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Regulatory actions reducing fine particulate
matter less than 2.5 micrometers in diameter
(PM2.5) are associated with improvements in
life expectancy in the United States.1,2 How-
ever, levels of PM2.5 remain high and continue
to be positively associated with risk of high
blood pressure (BP), a precursor for many
adverse cardiovascular outcomes, including
coronary heart disease, myocardial infarction,
and heart failure.3---6 In the United States
overall, medical expenses associated with the
nearly 1 in 3 adults with hypertension7 are
estimated at approximately $131 billion annu-
ally.8 Cardiovascular disease is the leading
cause of death in the United States and ac-
counts for one third of the excess risk of death
experienced by non-Hispanic Black in com-
parison with non-HispanicWhite Americans.9,10

Non-Hispanic Blacks, Hispanics, and individ-
uals of low income in the United States are
disproportionately likely to reside in commu-
nities with excess exposure to environmental
hazards, including PM2.5.

11---13 Continued in-
vestigation of strategies to reduce exposure
to PM2.5, and its adverse effects on BP, are
essential to efforts to reduce racial and ethnic
disparities in cardiovascular risk.

Oxidative stress may be one molecular path-
way linking PM2.5 to BP.

14---17 PM2.5 compounds,
whose composition largely depends on their
source (e.g., industry, transportation), typically
contain organic chemicals, metals, soot, soil,
dust, allergens, and acids on their surface.
When inhaled, these particles, alone or through
chemical reactions, may initiate the creation
of reactive oxygen species (ROS), commonly
referred to as free radicals, resulting in various
physiological responses in lung, heart, and
vascular tissue.18 Specifically, ROS can con-
tribute to vasoconstriction, endothelial dys-
function, and hypertrophy, among other
mechanisms that can ultimately contribute to
hypertension.19

Oxidative stress may be mitigated when
antioxidants absorb ROS in the airways and

inhibit oxidation.20 Antioxidants are available
through dietary intake of foods or supplements
(e.g., vitamins A, C, and E and selenium) and
may protect against adverse effects of oxidative
stress. The majority of studies addressing the
effects of antioxidants on cardiovascular health
have examined the modifying (protective) or
main (compensatory) role of antioxidant intake
from supplements, rather than from whole
foods captured through dietary intakes. These
effects remains unsettled, however, with sev-
eral meta-analyses reporting minimal or no
main effects of supplements on the incidence of
major cardiovascular effects across study de-
signs.21,22 Romieu et al. conducted a substantial
review of air pollution, oxidative stress, and
various health outcomes and concluded that
antioxidant supplements may modify air pol-
lution’s adverse effects on cardiovascular
health.23

A few clinical studies have noted deleterious
effects of antioxidant supplement use.24,25 Many
factors compromise or complicate comparison

of these studies’ outcomes. For example, study
design varies by antioxidant type, dose, dura-
tion, and the health status of study partici-
pants.26---28 Reflecting these inconclusive find-
ings, the American Heart Association’s scientific
position recommends against antioxidant sup-
plement use.29

By contrast, on the basis of modest evidence
of reductions in aging-related illnesses,30 the
Institute of Medicine provides recommended
dietary allowances for many well-known anti-
oxidants, including selenium (400 mg) and
vitamins A (900 lg), C (90 mg), and E (15 mg).
Despite the uncertainties in the evidence base,
several scholars recommend direct dietary
intake of antioxidants through healthy food
(i.e., fruit, vegetables, whole grains) or beverage
sources to mitigate the adverse effects of ROS
on cardiovascular health.30---34

Antioxidant intakes are not consistent across
diverse populations. Chun et al.31 used food
consumption and supplement use data from
National Health and Nutritional Examination
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Survey (1999---2002)35 to estimate overall
antioxidant intake in the United States, deriving
antioxidant values from the US Department of
Agriculture Database for the Flavonoid Con-
tent of Selected Food.36 They concluded that
overall intake appeared to be higher among
women, older adults, non-Hispanic Whites, and
higher-income and physically active individ-
uals. For some antioxidants, including vitamin
C and carotenes, intake appeared to be higher
among nonsmokers and those who did not
consume alcohol.31 Researchers have used
various clinical indicators to detect antioxidant
deficiency among those with chronic illnesses,
including asthma, chronic obstructive lung
diseases, diabetes, and cardiovascular dis-
ease,13,23,37,38 which have well-established
disparities by race, ethnicity, and income.39,40

The unequal distribution of exposure to
PM2.5 and unequal access to antioxidant-rich
foods41 raise questions about their contribu-
tions to racial, ethnic, and socioeconomic
health inequities. Residents of urban commu-
nities of color and low-income communities are
more likely to experience excess exposure to
PM2.5.

11,42 Emerging research also suggests
racial differences in oxidative stress, with per-
sons of color experiencing higher levels.43---45

Access to stores that sell fresh produce, an
important source of dietary antioxidants, is
low in some urban communities, particularly
lower-income communities composed pre-
dominantly of people of color.46---50 Together,
excess exposure to air pollutants and psycho-
social stress may increase levels of oxidative
stress in low-income, urban communities of
color, at the same time that these communities
experience reduced access to foods rich in
protective antioxidants. Few studies have ex-
amined the question of whether dietary anti-
oxidant intake (DAI) may counter the adverse
effects of exposure to PM2.5 on blood pressure
in a community sample.

We previously reported adverse effects of
PM2.5 on blood pressure4,51 and associations
between neighborhood availability of fruits
and vegetables and dietary intakes of those
foods.41,50 We built on those findings to specif-
ically examine, in data from Detroit, Michigan,
the extent to which DAI is inversely associated
with BP and whether it may partially compen-
sate for or counter adverse effects of PM2.5

on BP. If higher levels of DAI inhibit oxidation

through absorption of ROS, thus reducing levels
of oxidative stress, adverse effects of PM2.5 on
BP may be contingent on DAI levels. Thus,
we also examined protective models, exploring
the extent to which DAI modifies adverse ef-
fects of exposure to PM2.5 on BP. We consid-
ered the implications of our findings for un-
derstanding and intervening to reduce excess
risk of cardiovascular disease among residents
of predominantly non-Hispanic Black and
Hispanic low- to moderate-income urban
communities. Our research questions were (1)
Is DAI associated with reduced BP? (2) Does
DAI reduce adverse effects of PM2.5 on BP?
and (3) Does DAI modify the association
between PM2.5 and BP?

METHODS

The Healthy Environments Partnership
(HEP) is a community-based participatory re-
search collaboration established in 2000 to
investigate and address social and environ-
mental factors that contribute to disparities in
cardiovascular disease.52 HEP examines racial
and socioeconomic inequalities in cardiovas-
cular risk and the role of social and physical
environmental exposures in this process, as
well as disseminating and translating findings
to inform new and established intervention
and policy efforts. HEP engages academic re-
searchers and representatives from health
service organizations, community-based orga-
nizations, and the community at large in a
collaborative effort to address these questions.
Representatives of these partner organizations
compose the HEP Steering Committee, which
meets monthly to oversee all aspects of the
research process.

Data

Our data came from 3 sources: (1) the
HEP 2002 to 2003 community survey53; (2)
a modified Block Food Frequency Question-
naire (Berkeley Nutrition Services, Berkeley,
CA), implemented as part of the community
survey; and (3) community-level ambient ex-
posure measures collected in 2002 to 2003.

The HEP community survey had a stratified
2-stage probability sample of occupied housing
units, designed for 1000 completed interviews
with adults aged 25 years or older in 3 parts
of Detroit, allowing for comparisons across

geographic areas of the city.52 The survey
collected self-reported demographic and health
data, including age, gender, race, ethnicity,
household income, education, smoking behav-
ior, hypertension medication use, and dietary
intake. The survey also collected anthropo-
metric clinical measures (height, weight, BP)
during the interviews. For a subset of 347
participants, the survey measured BP a second
time, along with additional clinical measures
(e.g., triglycerides, fasting blood glucose). All
survey participants completed the Block Food
Frequency Questionnaire.

Measures

Dependent variables were systolic blood
pressure (SBP), diastolic blood pressure (DBP),
and pulse pressure (PP). Certified phleboto-
mists measured BP by the method used by the
National Health and Nutritional Examination
Survey,35 with a portable cuff device (Omron
model HEM 711AC, Omron Healthcare Inc,
Lake Forest, IL) that passed Association for
the Advancement of Medical Instrumentation
standards.54 Phlebotomists used a large cuff
for participants whose arm circumference was
greater than 15 inches. They took 3 consecu-
tive measures of SBP and DBP, separated by
about 1 minute, at each of the 2 time points,
with the mean of the second and third mea-
sures used for all data analysis. PP, an indicator
of arterial stiffness, was calculated as the
difference between SBP and DBP.55

Independent variables were DAI and PM2.5.
We created DAI from self-reported dietary
intakes in the Block Food Frequency Ques-
tionnaire. We assigned antioxidant levels
according to estimates for specific foods and
quantities established by Halvorsen et al.56

Between 2002 and 2003, we assessed daily
community-level PM2.5 in study communities
with tapered element oscillating microbalances
(TEOMmodel 1400, Rupprecht and Patashnick
Inc, East Greenbush, NY).57 We used a moni-
toring site established by the Michigan Depart-
ment of Environmental Quality and 2 addi-
tional sites to capture PM2.5 levels in each of
the 3 study communities. All participants in the
2002 HEP survey resided within 5 kilometers
of 1 of 3 monitors.4 We also collected the
following meteorological data: daily tempera-
ture, atmospheric pressure, relative humidity,
wind speed, and wind direction, at each site.
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Covariates were age, gender, race/ethnicity,
household income, education, body mass index
(defined as weight in kilograms divided by
the square of height in meters), smoking be-
havior, doctor-diagnosed diabetes, total cho-
lesterol, and medication use for hypertension.
We also estimated models that controlled for
meteorological variables (temperature, atmo-
spheric pressure, relative humidity).

Analyses

Our study built on previously reported
findings demonstrating associations between
PM2.5 and BP in a multiethnic urban commu-
nity.4 We used the same statistical modeling
technique, the PROC SURVEYREG procedure
of SAS for Windows version 9.13 (SAS In-
stitute, Cary, NC), to test for associations be-
tween DAI and BP and for the joint effect of
ambient exposure PM2.5 and DAI on BP. These
procedures are specifically designed for anal-
ysis of complex sample survey data and in-
corporate the complex sample weights (final
weights, strata, and primary sampling unit) for
standard error estimates.

To temporally align PM2.5 measures with BP
measures, we examined lagged exposure with
individual 24-hour daily spans from 1 day
before (lag 1) through 4 days before (lag 4) and
larger spans of 48 (2 days average), 72 (3 days
average), up to 120 (5 days average) hours
average prior. After removing outliers, the final
sample for these analyses ranged from 270 to
300, depending on lag of exposure considered.

To test for mediation effects, we used the
method described by Judd and Kenny, which
involves computing the difference between
2 parameter estimates (with and without the
mediator) and then testing for the significance
of the difference.58 To assess whether the slope
of the association between DAI and BP varied
by area, we ran models that incorporated an
interaction between area and DAI. Similarly,
in models assessing the joint effects of DAI
and PM2.5, we included interaction terms for
DAI and area and for PM2.5 and area. Results
reported are from models with these interac-
tion terms. All models adjusted for covariates.

RESULTS

Table 1 summarizes baseline demographic
and health data for study participants (n = 347).

The mean SBP was 129.7 millimeters of
mercury (SE = 1.3 mm/Hg), mean DBP was
78.9millimeters of mercury (SE=0.07mm/Hg),
and mean PP was 50.9 millimeters of mercury
(SE = 1.1 mm/Hg). A majority (22%) of par-
ticipants had been prescribed medication to
treat hypertension. The mean level of PM2.5

was 15.7 micrograms per cubic meter (SE = 0.7
lg/m3), at the US Environmental Protection
Agency’s former standard (15 lg/m3) and above

the new annual National Ambient Air Quality
Standards attainment level (12 lg/m3). Mean
DAI was 7.11 millimoles per day (SE = 0.3
mmol/day), with average intake of 6.1 millimoles
per day (SE = 4.1 mmol/day), in eastside, 6.9
millimoles per day (SE = 4.2 mmol/day) in
northwest, and 7.9 millimoles per day (SE =
5.8 mmol/day) in southwest Detroit.

The results for associations between DAI
and BP indicated an inverse association of DAI

TABLE 1—Baseline Demographic and Health Characteristics of Study Participants: Detroit

Healthy Environments Partnership; Detroit, MI; 2002–2003

Characteristic % or Mean 6SE (95% CI)

Age, y 21.3 61.1 (19.1, 23.5)

Female 55.6

Race/ethnicity

Hispanic 18.0

White 20.1

Black 58.5

Annual household income, $

< 10 000 35.0

10 000–19 999 27.9

20 000–34 999 22.3

‡ 35 000 14.8

Education

< high school diploma 27.3

High school diploma 22.3

Some college 29.5

‡ college diploma 20.9

BMI 30.9 60.5 (30, 31.9)

Hypertension medication 22.2

Smoking status

Never 34.0

Current 43.3

Former 22.7

Antioxidant dietary intake, mmol/d 7.11 60.29 (6.5, 7.7)

Baseline blood pressure measures

Systolic 128.8 61.3 (126.2, 131.5)

Diastolic 80.1 60.7 (78.6, 81.5)

Pulse 48.8 60.9 (46.9, 50.6)

Blood pressure measures at time 2

Systolic 129.7 61.3 (127.0, 132.4)

Diastolic 78.9 60.7 (77.4, 80.4)

Pulse 50.9 61.1 (48.6, 53.2)

Ambient exposure

PM2.5 (lag 1) 309 15.7 60.7 (14.4, 17.1)

PM2.5 (at time 2, lag 1) 291 14 60.4 (13.1, 14.9)

Note. BMI = body mass index; CI = confidence interval; PM2.5 = particulate matter < 2.5 micrometers in diameter. The sample
size was n = 347.
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with SBP (b = –0.42; 95% confidence in-
terval [CI] = –0.83, –0.01; P= .049) and PP
(b = –0.55; 95% CI = –0.88, –0.22; P= .003),
but not DBP (b = 0.12; 95% CI = –0.27, 0.51;
P= .548).

Results from models testing the joint effects
of PM2.5 and DAI on BP are shown in Table 2.
Results are presented for each of four 24-hour
lags of PM2.5. Because differences in associa-
tions between PM2.5 and BP by area of the city
were reported previously,4,52 we also tested
for differences across areas of the city in the
joint effects of PM2.5 and DAI. These models
showed that associations between PM2.5 and
BP remained significant after accounting for
DAI in southwest Detroit, the area of the
city with the greatest proximity to multiple
stationary and mobile sources of PM2.5. As-
sociations were not significant for eastside and
northwest Detroit. For residents of southwest
Detroit, DAI was significantly and inversely
associated with SBP at lags 2 (b = –0.52; 95%
CI = –1.0, –0.1; P = .03), 3 (b = –0.59; 95%
CI = –1.1, –0.1; P= .02), and 4 (b =–0.49;
95% CI=–0.9, –0.1; P= .03) and with PP
at lags 1 (b = –0.57; 95% CI = –1.0, –0.1;
P = .01), 2 (b = –0.59; 95% CI=–1.1,
–0.1; P = .02), 3 (b = –0.74; 95% CI = –1.2,
–0.1; P= .01), and 4 (b = –0.56; 95%
CI = –1.1, –0.1; P= .05), after accounting for
the effect of ambient exposure of PM2.5 (results
not shown). We also observed antioxidant
effects combined with effects of multiday av-
eraged exposure to PM2.5 on BP outcomes

in the models. Results were similar, with sig-
nificant antioxidant effects on SBP (2-, 3-, 4-,
and 5-day averages) and PP (2-, 3-, 4-, and
5-day averages; results not shown).

Parameter estimates for PM2.5 in Table 2
were somewhat reduced from those previously
reported in models that did not account for
DAI.4 Figure 1 shows these differences for
each measure of BP, with model 1 showing
previously reported levels not accounting for
DAI4 and model 2 showing estimates for as-
sociations between PM2.5 and SBP and PP after
adjustment for DAI.

To assess whether the reductions in associ-
ations between PM2.5 and BP, with adjustment
for DAI in model 2, were statistically signifi-
cant, we ran formal tests of mediation, with
methods proposed by Friedman andMcAdam59

(see also Zhang et al.60). Results from these
analyses suggested that DAI exerted a small
but statistically significant effect, reducing ad-
verse effects of PM2.5 on SBP and PP. The
test statistics for this comparison were notable
for lags 2 to 4 for SBP (P< .001) and for PP
(P= .001). These findings were consistent with
a hypothesized reduction in ROS through
absorption by antioxidants.

Finally, we ran exploratory models assessing
whether associations between PM2.5 exposure
and blood pressure differed among participants
with high and low DAI. Although not statisti-
cally significant, our results suggested a poten-
tial modifying effect of DAI on associations
between PM2.5 and BP. Specifically, we found

some suggestion that, at higher levels of DAI,
the adverse effects of PM2.5 on SBP were
dampened somewhat. Because of our relatively
small sample size and the multiple interaction
terms in these final models, our confidence
in reporting these results is relatively low.
Further study is needed on this effect.

DISCUSSION

Two key findings emerged from our exam-
ination of whether antioxidant dietary intakes
counter adverse effects of exposure to PM2.5 on
BP in a multiethnic community sample. First,
our findings were generally consistent with the
hypothesis that DAI offers some protection
against adverse effects of PM2.5 on BP. Our
finding of an inverse association between DAI
and SBP and PP was consistent and extended
results reported elsewhere, in studies that used
dietary supplements rather than our DAI mea-
sures.26,61 This effect was significant in the
study community that hosts the greatest num-
ber of point and mobile sources of PM2.5. The
inclusion of antioxidants in the model only
slightly attenuated the main effect of PM2.5 on
SBP and PP in southwest Detroit.

Our second finding, on whether DAI mod-
ifies associations between PM2.5 and BP, al-
though exploratory, was suggestive that adverse
effects of PM2.5 on BP may be weakened for
those with higher DAI. However, these ana-
lyses were underpowered, and further analyses
with larger data sets are warranted.

Effects of Dietary Antioxidant Intake

Our results supported the hypothesis that
DAI is inversely associated with indicators
of SBP and PP. Associations remained statisti-
cally significant in models that included PM2.5,
suggesting that these effects occurred above
and beyond effects of PM2.5 and may serve to
partially compensate for adverse effects of
PM2.5 on SBP. An individual with average DAI
in our sample (7.4 mmol/d) would realize a
3.5---millimeters of mercury decrease in SBP.
We detected no significant associations with
DBP, but dietary antioxidants similarly reduced
adverse effects of PM2.5 on PP. In other words,
residents who reported higher dietary intakes
of antioxidant-rich foods slightly reduced ad-
verse effects of PM2.5 on SBP and on PP. Our
results were consistent with the idea that PM2.5

TABLE 2—Joint Effects of Particulate Air Pollution and Dietary Antioxidant Intake on Blood

Pressure Outcomes: Detroit Healthy Environments Partnership; Detroit, MI; 2002–2003

b Lag 1, b (95% CI) Lag 2, b (95% CI) Lag 3, b (95% CI) Lag 4, b (95% CI)

Systolic BP

PM2.5 –2.6 (–3.0, –2.2) 4.2 (3.9, 4.5) 3.0 (2.7, 3.3) 7.3 (6.7, 7.9)

DAI –0.5 (–1.0, 0.0) –0.5* (–1, –0.1) –0.6* (–1.1, –0.1) –0.5* (–0.9, –0.1)

Diastolic BP

PM2.5 –2.1 (–2.3, –1.8) –1.1 (–1.4, –0.8) 0.6 (0.3, 0.9) 2.7 (2.1, 3.3)

DAI 0.1 (–0.7, 0.8) 0.0 (–0.7, 0.8) 0.1 (–0.6, 0.8) 0.0 (–0.7, 0.8)

Pulse pressure

PM2.5 –0.4 (–0.8, 0.0) 5.4 (5, 5.8) 2.5 (2.2, 2.7) 4.8 (4.5, 5.2)

DAI –0.6* (–1.0, –0.1) –0.6* (–1.1, –0.1) –0.7** (–1.2, –0.2) –0.6* (–1.1, 0)

Note. BP = blood pressure; CI = confidence interval; DAI = dietary antioxidant intake; PM2.5 = particulate matter < 2.5
micrometers in diameter.
*P < .05; **P < .01; ***P < .001.
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influences BP through the production of ROS
and that DAI may reduce these adverse effects
through absorption of free radicals. PM2.5

retained a significant adverse association with
SBP and PP, even after accounting for DAI.
Thus, our findings suggest that DAI may re-
duce but, at the level of DAI we found, not
eradicate adverse effects of PM2.5 on BP.

Our tests of whether DAI modifies associa-
tions between PM2.5 and BP must be consid-
ered exploratory, because of the limited sample
size and number of covariates in our models.
Our findings are suggestive of reductions in
associations between PM2.5 and BP for indi-
viduals reporting higher levels of DAI, but
require further study.

Our tests of both main and modifying ef-
fects suggested that DAI is likely insufficient to
protect against adverse effects of PM2.5 on BP.
Our findings support the importance of con-
tinued efforts to strengthen the existing moni-
toring network to include near-roadway mon-
itoring of PM2.5 as well as reductions in the
National Ambient Air Quality Standards for

fine particles from 15 to 12 micrograms per
cubic meter to promote health. Such efforts
may be particularly important to protect the
health of residents in neighborhoods near point
and mobile sources of pollution, who are dis-
proportionately likely to be members of racial
and ethnic groups that experience excess vul-
nerability caused by cumulative exposures to
adverse social and economic conditions.11,12,42

Limitations and Strengths

We relied on self-reported indicators of di-
etary intake, to which we assigned estimated
antioxidant values. Although it is unlikely these
biases were systematically patterned so as to
skew results, these measures had a degree of
imprecision. Our data set did not allow as-
sessment of biological indicators of oxidative
stress, individual sensitivity to oxidative stress,
or gene---environment interactions that may
moderate antioxidant levels present in blood
and tissues.23,62,63 Our study focused on low-
to moderate-income communities of color,
which may experience higher baseline levels of

oxidative stress43---45 as well as higher expo-
sures to PM2.5. Such communities have been
underrepresented in previous studies of anti-
oxidant intake.

Levels of DAI in our sample were low relative
to estimates from other investigations. For
example, the Health Professionals Follow-Up
Study reported daily DAI of approximately
10.76 millimoles64; our sample averaged 7.4
millimoles. Chun et al. estimated DAI as well as
supplemental antioxidant intake from National
Health and Nutritional Examination Survey
data.31Their reported consumption of vitamins
A, C, and E and selenium translates to about
32 millimoles per day, substantially higher
than our estimates. Thus, the DAI derived from
our data may have underestimated the com-
pensatory or protective effects that may oper-
ate in populations with higher antioxidant
intake from diet or supplements.

Despite these limitations, our study had
several unique strengths and contributions.
It was among only a handful of studies to
examine the joint effects of PM2.5 and DAI in
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FIGURE 1—Associations between particulate matter < 2.5 micrometers in diameter and blood pressure without (model 1) and with (model 2)

dietary antioxidant intake: Detroit Healthy Environments Partnership, 2002–2003.
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a community-dwelling population, rather than
in a controlled, clinical setting. Our data pro-
vided measured (rather than self-reported) BP
and ambient measures of air quality recorded
over a 3-year period. We used measures of
daily intake of antioxidants derived from whole
foods, rather than supplements. Our study
also highlighted the potential of a long-term
community---academic partnership to advance
new research questions that address cumula-
tive impacts of community environmental
conditions on health.

Conclusions

Our findings are consistent with, and build
upon, previously reported results suggesting
that residents of some Detroit neighborhoods
experience excess cardiovascular risk in part
through exposure to poor air quality.4,51,65---67

Our finding that DAI was associated with
reduced blood pressure and may partially
mitigate adverse effects of PM2.5 on hemody-
namic indicators is particularly relevant in light
of previous research reporting limited access
to healthy food in some Detroit neighbor-
hoods48,50,68 and linking food access to dietary
intakes.41,53 Aligning with extensive, ongoing
work to improve equity of food environments
and nutrition throughout the United States,69---72

our findings emphasize the need to ensure
availability of foods rich in antioxidants in food
stores, with particular attention to such avail-
ability in areas in which residents are exposed
to air pollution.

Although our findings suggested beneficial
effects of DAI, large and adverse effects of
PM2.5 on SBP and PP remained. Our findings
suggest that these potential protective effects,
although helpful, are unlikely to eliminate
adverse effects of PM2.5 exposure on cardio-
vascular health or the disproportionate risk
of such exposures on the health of low- to
moderate-income urban communities. Atten-
tion to land-use decisions that shape the expo-
sures of residents of low- to moderate-income
communities and communities of color to par-
ticulate pollutants is critical to efforts to reduce
health inequities.73,74 Such efforts should con-
sider these cumulative effects and devise strat-
egies to address underlying social, political, and
economic dynamics that may place marginal-
ized communities at disproportionate risk. In
recognition of the disproportionate effects of

such cumulative exposures for residents of
low- to moderate-income urban communities,
continued investment should be made to im-
prove mechanisms to better quantify the cu-
mulative effects of social, economic, and
chemical exposures and to incorporate these
assessment tools into regulatory decision-making
processes.75---77 j
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