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Abstract

Many hormonal and environmental signals regulate common cellular and developmental processes 

in plants. While the molecular pathways that transduce these signals have each been studied in 

detail, how these pathways are wired into regulatory networks to provide the coordinated 

responses has remained an outstanding question. Recent studies of the brassinosteroid signaling 

network have revealed extensive signal integration through direct interactions between 

components of different signaling pathways. In particular, a circuit of interacting transcription 

regulators integrates many signaling pathways to enable coordinated and coherent regulation of 

seedling morphogenesis by hormonal and environmental signals. The recent studies support an 

emerging theme that complex networks of highly integrated signaling pathways underlie the high 

levels of developmental plasticity and environmental adaptability of plants.

Introduction

While discovered for its prominent role in promoting cell elongation, brassinosteroid (BR) 

actually regulates diverse developmental and physiological processes, including seed 

germination, seedling photomorphogenesis, stomata differentiation, organ boundary 

formation, flowering, male fertility, and plant responses to biotic and abiotic stresses [1-5]. 

In maize, BR also plays a role in sex differentiation [6]. Genetic and biochemical studies in 

Arabidopsis have elucidated in molecular details a complete BR signal transduction cascade 

from perception by the BRASSINOSTEROID INSENSITIVE1 (BRI1) receptor kinase at 

the cell surface to transcriptional regulation of thousands of nuclear genes by the 

BRASSINAZOLE RESISTENT (BZR) family transcription factors [1]. How this BR 

signaling pathway regulates the diverse developmental and physiological processes has 
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become an outstanding question in the BR field. Likewise, many signaling pathways have 

been studied in detail, but separately, and how signaling pathways are integrated to ensure 

coordinated and coherent responses is becoming a prominent question in plant biology. 

Recent studies have revealed major mechanisms of BR crosstalk with other signaling 

pathway and the BR signaling network serves as a model for understanding the mechanisms 

of signal integration in plants.

BR signaling pathway: a brief account

According to the crystal structure reported recently [7,8], BR directly binds to the 

extracellular domain of BRI1 at a pocket formed by the folding of the island loop onto a 

region of the leucine-rich repeat (LRR) module, and this creates a surface for dimerization 

with the co-receptor kinase BRI1-ASSOCIATED RECEPTOR KINASE1 (BAK1) or its 

homolog SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 (SERK1). As such BR 

acts as a “molecular glue” to bring together BRI1 and BAK1. Sequential 

transphosphorylation between the kinase domains of BRI1 and BAK1 activates the kinases, 

and BRI1 in turn phosphorylates members of two groups of plasma membrane-anchored 

cytoplasmic kinases, BRASSINOSTEROID-SIGNALLING KINASE1 (BSK1) and 

CONSTITUTIVE DIFFERENTIAL GROWTH1 (CDG1). CDG1, and likely also BSK1, 

phosphorylates the BRI1-SUPPRESSOR1 (BSU1) phosphatase, which then 

dephosphorylates and inactivates the GSK3-like kinase BRASSINOSTEROID 

INSENSITIVE2 (BIN2) [9]. When the BR levels are low, BIN2 phosphorylates two 

homologous transcription factors, BRASSINAZOLE RESISTANT1 (BZR1) and BZR2 

(also named BRI1-EMS-SUPPRESSOR1, BES1), to inhibit their nuclear localization and 

DNA-binding activity. When the BR levels are high, BIN2 is inactivated, and BZR1 and 

BZR2 are dephosphorylated by PROTEIN PHOSPHATASE 2A (PP2A). Unphosphorylated 

BZR1 and BZR2 accumulate in the nucleus and bind to the promoters of target genes to 

confer BR-responsive gene expression [1].

BZR1 and BZR2/BES1 regulate overlapping sets of target genes, which include large 

numbers of genes with structural and metabolic functions such as cell wall biogenesis, as 

well as genes with regulatory functions, such as components of signal transduction pathways 

and key developmental regulators [10,11]. Although earlier studies of different target genes 

suggested opposite transcriptional activities, the genome-wide analysis showed that BZR1 

and BZR2/BES1 regulate shared target genes in similar manner and they both activate and 

repress roughly equal numbers of target genes [10,11]. The transcriptional activities of 

BZR1 and BZR2/BES1 are modulated or mediated by interactions with other transcription 

factors and histone-modifying enzymes, such as the TOPLESS repressor and histone 

deacetylases [3,12,13]. BR can regulate specific developmental processes through BZR1 

target genes, such as the CUP-SHAPED COTYLEDON (CUC) genes involved in organ 

boundary formation [4]. BR also regulates development through crosstalk mediated by 

direct interactions between the components of BR pathway and other signaling pathways. 

Below, we review recent progress in the studies of crosstalks between BR and other 

signaling pathways, focusing on the molecular mechanisms of direct interactions between 

components of different signal transduction pathways.
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Integration of BR, auxin, and phytochrome pathways through interaction of BZR, ARF, and 
PIF factors

Seedling morphogenesis is controlled by a number of endogenous and environmental 

signals, including BR, auxin, gibberellin (GA), the circadian clock, light, and temperature. 

BR, and specifically the activity of BZR factors, is essential for seedling etiolation in the 

dark. BZR1/2 regulates light responses in at least two ways: it transcriptionally controls the 

expression levels of many light-signaling components, and it interacts with phytochrome-

interacting factors (PIFs) [1]. The BZR1/2-mediated transcriptional repression of light 

signaling components, including phytochrome and light activated transcription factors 

GATA2/4, BZR1–1D SUPPRESSOR1 (BZS1), and GOLDEN2-LIKE 2 (GLK2) 

[10,11,14,15], contribute quantitatively to BR modulation of light sensitivity, but cannot 

explain the essential role of BR in etiolation in the dark, where photoreceptors and light 

signaling pathways are inactive. This essential role of BR in etiolation appears to be 

mediated by BZR1/2 as an essential partner of PIFs, which are basic helix-loop-helix 

(bHLH) transcription factors that accumulate in the dark or shade but become hyper-

phosphorylated and degraded upon interaction with light-activated phytochromes [16]. 

BZR1 and PIFs are genetically interdependent for promoting cell elongation and etiolation, 

and they directly interact and co-regulate a large number of shared target genes to promote 

cell elongation and suppress photomorphogenesis [17]. Such a model of functional 

interdependence between BZR1/2 and PIFs provides a mechanistic explanation for the 

antagonistic relationship between BR and light signals in regulating seedling morphogenesis 

(Figure 1). This model also explains the essential roles of BR in plant responses to 

additional signals that modulate PIF levels. In addition to light, temperature and the 

circadian clock also control the levels of PIF proteins transcriptionally [18]. Transcriptional 

activation of PIF4 expression is essential for the heat-induced hypocotyl elongation, and this 

function of PIF4 also requires BR and BZR activity [17] (Figure 1).

Auxin and BR are known to be interdependent and synergistic in promoting Arabidopsis 

hypocotyl elongation, and they induce highly overlapping transcriptional responses [19,20]. 

Auxin sensitivity, as well as auxin level, is modulated by light, temperature, and circadian 

rhythm, through PIFs [21]. While BZR1- and PIF-mediated transcriptional regulation of 

auxin biosynthetic and signaling genes have been observed [10,22], a recent study revealed 

more direct roles of PIF factors and BZR1 in auxin response [23]. Identification of genome-

wide targets of ARF6 revealed over 50% overlaps between the ARF6 target genes and the 

targets of BZR1 or PIF4 [23]. BZR1 and PIF4 interact with ARF6 directly and enhance its 

binding to the shared promoters. Genetic analyses confirmed interdependent relationships 

between these factors in activating shared target genes and promoting hypocotyl elongation. 

The study supports a model that the Arabidopsis hypocotyl elongation is regulated through 

cooperative interactions among BZR1, ARF6, and PIF4 at the promoters of overlapping 

target genes, many of which encode cell wall proteins involved in cell expansion [23]. Thus, 

the BZR-ARF-PIF module elegantly explains the co-regulation of shoot cell elongation by 

BR, auxin, and phytochrome. Furthermore, additional signals regulate plant growth by 

modulating the activities of these factors.
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Integration of gibberellin signal through DELLA repression of BZR, PIF, and ARF factors

GA binds to its receptor GID1 to induce ubiquitination and degradation of the DELLA 

proteins. Interestingly, DELLA proteins interact with and inhibit DNA binding activities of 

not only PIFs and BZR1, but also ARF6 [24-27]. Thus, GA promotes cell elongation largely 

by releasing the DELLA-mediated repression of PIFs, BZR1 and ARF6 [26-28]. GA/

DELLA regulation of all three components of the BZR-ARF-PIF module potentially 

provides balanced and quantitative modulation of the outputs of the BZR-ARF-PIF circuit 

(Figure 1).

Integration of the strigolactone signaling pathway through MAX2-BZR interaction

Strigolactone (SL) suppresses lateral shoot branch growth and also promotes 

photomorphogenesis [29,30]. A recent study provided evidence that MORE AXILLARY 

GROWTH2 (MAX2), an F-box ubiquitin E3 ligase required for SL signaling, mediates 

ubiquitination and degradation of BZR proteins [31]. Yeast two-hybrid and in vivo assays 

showed MAX2 interaction with BZR1 and BZR2/BES1. SL treatment caused BZR2/BES1 

degradation in a MAX2-dependent manner, and SL inhibition of hypocotyl elongation is 

abolished in both max2 and the dominant bes1-D mutant. Consistent with PIF-dependent 

function of BZR in photomorphogenesis, the pif-q mutant is hypersensitive to SL [32]. 

Interestingly, the bes1-D mutant showed increased branching, and knockdown of BES1 

suppressed the more-axillary-growth phenotype of max2. It was proposed that the SL/

MAX2-dependent degradation of BZR factors mediates SL regulation of both 

photomorphogenesis and axillary branch growth [31] (Figure 1).

Coupling of the BZR-ARF-PIF module with the tripartite HLH/bHLH module

The promotion of hypocotyl cell elongation by the BZR-ARF-PIF module requires a 

tripartite helix-loop-helix/basic-helix-loop-helix (HLH/bHLH) module consisting of two 

classes of non-DNA-binding HLH factors that antagonistically control many DNA-binding 

bHLH factors [26,33,34]. BZR1, ARF6, and PIF4 directly activate members of the 

PACLOBUTRAZOLRESISTANCE (PRE) family of HLH factors, which promote plant 

growth [26]. PREs bind to another group of HLH factors, including ILI1 binding bHLH1 

(IBH1), LONG HYPOCOTYL IN FAR-RED (HFR), PHYTOCHROME RAPIDLY 

REGULATED1/2 (PAR1/2), and ATBS1 INTERACTING FACTOR (AIFs), which inhibit 

plant growth. Through heterodimerization, HFR and PAR1/2 inhibit DNA binding activities 

of PIFs [35,36]. As such, activation of PRE expression by the BZR-ARF-PIF module further 

increases availability of PIFs by sequestrating HFR and PAR1, forming a positive feedback 

loop. In contrast, activation of PIFs by shade conditions increases transcription of HFR and 

PAR1 genes, forming a negative feedback loop. Such hormone-dependent positive feedback 

and hormone-independent negative feedback regulation of PIFs potentially ensures that the 

responses to shade or darkness are limited by the endogenous signals BR and auxin (Figure 

1).

In addition to PIFs, PAR1 also inhibits BR-ENHANCED EXPRESSION 2 (BEE2), which is 

transcriptionally activated by BR signaling, and BIM1, which interacts with BZR2/BES1. 

Both BIM1 and BEE2 play a role in promoting hypocotyl elongation [37].
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IBH1 inhibits another family of DNA-binding bHLH factors including HOMOLOG OF 

BEE2 INTERACTING WITH IBH1 (HBI1), BEE2 and three ACTIVATOR FOR CELL 

ELONGATION factors (ACE1 to ACE3) [33,34]. PRE1 binds to IBH1 to prevent its 

inhibition of HBI1 and ACEs [33,34]. Genome-wide target gene analyses showed that the 

HBI1 target genes are mostly (>70%) also direct targets of PIFs, and that HBI1 and PIFs 

activate many common target genes involved in cell elongation [38]. Like PIF4, HBI1 also 

interacts with ARF6[23]. But unlike PIFs, HBI1 is not regulated by light, and HBI1 

positively regulates many genes encoding chloroplast proteins, suggesting a distinct role in 

promoting both growth and photosynthesis in light-grown plants [38]. On the other hand, 

expression levels of HBI1 and BEE family members are repressed by growth-inhibition 

signals such as pathogen signals and abscisic acid (ABA) [38-40].

Integration with biotic and abiotic stress signals

BR and the pathogen associated molecular patterns (PAMPs) antagonistically regulate 

growth and immunity. Many molecular connections are known between the BR pathway and 

the pathway activated by the PAMP signal flagellin [41]. First, BRI1 and the flagellin 

receptor kinase FLAGELLIN-SENSITIVE2 (FLS2) share both co-receptor kinase BAK1 

and the substrates BIK1 and BSK1 kinases [42,43] (Figure 2A). The functional significance 

of these upstream interactions in the BR-PAMP antagonism remains questionable, mostly 

because flagellin showed no effect on BZR1 phosphorylation and accumulation [44-46]. In 

contrast, significant crosstalk has been observed at the level of transcriptional regulation 

[38,39,47].

Both BZR1 and HBI1 have been shown recently to mediate transcriptional repression of 

immunity. BZR1 interacts with WRKY40 and activates the expression of several other 

WRKY transcription factors that inhibit immune responses [47]. However, the lack of a 

PAMP-induced effect on BZR1 level suggests that PAMP inhibition of BR-induced growth 

should be mediated by a component parallel or downstream of BZR1 [46]. Indeed 

transcription of HBI1 is rapidly repressed by PAMP signals such as flagellin and elf18 

[38,39]. Overexpression of HBI1 significantly reduces the growth inhibition by flagellin and 

elf18, indicating that PAMP signaling inhibits growth mainly by repressing HBI1. 

Surprisingly, the HBI1-overexpression plants also show diminished PAMP-induced defense 

responses, including reactive oxygen species (ROS) production, defense gene expression, 

and resistance against pathogen infection [38]. The results demonstrate that HBI1 is 

activated by growth hormones at the protein level but repressed by PAMP signaling at the 

RNA level, and HBI1 in turn promotes growth and inhibits immunity. Therefore, HBI1 

appears to function as a major node of crosstalk between the hormonal and PAMP signaling 

pathways [38,39] (Figure 1 and 2A).

Abiotic stresses activate production of ABA, which induces stress responses and inhibits 

plant growth. BR and ABA antagonize each other in many developmental processes, and 

various interactions between the two pathways have been observed at molecular levels. 

First, BR and ABA were shown to induce and repress, respectively, the expression of the 

BEEs, and genetic analysis supported a role of BEEs in the antagonistic interaction between 

BR and ABA [40]. Second, ABA was shown to increase phosphorylation of BZR1 [48]. 

Wang et al. Page 5

Curr Opin Plant Biol. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Third, BIN2, the negative regulator of BR signaling, was recently shown to phosphorylate 

and activate the SnRK2 kinase, a positive regulator of ABA signaling [49]. Fourth, the BR-

activated BES1 was shown to transcriptionally repress the ABA-signaling components ABI3 

and ABI5 by recruiting the TOPLESS family of repressors [13], which appears to be a 

general mechanism of BR-induced transcription repression [12]. The relative contributions 

of these molecular mechanisms to the BR-ABA antagonism require further clarification. 

Genetic analyses have yielded conflicting results about the ABA-sensitivity phenotypes of 

the BR-hypersensitive bes1-D mutant [13,49].

Signal crosstalk with other receptor kinase pathways in specific developmental context

In addition to the flagellin/FLS2 pathway, several receptor kinase pathways have recently 

been shown to interact with the BR/BRI1 pathway, allowing BR regulation of specific 

differentiation and developmental processes.

The density and distribution of stomata at leaf surface are important for photosynthesis and 

water use efficiency. Stomata formation is negatively regulated by the ERECTA receptor 

kinase and a downstream MITOGEN-ACTIVATED PROTEIN (MAP) kinase module that 

inactivates the bHLH factor SPEECHLESS (SPCH), which promotes stomatal development 

[50]. BR inhibits stomatal development in leaves through BIN2-mediated phosphorylation 

and inhibition of the MAP kinase kinase kinase YODA and its substrate MAP kinase 

kinases (MKK4 and MKK5) [51,52]. BR also positively affects stomatal development in 

hypocotyl through inhibiting BIN2 phosphorylation and inactivation of SPCH [53]. Thus, 

BR signaling through BIN2 phosphorylation of several components of the ERECTA-

MAPK-SPCH pathway inhibits and promotes stomata differentiation in different organs 

(Figure 2B). While BR inhibition of stomata formation in leaves is consistent with 

coordinated inhibition of photomorphogenic development, the biological significance of BR 

promotion of stomata formation in hypocotyl remains unclear. Whether ERECTA regulates 

the MAP kinases through BIN2 remains to be elucidated.

Two recent studies demonstrated that direct regulation of BIN2 by a receptor kinase 

involved in vascular tissue and lateral root development (Figure 2C). The tracheary element 

differentiation inhibitory factor (TDIF) is a peptide signal that activates the TDIF 

RECEPTOR (TDR) receptor kinase to inhibit xylem cell differentiation. In contrast, BR 

promotes xylem differentiation. Kondo et al showed that TDR kinase direct phosphorylates 

and activates BIN2, leading to phosphorylation and inactivation of BES1 [54]. As such, BR/

BRI1 signaling pathway converges with the TDIF/TDR pathway at BIN2 in antagonistic 

regulation of xylem differentiation [54] (Figure 2C). In contrast, Cho et al, showed that, 

upon TDR activation, BIN2 phosphorylates the auxin response factor ARF7, to increase 

ARF7 activity and promote lateral root development. Intriguingly, BR promotes lateral root 

development independent of BIN2, whereas the TDR-BIN2-ARF7 module promotes lateral 

root development independent of BR signaling [55] (Figure 2C). How BIN2 performs both 

BR-dependent and BR-independent function remains unclear.
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Conclusions

Integration of signaling pathways is crucial for the robustness of a regulatory system. Recent 

studies have demonstrated extensive integration of the BR signaling pathway with many 

other signaling pathways, through molecular interactions at levels of both signal 

transduction and transcriptional regulation. In particular, the BZR-ARF-PIF module coupled 

with the bHLH module appears to constitute a central growth regulation (CGR) circuit that 

integrates major hormonal and environmental signals. The CGR circuit not only reveals a 

central mechanism of cell elongation regulation but also provides an elegant example of how 

signaling pathways can be integrated to provide coordinated regulation of a common cellular 

response. It should be pointed out that the models presented in this review are likely overly 

simplified, due to space limit of the journal as well as incompleteness of our knowledge. The 

signal integration and outputs are likely modulated by tissue- and cell type-specific factors. 

In addition, the cross regulation of hormone levels is an integral part of the regulatory 

network that is not discussed in this review. A high degree of signal integration and high 

level of complexity of the growth-regulation networks is expected from the robustness and 

high plasticity of plant growth and development. A complete understanding of such 

networks will be important for improving plant productivity.
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Highlights

• The BZR-ARF-PIF/DELLA module integrates major hormonal and 

environmental signals.

• BZR-ARF-PIF/DELLA module is coupled with the PRE-IBH1-HBI1 tripartite 

HLH/bHLH module.

• Biotic and abiotic stresses antagonize growth-promoting pathways at multiple 

levels.

• BIN2/GSK3 mediates crosstalks between BR and other receptor kinase 

pathways.

• The TDR receptor kinase phosphorylates BIN2 to regulate xylem and lateral 

root development.
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Figure 1. 
A central growth regulation network integrates hormonal and environmental signals in 

transcriptional regulation of plant growth and physiology. DNA-binding transcription 

factors are shown in ovals, and non-DNA-binding factors that inhibit DNA binding factors 

are shown in black boxes. Red lines show posttranslational activation (arrows) or inhibition 

(bar end), and blue lines show transcriptional activation (arrows) or inhibition (bar end).
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Figure 2. 
Crosstalks between BR/BRI1 and other RLK pathways.

A. Crosstalk between BR/BRI1 and flagellin/FLS2 pathways regulating the tradeoff between 

growth and immunity.

B. BR/BRI1 crosstalks with the ERECTA-MAPK pathway to regulate stomata development.

C. BR/BRI1 crosstalk with the TDIF/TDR pathway to antagonistically regulate xylem 

differentiation. TDIF/TDR also regulates BIN2 to promote lateral root development, 

independent of BR signaling.

Red lines show posttranslational activation (arrows) or inhibition (bar end) by 

phosphorylation (+p) or dephosphorylation (-p), and blue lines show transcriptional 

activation (arrows) or inhibition (bar end).
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