classified as AT1A or AT1B, each with a unique tissue distribution [266, 267]. 

The AT1 receptor appears to induce vascular remodeling when activated by angiotensin II 

[262, 268]. The AT2 receptor is typically less abundant than the AT1 except in developing 

tissues [268]. Stimulation of AT2 receptors can inhibit proliferation and induce cellular 

differentiation [269]. The AT2 receptor also can stimulate NO production and cGMP 

increases in the kidneys, especially during sodium depletion [270]. Tissue distributions of 
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AT1 and AT2 receptors are highly heterogeneous, but both receptors can be expressed on 

vascular endothelia where they generally exert opposing effects [271]. Similarly, the AT1 

and AT2 receptors also have opposing actions on angiotensin II mediated regulation of 

circulating blood volume and pressure [268, 272]. These effects can involve interactions 

among angiotensin II receptors, and the mineralocorticoid receptors that bind and respond to 

aldosterone [273]. Local inflammation can enhance the ability of angiotensin II to induce 

vascular remodeling [274]. Typically, angiotensin II stimulates expression of PDGF and 

TGF-β through activation of AT1 receptors [275], and can increase eNOS and NO release in 

fetoplacental artery endothelial cells [276]. Angiotensin II can also transactivate certain 

tyrosine kinase receptors, including those that mediate responses to PDGF [262, 277].

One of the most important effects of AT1 activation is increased formation of reactive 

oxygen species (ROS) [278]. These ROS molecules, which may originate from membrane-

bound NADPH oxidase or mitochondrial synthesis [279], can induce vascular smooth 

muscle hypertrophy, hyperplasia, and migration [280, 281]. Activation of AT1 by 

angiotensin II can increase the expression and activity of membrane-bound NADPH 

oxidase, and thereby stimulate ROS production [275, 278]. Increases in ROS can, in turn, 

have many effects including reaction with NO leading to decreased NO bioavailability. In 

turn, loss of NO can enhance the effects of angiotensin II on smooth muscle growth by 

upregulating AT1 receptors, and can increase expression of endothelial ACE and ET-1 

[282]. Angiotensin II can also increase HIF-1α gene expression and protein stability via a 

ROS-dependent mechanism [283, 284].

Numerous physiological and pathological perturbations influence the levels and 

cardiovascular effects of the angiotensins. Angiotensin II can be induced by VEGF, 

resulting in a positive feedback loop, in which the increased angiotensin II activates AT1 

receptors that further increase expression of HIF-1, VEGF, and VEGF receptors leading to 

additional increases in angiotensin II [285]. Hypoxia can alter AT1 expression through 

mechanisms that appear highly sensitive to history and context; hypoxia has been reported 

both to increase [286] and decrease [287] AT1 expression in vascular smooth muscle. 

During hypertension, the effects of angiotension II can be modulated by the simultaneous 

actions of FGF-2, resulting in enhanced stimulation of smooth muscle hypertrophy, 

proliferation and remodeling in cerebral but not extracerebral arteries. Conversely, 

angiotensin II can stimulate FGF-2 synthesis, and thereby amplify its effects on 

hypertension-induced cerebrovascular remodeling [288]. How angiotensin II contributes to 

hypoxic cerebrovascular remodeling remains unstudied, particularly in the immature 

cerebral circulation.

Catecholamines

Catecholamines serve important roles as neurotransmitters in both the central and peripheral 

nervous systems [289]. Aside from their well-documented effects on post-synaptic G-protein 

coupled receptors, both norepinephrine (NE) and serotonin (5-HT) can exert trophic effects 

on smooth muscle. These effects were recognized for NE in the late 1970s when it was 

observed that sympathetic denervation caused a relative atrophy and thinning of rabbit 

cerebral arteries [290, 291]. Subsequent studies furthered these findings and documented the 
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ability of adrenergic perivascular nerves to stimulate phenotypic transformation in vascular 

smooth muscle [292] through activation of α1A adrenergic receptors by NE [293]. Because 

chronic hypoxia can depress NE content and stimulation-evoked release [230, 294], chronic 

hypoxia should also attenuate the trophic influence of NE on cerebrovascular smooth muscle 

growth and differentiation. In addition, chronic hypoxia appears to depress NO release by 

perivascular nitrergic nerves [230], which should further compromise adrenergic 

vasotrophic stimulation of cerebrovascular growth and differentiation. Given that the 

adrenergic neuroeffector apparatus is functionally immature in fetal cerebral arteries [295], 

these results raise the possibility that cerebrovascular maturation relies on increasing trophic 

support from the adrenergic perivascular innervation. In turn, if chronic hypoxia inhibits the 

functional maturation of the adrenergic perivascular innervation, then the functional effects 

should be similar to adrenergic denervation in the fetal cerebral circulation. This hypothesis 

awaits experimental evaluation.

The other main neurotransmitter catecholamine with trophic effects is serotonin. This 

molecule can act through a broad variety of G-protein-coupled receptors [296, 297] that are 

heterogeneously expressed by both the smooth muscle and endothelium of virtually all 

blood vessel types [298]. In the pulmonary circulation, 5-HT can increase vascular 

permeability and induce smooth muscle proliferation. These effects appear to be mediated 

through activation of 5-HT1B receptors and subsequent stimulation of ROS production 

[299]. Pathological increases in the expression of serotonin transporters (5-HTT or SERT) 

appear to enhance the proliferative, ROS-dependent effects of 5-HT on pulmonary smooth 

muscle [296, 300]. Some mitogenic effects of 5-HT, however, may be attributable to 

increased prostaglandin synthesis [297]. For example, 5-HT can stimulate prostacyclin 

production in aortic smooth muscle [301]. Prostacyclin, in turn, can stabilize HIF-1 through 

attenuation of ROS production [62] and both prostacyclin and PGE2 can increase expression 

of Ang2 [157]. Stimulation of prostacyclin receptors can upregulate smooth muscle cell 

contractile markers reflecting a shift from synthetic to contractile phenotype [30]. These 

effects of 5-HT may be more pronounced in older individuals [302]. Owing to the ability of 

estradiol to potentiate the proliferative effects of 5-HT, these effects can be more 

pronounced in females than in males and may contribute to the higher incidence of 

pulmonary arterial hypertension observed in women [303].

In relation to hypoxic vascular remodeling, hypoxia can increase mRNA for 5-HT and 

thereby enhance smooth muscle proliferation [304]. Adenosine, whose concentrations are 

elevated by hypoxia, can potentiate the proliferative effects of 5-HT by enhancing 

expression of the 5-HT transporter. This effect leads to internalization of 5-HT and 

increased ROS production, which contributes to the mitogenic effects of 5-HT on smooth 

muscle [304]. In contrast to other vasotrophic factors, hypoxia appears to have little effect 

on the expression of 5-HT receptors and their artery-size dependent patterns of expression 

[305]. It remains possible, however, that the perivascular serotonergic cerebrovascular 

innervation could be modulated by chronic hypoxia, as suggested for the adrenergic 

innervation. Because the serotonergic innervation is completely intracranial [306], it is not 

surgically possible to perform a denervation and observe the resulting effects on 

cerebovascular growth, differentiation, and function. Confirmation of a vasotrophic role for 

Silpanisong and Pearce Page 16

Curr Vasc Pharmacol. Author manuscript; available in PMC 2015 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the serotonergic cerebrovascular innervation must await the development of alternative 

experimental approaches.

Purines

As a class, the purines couple tissue metabolic activity to vascular growth, proliferation, and 

contraction through actions on three main classes of G-protein coupled purinergic receptors 

(P1, P2X, and P2Y) [307]. Adenosine can activate four P1 receptors (A1, A2A, A2B, and A3) 

and also the P2X1 receptor. ADP can activate both P2X and P2Y receptors [308]. ATP can 

bind and activate P2X1 and P2Y receptors [308–311]. Together, the purines help regulate 

endothelial and smooth muscle proliferation, migration, and apoptosis and thereby 

contribute significantly to many patterns of vascular remodeling [310]. ATP, released by 

perivascular nerves and endothelial cells, can promote mitogenesis in vascular smooth 

muscle [312]. In relation to regulation of smooth muscle phenotype, synthetic smooth 

muscle tends to express P2Y1 and P2Y2 receptors more than P2X1, whereas in contractile 

smooth muscle P2X1 abundance predominates over that of the P2Y isoforms [29, 312]. This 

pattern raises the important question: are patterns of P2X and P2Y receptor expression a 

cause, or a consequence, of phenotypic transformation in smooth muscle? ADP can also 

induce proliferation and migration of endothelial cells, and can activate A2 receptors to 

inhibit proliferation of smooth muscle cells [312]. In addition, ADP acts synergistically with 

PDGF, TGF-β, among others to induce VSM proliferation [310, 312]. Extracellular 

adenosine can contribute to pulmonary vascular remodeling via A2A receptors, and 

extracellular actions of both ATP and adenosine can stimulate endothelial apoptosis and act 

through A2 receptor, a P1 receptor subtype, to inhibit SMC proliferation [312, 313]. 

Hypoxia can inhibit ATP production due to decreased oxygen availability. On the other 

hand, hypoxia increases adenosine levels and thereby amplifies the proliferative effects of 

adenosine. For example, hypoxic increases in adenosine activate endothelial A2A and A2B 

receptors and stimulate EC proliferation [311, 312]. Importantly, A2B receptor stimulation 

can also increase VEGF mRNA to promote angiogenesis [312]. Through activation of P2 

and A2A receptors, adenosine can also promote NO release and thereby activate NO-

dependent influences on smooth muscle growth and differentiation [310, 311]. Hypoxia 

further potentiates these effects of adenosine by inhibiting the abundance and activity of 

adenosine kinase, the enzyme responsible for recycling of adenosine through conversion 

into AMP [314]. This effect is mediated by HIF-1α binding to HREs, which depresses 

transcription of the adenosine kinase gene [314]. As a group, the purines are important 

mediators of the coupling between oxygen dependent metabolic activity and vascular 

function. The importance of these mechanisms in the cerebral circulation remains largely 

unstudied in all age groups. Owing to the common therapeutic use of agents such as 

dipyridamole that alter circulating purine levels and actions [315], the potential vasotrophic 

effects of such treatments urge caution.

FUTURE DIRECTIONS

The past decade has ushered in a revolution in the understanding of vascular biology. The 

classical view of blood vessels as static, homogeneous structures has slowly yielded to the 

more contemporary view of the vascular wall as a highly dynamic and heterogeneous tissue 
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with multiple cell types undergoing regular phenotypic transformation. The extent and 

character of these transformations are governed by a growing list of vasotrophic factors that 

continuously modulate vessel structure and function to support tissue growth and metabolic 

demand. The vasotrophic factors involved include not only the classical receptor tyrosine 

kinase ligands such as VEGF, PDGF, angiopoietins and FGF, but also a diverse category of 

smaller multifunctional molecules that influence smooth muscle growth and proliferation 

independent of receptor tyrosine kinases. This category includes TGF-β, nitric oxide, 

endothelin, angiotensin II, catecholamines, and purines. These non-classical vasotrophic 

factors appear to help fine-tune vascular composition and reactivity to meet the demands of 

tissue growth, development, and physiological stress. As seen repeatedly, the expression of 

these vasotrophic factors can be heterogeneous among various tissue types and vascular 

beds to ensure a close coupling between metabolic supply and demand. These fundamental 

differences in oxygen requirements for metabolic homeostasis among various tissues imply 

different susceptibilities to hypoxic insults. Consequently, both functional and structural 

adaptations of the vasculature are also organ specific. These mechanisms integrate to assure 

that blood flow and metabolic demand are closely matched in all vascular beds, especially 

under environmental stresses such as hypoxia. From this perspective, one of the most 

promising future endeavors will be to better understand the basic principle of “excitation-

transcription coupling”, as introduced by Wamhoff [316]. This idea advances the notion that 

the same calcium transients that initiate muscle contraction simultaneously help activate key 

transcription factors, such as myocardin [317, 318], that drive expression of genes coding 

for critical proteins required for contraction. In this manner, contractile stimuli produce both 

short-term and long-term effects that serve to “condition” the blood vessels involved. How 

these signals integrate with other vasotrophic signals, growth factors, and pathogenic stimuli 

remains an exciting arena for future investigation.
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Fig. 1. Categories of Vascular Remodeling
Remodeling can be hypertrophic, eutrophic, or hypotrophic. In hypertrophic remodeling, the 

medial cross-sectional area increases. In eutrophic remodeling, total medial cross-sectional 

area remains unchanged. In hypotrophic remodeling, cross-sectional area decreases. 

Remodeling that results in a reduction in luminal diameter with constant outside diameter is 

classified as inward remodeling (left panel). Remodeling that involves an increase in outside 

arterial diameter with a constant inside diameter is classified as outward remodeling (right 

panel). In eutrophic remodeling, both inside and outside diameters change. In the above 

panels, eutrophic remodeling is represented as a change in horizontal position with no 

vertical change. These combined structural changes profoundly influence the contractile 

characteristics of the individual smooth muscle cells within the medial layer.
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Fig. 2. Hypoxia and Transcription Factors
Prolyl hydroxylase, the oxygen sensor, is responsible for HIF-1α ubiquitination and 

degradation under normoxic conditions. Hypoxia inhibits prolyl hydroxylase, leading to 

elevated levels of HIF-1. Accumulated HIF-1α can then facilitate the formation of the HIF-1 

complex with constitutively expressed HIF-1β, which can then translocate to the nucleus 

where it binds to Hypoxia Responsive Elements (HRE) in the promoter regions of multiple 

genes and initiates transcription. Hypoxia-induced increases in TGF-β lead to Smad 

phosphorylation, which can also serve as coactivators for HIF-1α, and decrease PPARγ 

expression.
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Fig. 3. Effects of Hypoxia on Expression of Receptor Tyrosine Kinase-dependent Vasotrophic 
Factors
Hypoxia-induced increases in HIF-1 levels can stimulate the transcription and translation of 

multiple Receptor Tyrosine Kinase-dependent vasotrophic factors. HIF-induced increases in 

FGF have been shown to stabilize HIF-1α, effectively enhancing its own synthesis. 

Increases in VEGF and VEGF receptors can induce endothelial cell proliferation. In addition 

to having angiogenic effects, VEGF can also be neuroprotective, can induce endothelial cell 

proliferation and vascular remodeling. VEGF can also activate PDGF receptors. Hypoxia 

causes an increase in VEGF, Angiopoietin 1 (Ang1), and PDGF-B levels, which activate 

Akt and inhibit apoptosis, particularly in neurons.
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Fig. 4. Hypoxia has heterogeneous effects on Receptor Tyrosine Kinase-independent vasotrophic 
factor signaling across various cell types
In perivascular nerves, hypoxia inhibits the synthesis and decreases the content of NE while 

enhancing serotonin (5-HT) synthesis. Elevated 5-HT levels can then induce proliferation of 

smooth muscle cells and increase prostacyclin levels, which inhibits ROS production and 

increase Ang2 production. Adenosine can activate A2 receptors and inhibit proliferation 

while ATP enhances mitogenesis in SMCs but can also increase endothelial cell 

proliferation. Hypoxia enhances the expression of TGF-β, preproET-1 and ET-1 while 

inhibiting NO synthesis in endothelial cells. Hypoxia also enhances expression of both ET 

receptors in smooth muscle, thereby enhancing the effects of ET-1. Increased TGF-β2 levels 

enhance Smad2/Smad3 phosphorylation, which can then act as a coactivator for HIF-1. 

Angiotensin II activates AT1, which leads to an increase in FGF-2, PDGF, TGF-β, and 

NADPH oxidase. Increased NADPH oxidase leads to enhanced ROS production, which can 

inhibit NO bioavailability and induce hypertrophy and hyperplasia of smooth muscle cells. 

ROS can also increase the gene expression of HIF-1α and stabilize the HIF-1α protein. The 

HIF-1 complex then enters the nucleus, binds HREs, and results in increased transcription of 

VEGF, VEGF receptors, and Ang II. The diagram includes separate depictions of 

mechanisms in neurons, smooth muscle cells, and endothelial cells. For reference, a generic 

(parenchymal) cell is depicted in the lower left corner.
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