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Abstract

We have used probe-based molecular dynamics (pMD) simulations to search for interaction 

hotspots on the surface of the therapeutically highly relevant oncogenic K-Ras G12D. Combining 

the probe-based query with an ensemble-based pocket identification scheme and an analysis of 

existing Ras-ligand complexes, we show that (i) pMD is a robust and cost-effective strategy for 

binding site identification, (ii) all four of the previously reported ligand binding sites are suitable 

for structure-based ligand design, and (iii) in some cases probe binding and expanded sampling of 

configurational space enable pocket expansion and increase the likelihood of site identification. 

Furthermore, by comparing the distribution of hotspots in non-pocket-like regions with known 

protein- and membrane-interacting interfaces, we propose that pMD has the potential to predict 

surface patches responsible for protein-biomolecule interactions. These observations have 

important implications for future drug design efforts and will facilitate the search for potential 

interfaces responsible for the proposed transient oligomerization or interaction of Ras with other 

biomolecules in the cellular milieu.
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Introduction

K-Ras is a guanine triphosphate (GTP)-binding enzyme that regulates signaling pathways 

involved in cell division and proliferation1-3. It is made up of a soluble catalytic domain that 

is conserved in the Ras family and a variable C-terminus that undergoes post-translational 

farnesylation. K-Ras achieves high affinity binding to the plasma membrane, which is 

required for its cellular activity, through hydrophobic interactions via its farnesyl tail and 

electrostatic interactions via the proximal polybasic domain4. Malfunction of Ras proteins is 

associated with 15-20% of all human tumors and mutations in K-Ras account for over 85% 

of Ras-associated cancer cases5-7. These include some of the deadliest ones such as 
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pancreatic and colorectal cancer8-10. Therefore, K-Ras remains a highly sought-after anti-

cancer drug target11-13.

The catalytic domain of Ras (residues 1-166) has been structurally characterized by both X-

ray crystallography and nuclear magnetic resonance (NMR) spectroscopy (e.g.,14-16). 

However, until recently, there was no known ligand-binding site on Ras aside from the 

nucleotide-binding site, which is an unsuitable drug target due to a variety of reasons17,18. 

Previous computational and crystallographic studies suggested that Ras is an allosteric 

enzyme19-23. This was followed by the prediction of four allosteric ligand-binding sites 

using FTMAP24,25 and ensemble docking24,26,27. These allosteric sites are now confirmed 

by the discovery of several small-molecule ligands that act as allosteric modulators of 

Ras28-33. The general location for each of the four well-characterized allosteric ligand-

binding sites is shown in Fig 1.

One of the key observations from the previous computational studies, particularly those 

based on molecular dynamics (MD) simulation24,26, was that pockets invisible in an average 

experimental structure could become accessible when the protein is allowed to flex. 

However, limitations of sampling inherent in MD and, following the simulation, the reliance 

on a few representative structures for binding site identification have left a number of 

important questions unanswered. One is whether there aren't additional ligand binding sites 

on Ras. The other is if there isn't a better way of more efficiently accounting for 

conformational flexibility to improve the chance of identifying new sites. Furthermore, all of 

the known non-covalent Ras binders have weak affinity28-32. One way to improve affinity is 

by (re)designing ligands that interact with the protein at multiple cavities34, which requires 

searching for trenches near known ligand binding sites or multiple novel cavities that could 

be simultaneously targeted by a ligand. Another important question is whether lobe2 of K-

Ras (residues 87-17220) possesses hotspot surface patches capable of interacting with other 

proteins or membrane. This is important because (i) a number of studies have shown that a 

fraction of membrane-bound K-Ras exist as dimers or higher oligomers35-41, and (ii) the 

possibility that Ras may interact with some of its many partners via a region other than, or in 

addition to, the canonical switches sw1 and sw2 (e.g.,19).

As part of our initial effort toward addressing these issues, here we used probe-based MD 

(pMD)42-45 simulations in conjunction with structure-based pocket identification and 

analyses of experimental Ras-ligand complexes. pMD is a solvent mapping approach that 

can be regarded as the computational equivalent of multi-solvent crystallography46 and 

fragment-based nuclear magnetic resonance (NMR) spectroscopy47. It entails running a 

regular MD simulation in the presence of probe molecules as part of the solvent 

environment. Its premises are (i) hotspot residues, i.e., residues that contribute the most to 

binding free energy, govern protein-ligand interactions, and (ii) the frequency of contact 

between a target site and molecular probes is proportional to the druggability of the site, a 

notion supported by spectroscopic studies47. pMD has three main advantages over other 

binding site identification methods such as FTMap48 and various other approaches (for 

example ref.27,49,50). First, it is able to directly account for protein motion during the site 

identification process. Second, it does not depend on surface descriptors or training sets. 

Third, it allows for a rough estimation of binding affinities.
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We applied pMD on oncogenic G12D K-Ras4B (here after K-Ras) and compared the results 

with data from ensemble-based pocket identification with MDpocket51. We show that the 

previously characterized ligand binding sites are robustly reproducible, and that they are 

suitable targets for docking small-molecule ligands. We also show that not only can pMD 

guide the search for bonafide ligand binding sites, but it can also be used to find clusters of 

small cavities that can be exploited to improve affinity of known ligands or to design new 

multivalent ligands. Our results also suggest that there exist hotspots on the surface of K-Ras 

that have the potential to interact with other biomolecules.

Computational Methods

Molecular dynamics simulation in mixed solvent

We ran six probe-based MD (pMD) simulations using the NAMD program52 and the 

CHARMM27 force field53 (Table 1). In three of these the CMAP dihedral correction54 was 

applied whereas in the other three no CMAP was used. The starting structure for the 

simulations was obtained from the RCSB protein data bank (PDB, id: 4DSO29). The protein 

was solvated in a 72 × 72 × 96 Å3 water box containing 13319 TIP3 waters and 698 

isopropanol molecules (~20:1 ratio). Crystallographic waters were treated as part of the 

protein structure. The system was neutralized and 40 sodium and 41 chloride ions were 

added to achieve an ionic strength of 0.15 M. Isopropanol was parameterized using CGenFF 

version 2b755,56. Simulated annealing was used to homogenize the distribution of the mixed 

probe/water solvent and to prevent kinetic trapping of probe molecules. The annealing 

involved the application of a harmonic force constant of 4 kcal/mol/Å2 on the protein heavy 

atoms to prevent unfolding, raising the system temperature to 650 K at intervals of 50 K, 

and gradual cooling by 10 K every 5000 steps to 310 K. The system was then equilibrated 

for 1 ns while gradually decreasing the force constant to zero. Then, starting from the 

equilibrated configuration we ran three production simulations for 70, 100 and 100 ns with 

CMAP, assigning different initial velocities. Another three simulations were run for 30, 50 

and 100 ns without CMAP. We used a non-bonded cutoff of 12 Å and particle mesh 

Ewald57 during both the equilibration and production phases of the simulations, and 

coordinates were saved every 10 ps for analysis. Notice that some of our simulations are 

significantly longer than in previous pMD studies (~10-40 ns-long42,43,45,58) in order to 

capture infrequently sampled conformations.

For reference, we conducted three 100 ns-long classical MD simulations in the absence of 

probe molecules (cMD); one of these was with CMAP and the other two without CMAP 

(Table 1). We also ran a 50 ns pMD simulation on an isopropanol/water system without 

protein. The former were used to check if the probes affect Ras dynamics while the latter 

was used to estimate expected probe occupancies to serve as a reference for grid binding 

free energy calculations (eq. 1).

Binding site and affinity prediction from pMD

Binding site identification with pMD builds on previous crystallographic and nuclear 

magnetic resonance (NMR) observations that small organic molecules bind to druggable 

sites with high probability46,47. Probe-binding probabilities can therefore be used to 
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determine binding preferences. Based on this concept and aiming at developing 

computational druggability index, Seco et al42 demonstrated that probe-binding probabilities 

from binary solvent (water plus isopropanol) MD simulations could be converted to 

“achievable binding affinities” of drug-like molecules. Bakan et al45 expanded this approach 

to a diverse set of probes as well as probe mixtures and developed a simpler protocol to 

quantify “maximum achievable affinities”, which we have used here. We refer the reader to 

their work for important details, such as the concept of “ligand efficiency”. Below we 

briefly describe the procedure we have followed in this work.

A grid-based approach was utilized to determine druggable pockets and estimate their 

maximum ligand binding affinity, as follows. (i) Trajectories from the three pMD runs were 

combined and aligned on the initial structure based on backbone atoms, excluding the 

flexible switch regions and the termini. (ii) Probe molecules with any non-hydrogen atom 

within 4 Å from protein heavy atoms were selected and used to calculate occupancies of 

cubic grids of size 1 Å, referred to as voxels. Probe occupancy was then used to calculate 

time-averaged number densities per voxel using the Volmap and Volutil plugins of VMD59. 

The resulting number density per voxel (ni) was used to calculate grid-binding free energy 

(ΔGgrid) using the inverse Boltzmann relation42,45:

(1)

n0 is the expected number density per voxel obtained from the reference simulation (probe 

plus water in the absence of protein, described above), R is the gas constant and T = 300K is 

the temperature. (iii) Grid points with ΔGgrid≤−0.5 kcal/mol were retained and the rest 

eliminated. We used an upper limit of −0.5 kcal/mol instead of the more common −1 

kcal/mol45 because all of the known Ras ligands bind in the micromolar (μM) to millimolar 

(mM) range (see Results). (iv) Starting from the voxel with the most favorable grid binding 

free energy (lowest ΔGgrid), we defined as central voxel the one with the lowest energy and 

discarded all voxels within 5 Å of it. This procedure was repeated until every voxel was 

accounted for, and the surviving voxels were defined as interaction spots. Since the 5 Å 

cutoff was based on the 2.5 Å radius of isopropanol (see ref45) a single interaction spot 

represents a molecule of isopropanol. (v) To convert ΔGgrid to the common measure of 

affinity (i.e., dissociation constant (Kd)), interaction spots were clustered based upon a 

distance cutoff of 6 Å. Clusters of two or more interaction spots were regarded as distinct 

binding sites, and their maximum binding affinity or Kd was estimated as (eq. 2):

(2)

where x is the number of interaction spots within the cluster. (vi) Since four interaction spots 

represent about 16 heavy atoms (equivalent to four isopropanol molecules or roughly the 

size of a small (~250 Da) ligand) we defined binding sites with four or more interaction 

spots as druggable sites. Assuming that a viable Ras inhibitor would have at least 55 mM 

affinity, we defined clusters of two or three interaction spots with Kd ≤ 55 mM as sub-sites. 

All other interaction spots were regarded as non-specific probe-protein interactions.
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Additional analyses

MDpocket51, a fast and easy to use analysis tool to identify pockets and measure their 

volume in structural ensembles, was used to perform structure-based ligand binding site 

identification. Standard procedures and tools were used to monitor system equilibration as 

well as the structural integrity and equilibrium fluctuations of K-Ras during the simulations. 

These include root-mean-square deviation (RMSD) and root-mean-square fluctuation 

(RMSF) measurements. Structural superimposition was performed using backbone atoms 

excluding the flexible sw1, sw2 and C-terminus.

Results and Discussion

Time evolution of the backbone RMSD is nearly identical among the three pMD runs and 

between pMD and cMD simulations with CMAP (Fig 2A). For all of them the time-

averaged RMS deviation is only ~0.8 Å excluding the flexible sw1 and sw2. The per-residue 

RMSFs derived from the trajectories are also essentially the same (Fig 2B). Similarly, no 

significant RMS differences were found among the no-CMAP simulations with and without 

probes (averages of 0.75-1.10 Å vs. 0.8 Å). Thus, the probes do not appear to significantly 

alter the overall structure of K-Ras. Moreover, comparison of the three independent pMD 

runs showed convergence in the sampling of protein-probe molecule interactions (discussed 

later). In what follows, we first describe results from the pMD simulations with CMAP and 

then compare cMD and pMD, followed by the simulations without CMAP.

Identification of hotspot regions and druggable sites by pMD

We analyzed the combined trajectory of the three CMAP pMD runs to identify potential 

ligand binding sites and other reactive regions on the entire surface of K-Ras. Our analysis 

entailed dividing up the simulation box into 1 Å3 cubic grids to calculate grid binding free 

energies (ΔGgrid, see eq. 1). This yielded numerous grid points across the protein surface 

with favorable (negative) ΔGgrid of up to −2.03 kcal/mol. We used ΔGgrid to eliminate false 

positives, locate sites with high likelihood of binding ligands and predict their maximal 

affinities.

We considered all interaction spots with ΔGgrid ≤ −0.5 kcal/mol. As noted in Methods, the 

somewhat soft upper limit of −0.5 kcal/mol (typical is −1 kcal/mol, see ref45) was because 

(i) we are interested in sites even with weak ligand affinity and (ii) all Ras ligands known to 

date have high-μM to mM activity28-32. Applying the −0.5 kcal/mol cutoff, we ended up 

with 52 interaction spots. Clustering was applied on these interaction spots to determine 

druggable sites, and maximum affinity was calculated using eq. 2. This yielded five 

druggable sites (i.e., sites with four or more interaction spots, labeled as S1 to S5 in Fig 3). 

S1 is located in the conserved lobe1, S2 is between the lobes, and the rest are in the less 

conserved allosteric lobe (i.e., lobe 2). The maximum predicted binding affinities (see Fig 3) 

vary from high μM (S4 and S5) to low mM (S1-S3). As discussed later, S1, S2 and S3 overlap 

remarkably well with previously characterized allosteric ligand binding pockets (Figs 1 & 3 

and, also Fig 4) whereas molecular probes have been found to bind at S4
25.

In addition to these putative druggable sites, we also identified three sub-sites (defined as 

sites with two or three interaction spots and Kd ≤ 55 mM, see Methods) with predicted 
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affinities of 54.7, 1.0 and 42.9 mM, respectively (Fig 3). The notion of sub-pockets is 

supported by the fact that some of the known binding sites on Ras accommodate ligands of 

diverse size and conformation28-33. Ras binders range from small molecules such as glycerol 

and metal-cyclens25,28,29 through medium-sized drug-like compounds30-33 to large 

macrocyclic compounds60. The latter interact across multiple sub-pockets. Even the 

interaction space of the drug-like Kobe family inhibitors involves the C-termini of both sw1 

and sw232. Also, ligands reported by Ostrem et al33 occupy two sub-pockets within a trench 

broadly defined as p2 (Fig 1).

Assessing the ligand binding potential of pMD-predicted druggable sites based on 
geometric considerations

We used MDpocket51 to examine if the predicted druggable sites represent pockets large 

enough for ligand binding. As a control, MDpocket was able to correctly locate the 

nucleotide-binding site (see Fig 5). Note that here we used number density of probes (rather 

than grid free energies) for a more direct comparison with the isosurfaces/meshes generated 

by MDpocket. Superimposition of MDpocket-derived pockets whose volume was ≥100 Å3 

in at least 50% of the structures with pMD-derived probe number densities yielded 

significant overlap in several places, including at S1, S3 and sub-site1 (Fig 4A). S2 was not 

captured by MDpocket because, first, it was open in less than 50% of the ensemble and, 

second, pMD-derived interaction spots near this site were mostly on the surface (see Fig 3). 

However, further analysis revealed that S2 becomes more accessible when the switches are 

more open (discussed later). Moreover, we believe S2 is a viable pocket because (i) there 

exist ligands that bind to this general area33 and (ii) transiently open pockets can be captured 

and stabilized by ligands61. In contrast, the fact that S4, S5 and sub-site3 are not captured by 

MDpocket (Fig 4A) suggests that they are probably on the surface of the protein and do not 

qualify as pockets.

Overall, we found very good overlap between druggable sites derived from the probe-based 

and structure-based pocket identification schemes. However, pMD appears to provide 

additional information regarding hotspot surface patches that MDpocket was not designed to 

locate.

Comparison between pMD-predicted and experimentally observed ligand binding sites

To further validate our predictions, we compared pMD-predicted druggable sites with the 

allosteric ligand binding sites p1 to p4 highlighted in Fig 1 (numbering based on Grant et 

al24). Fig 4B shows superposition of ligands bound to p1, p3 and p4 with probe number 

density meshes (main figure) and close ups with interaction spots (insets). The agreement 

between predicted druggable sites and experimentally observed (S1 + sub-site1 vs. p1; S2 vs. 

p2) or predicted (sub-site2 vs. p4) ligand poses is very good. Combining this with the results 

from MDpocket analysis, we conclude: (i) S1 + sub-site1 ≈ p1; (ii) S2 ≈ p2; (iii) S3 ≈ p3; 

(iv) sub-site2 ∈ p4. The current and next sections will thus focus on p1 to p4; all other sites 

or sub-sites are henceforth referred to as “other” interaction regions and discussed 

separately.
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p1—Pocket p1 is located behind sw2 in the core β-sheet region. It is made up of a 

hydrophobic cavity involving V7, L56, M67, a polar region involving K5, D54, T74 and 

Y71 and an adjacent electronegative cleft near E37 and D3829,30,32. Typically, the primary 

binding site is found occupied by an indole or imidazole ring29,30 and the secondary binding 

cleft by other ring structures30. Our predicted sub-site1 overlaps exactly with the primary 

binding site while S1 lies in the secondary binding region (Figs 3 and 4B). The predicted 

Kd‘s for sub-site1 and S1 are ~55 mM and ~2 mM, respectively (Fig 3). The combined Kd of 

0.12 mM is very close to the 1.5 mM Kd of benzimidazole and 4,6-dichloro-2-methyl-3-

aminoethyl-indole29 or the 0.2-2 mM Kd of the ligands reported by Sun et al30.

p2—Primarily defined by V7, V9, G60, F78, M72, Q99 and I100, p2 stretches toward either 

of the two sub-pockets near sw2 and H3 (Figs 1, 3 and 4B). Ligands that target this general 

region and covalently interact with the Cys side chain of G12C Ras have been recently 

discovered33. However, there exist neither a p2-bound non-covalent ligand nor binding data 

to compare with our predicted affinity of ~4 mM (Fig 3).

p3—The polar pocket p3 is near the C-terminus involving residues from loop7 and H5, 

including D105, S106, D107, D108, M111, E162, Q165 and H166. There is an excellent 

overlap between calculated probe number densities/interaction spots and the pose of 

Zn(II)1,4,7,10-tetraazaocylododecane (Fig 4B). This and similar other metal cyclens have 

been shown to bind Ras at p3 with an apparent affinity of 2-6 mM28, which compares well 

with our predicted Kd of 8.7mM (Fig 3).

p4—p4 is located at the back of sw1 involving polar residues D30, D33, D38, S39 and Y40 

as well as hydrophobic residues I21, I3626,31. No crystal structure of a ligand bound at this 

site is currently available. However, we previously used modeling and biochemical assays to 

show that Andrographolide derivatives target p426. Fig 4B shows that the predicted pose 

matches reasonably well with sub-site2 and surrounding probe densities. Moreover, NMR 

chemical shift perturbation and paramagnetic relaxation analyses suggested that Zn(II)-

bis(2picolyl)amines bind at this general location with an apparent Kd of about 2 mM31, 

which is very close to the ~1 mM Kd we predict for sub-site2 (Fig 3). Note, however, that 

higher affinity could be found if an extended pocket was considered (see Fig 7B).

Probe molecules facilitate pocket opening

Considering the role of solvent in protein dynamics (e.g., ref62), an important question 

regarding the utility of pMD is whether the probe molecules facilitate or hamper the 

probability of pocket opening relative to simulation in water. In other words, do the probe 

molecules play an active role in protein motion or are they passive spectators? The effect 

will likely vary with the physicochemical property of the co-solvent. In the case of isopropyl 

alcohol, which is small and uncharged, one would expect stabilization of both polar and 

non-polar surface cavities. This is because isopropanol is able to donate a hydrogen bond via 

its polar head and form vdW contacts via its apolar tail. In principle, therefore, it can have a 

measurable impact on the distribution and size of surface cavities as well as more buried 

pockets.
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To examine this issue in some detail, we ran a 100 ns classical MD (cMD) simulation under 

identical condition as the pMD runs. As mentioned earlier, cMD and pMD simulations 

resulted in very similar overall structure and dynamics of the protein (Fig 2). We therefore 

decided to examine the trajectories in terms of pocket openings with MDpocket. As a 

control, MDpocket applied separately to the three CMAP pMD trajectories showed little 

variation in the location or size of the pockets despite the different lengths of the simulations 

(Fig 5, wireframes). This highlights the convergence of sampling for probe binding and the 

robustness of our analysis. Comparison of the data from pMD and cMD also shows 

substantial overlap in many regions (including an almost 100% overlap at the catalytic site, 

see Fig 5). However, there are significant differences, too. For instance, while pockets p1, 

p2 and p3 were visible in both cMD and pMD, p1 is fragmented in the former and does not 

cover the entire pocket occupied by the ligand shown in Fig 4B. Instead, cMD predicted an 

extension of the pocket deep into the core. Similar variations are apparent at p2 and p3 (Fig 

5), where pMD yielded more expanded volumes than cMD. There also are several small 

pockets in the pMD but not the cMD run.

These data suggest that, while cMD/MDpocket analysis does remarkably well and is 

probably sufficient for most applications, pMD enables more robust pocket identification. 

We attribute this to the ability of the probe molecules to interact with and stabilize cavities 

and trenches that would otherwise be inaccessible. This is important not only because such 

information could aid in probe selection but also due to its fundamental implication that 

some drug-like ligands may exert a similar effect on their target.

Enhanced protein motion facilitates detection of hotspots by pMD

As noted earlier, each of the four allosteric ligand-binding sites on Ras were initially 

predicted by computational approaches24,25. A common feature of pMD and the previous 

computational analyses is their emphasis on protein motion, which is critical because most 

of the allosteric pockets on Ras become visible only upon relaxation of the protein by MD or 

NMR26,28. In particular, opening of p2 and p4 requires rearrangement of the switches and 

therefore they are accessible only in some GDP-bound conformations or in one of the two 

GTP-bound forms26,31,33. Perhaps as a result of this, no crystal structure is currently 

available with a non-covalent ligand bound to these pockets. It is therefore reasonable to 

suspect that limited sampling may explain why pMD identified a sub-pocket and not a 

druggable site at p4 (Fig 3).

To test if our prediction of p4 would improve upon enhanced sampling, we took advantage 

of the fact that simulations with the CHARMM force field in the absence of CMAP often 

result in larger flexibility in loop regions54,63. To this end, we ran three probe-based and two 

normal MD simulations without CMAP correction. (We note that no-CMAP runs could 

yield unphysical structures; they are used here only for test of concept.) The simulations 

were stable and equilibrated within 10-40 ns with a mean backbone RMSD of 0.75-1.2 Å. 

However, comparison of the residue RMSFs from these simulations with those from the 

CMAP runs (Figs 2B vs. 6A) clearly shows enhanced fluctuations at either one or both of 

the switches. To quantify the degree to which the switch loops have opened, we monitored 

distances of Y32, T35 and G60 from the bound Mg2+ and GTP. This was because 31P-NMR 
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and other biophysical studies have shown that GTP-Ras exists in at least two conformational 

sub-states that primarily differ in the way in which Y32, T35 and G60 are organized relative 

to the nucleotide16,64,65. Table 1 shows that simulations without CMAP indeed lead to a 

significantly more open switch conformation (state 1-like).

Since run 3 of the no-CMAP pMDs yielded the largest flexibility (Fig 6A), we analyzed 

interaction spots from this trajectory to examine if enhanced dynamics could lead to 

improved “druggability” prediction for some sites. We found that overall the CMAP and no-

CMAP pMD yielded a similar distribution of interaction spots, especially in lobe 2 (not 

shown). However, there are some crucial differences around the switch loops. In particular, 

the trajectory without CMAP showed additional interaction spots (sub-pockets) near sw1 

(Fig 6B). We believe these additional sub-pockets and sub-site2 are part of a true ligand-

binding site (i.e., pocket p4). Fig 6B also shows some difference between CMAP and no-

CMAP in that the location of interaction spots at p2 is deeper in the latter, suggesting that p2 

has become slightly more pocket-like when the switches are more open. Taken together, 

these results imply that better sampling could facilitate binding site identification by pMD 

when pocket opening requires significant structural rearrangements.

Prediction of “other” hotspot surface patches

We now turn to the “other” pMD-predicted sites, which include S4 located between H3 and 

H4 and S5 at the N-terminus of H5 (Fig 3). The predicted maximum binding affinities for 

these sites are comparable to those of S1-S3 (Fig 3). However, no drug-like molecule that 

targets S4 has been reported, although small organic compounds such as dimethylformamide 

and glycerol were found to bind at this location25. Similarly, S5 has not previously been 

characterized as a ligand-binding site, apart from its ability to stabilize internal water 

molecules62. Moreover, MDpocket analysis (Figs 4A) suggested that these surfaces are 

likely unsuitable for ligand binding.

S4, S5 and sub-site3 are at the backside of the protein where there are many other interaction 

spots that did not satisfy our criteria for druggable site or sub-site. Another curious surface 

patch is the one near the β2-β3 turn where there is a cluster of interaction spots (Fig 3, 

bottom left of left panel). This turn is part of the so-called switch 3 and home to D47 and 

E49 whose mutation to alanine has been shown to result in a hyperactive H-Ras variant66. 

We thus hypothesized that S4 and S5 along with other proximal interaction spots, including 

those near the β2-β3 turn, may represent surfaces important for either dimerization or/and 

interaction with other biomolecules.

As an initial test of this hypothesis, we overlaid pMD-derived structures harboring these 

interaction spots with the crystal structure of the H-Ras:Sos complex (pdb id: 1NVV67). 

This revealed some overlap between the interaction spots at β2-β3 and part of the Sos 

surface that interacts with Ras (Fig 7A). However, since Ras interacts with Sos primarily via 

the switch loops, interaction spots at p1 and p2 dominate. To further test our hypothesis that 

the “other” hotspots are important for interaction with biomolecules, we overlaid the pMD-

derived structure with a membrane-bound GTP-H-Ras (taken from ref19). There is a 

significant overlap in the interaction spots within S5 and sub-site3 as well as those at β2-β3 

turn and H4 (Fig 7B). Finally, initial tests suggest that S4 might play an important role in 
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Ras oligomerization (not shown). Although by no means conclusive, these observations 

suggest that pMD may be used to gain an initial qualitative picture of protein-protein and 

protein-membrane interfaces. It may also be possible to develop empirical relationships 

between probe occupancy and surface (often polar) residue's contribution to biomolecular 

binding in much the same way as Kd could be derived from ΔGgrid for small molecule 

binding (e.g.,42,45). If successful, this could expand the scope of pMD from predicting 

ligand-binding sites to predicting protein-protein/protein-membrane interfaces.

Conclusion

Ras has long been thought undruggable in part because there were no readily observable 

allosteric ligand-binding sites or interfaces on the structure17,68,69. A major goal of the 

current work was to identify ligand-binding sites and other cavities on G12D K-Ras to assist 

ongoing drug discovery efforts. Our additional goal was to obtain clues about previously 

uncharacterized surface patches that Ras may use to interact with other biomolecules.

To achieve these goals, we used the relatively fast and tractable probe-based MD. pMD is a 

better alternative to other approaches because it directly accounts for conformational 

flexibility, which is particularly important for identifying ligand-binding sites on flexible 

targets such as Ras proteins. Since the method has not been tested extensively, we carefully 

compared the predicted druggable sites and their affinities with literature data as well as 

recently reported structures of ligand/Ras complexes. In addition, we compared the pMD-

predicted pockets with those from structure-based pocket identification schemes. We found 

that the method is robust and efficient, and yields information that could not be obtained by 

structure analysis alone. We also found that in some cases enhanced sampling and the probe 

molecules themselves facilitate pocket opening.

Regarding K-Ras, the consensus outcome of the current and previous studies is that it has 

four allosteric ligand-binding sites suitable for structure-based drug design. The probe-based 

simulations also suggest additional reactive surfaces that might be involved in protein-

protein or protein-membrane interactions. These results highlight the potential of probe-

based MD simulation not only as a realistic means of identifying ligand binding sites but 

also-- upon further development--as a more general method for searching the surface of 

biomolecules for any reactive region.
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Figure 1. The catalytic domain of K-Ras is bi-lobal and contains four allosteric ligand-binding 
sites
The catalytic domain of K-Ras is shown in surface and ribbon representations with lobe1 

(residues 1-86) in yellow and lobe2 (residues 87-167) in green. The functionally important 

switch regions sw1 and sw2 are highlighted. Arrows indicate the general location of the four 

allosteric ligand-binding sites discussed in this paper, along with the relevant previous 

reports that described them.
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Figure 2. K-Ras structure is stable during molecular dynamics simulations
Shown are (A) backbone root-mean square deviation (RMSD) and (B) Cα atom root-mean 

square fluctuation (RMSF) for the CMAP simulations in the presence (pMD) and absence 

(cMD) of 20% isopropanol probe molecules in the solvent.

Prakash et al. Page 16

Proteins. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. pMD predicts five potentially druggable sites on K-Ras
Putative druggable sites S1-S5 and sub-sites 1-3 predicted by pMD are shown in black and 

red dotted circles, respectively. Numbers in bracket besides the labels are predicted Kd's in 

mM. The front view (left) is mainly lobe1 while the backside (right, after rotation by 180°) 

is the allosteric lobe2. Interaction spots with ΔGgrid between −2.03 and −0.5 kcal/mol are 

shown as balls and colored as indicated by the color bar.
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Figure 4. Structure-based pocket identification and experimental data are consistent with pMD 
predictions
(A) Overlay of normalized probe number densities from pMD (orange wireframe) and 

binding sites derived from MDpocket (yellow). Probe number densities shown here 

correspond to a grid free energy range of −2.03 to −0.5 kcal/mol. For the MDpocket meshes 

we used an isovalue of 2.5, which is within the range recommended for detection of 

transient binding sites. Backbone atoms excluding the flexible switch regions were used for 

alignment onto the initial structure. (B) Superimposition of normalized probe number 
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densities onto ligand-bound Ras structures. Ligands shown here include N-[2-(1H-indol-3-

ylmethyl)-1H-benzimidazol- 5-yl]-L-prolinamide bound at p1 and Zn(II)1,4,7,10-

tetraazaocylododecane bound at p3 (PDB ids 4EPY30 and 3L8Y28), as well as an 

Andrographolide derivative bound at p4 from Hocker et al, 201326. Interaction spots that 

make up druggable sites S1 and S3 as well as sub-site2 from Figure 3 are shown as orange 

balls in the close ups, which are shown as insets. We used the last snapshot of one of the 

pMD runs for superimposition to the ligand-bound structures.
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Figure 5. Probes facilitate pocket opening
Shown are data from MDpocket analyses of cMD (black solid surface) and pMD 

(wireframe) trajectories. Yellow, orange and ice blue represent the three independent pMD 

runs. In each case, an isovalue of 2.02 was used.
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Figure 6. Enhanced flexibility facilitates opening of some pockets
(A) Cα atom RMSF from two cMD and three pMD simulations without the CMAP dihedral 

correction. (B) Conformation and interaction spots around binding sites p4 (top) and p2 

(bottom) derived from pMD simulations with (left) and without CMAP (right). Dotted black 

circles are the same as in Figure 3. The calculated grid free energies range from −1.57 to 

−0.50 kcal/mol for the simulations without CMAP and −2.03 to −0.50 kcal/mol for pMD 

with CMAP. The most flexible pMD simulation (blue in A) was used to calculate the grid 

binding free energies for the simulation without CMAP.
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Figure 7. Predicting additional hotspot regions
Overlay of interaction spots from pMD with (A) Ras-Sos complex (pdb: 1NVV67) and (B) 
membrane-bound H-Ras-GTP (from ref19). Membrane and Sos are in cyan and Ras is in 

yellow. Balls represent interaction spots from Fig 3.
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Table 1

Average distance between pairs of selected atoms from the simulations performed in this work
*
.

CMAP correction Simulation type T35:Oγ-Mg2+ T35:Oγ-GTP:Pγ G60:Cα-G10:Cα Y32:Oη-GTP:Oγ2 G60:N-GTP: Oγ2

yes
pMD

a 2.1 ± 0.1 4.4 ± 0.1 5.5 ± 0.2 3.4 ± 1.9 3.0 ± 0.3

yes cMD 2.4 ± 3.8 4.4 ± 0.1 5.6 ± 0.2 3.1 ± 0.8 2.9 ± 0.2

no
pMD

a 8.5 ± 3.1 8.8 ± 3.3 8.4 ± 1.2 16.9 ± 4.1 6.9 ± 0.7

no
cMD

b 7.5 ± 6.2 9.2 ± 5.6 7.3 ± 1.7 12.3 ± 6.1 5.4 ± 1.9

*
Total (aggregate) simulation length: pMD with CMAP = 270 ns; cMD with CMAP = 100 ns; pMD without CMAP = 180 ns; cMD without CMAP 

= 200 ns. pMD = probe-based molecular dynamics; cMD = classical molecular dynamics.

a
Average over three trajectories.

b
Average over two trajectories.
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