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Human respiratory syncytial virus (hRSV) and human metapneumovirus (hMPV) share virologic and epidemiologic features
and cause clinically similar respiratory illness predominantly in young children. In a previous study of acute febrile respiratory
illness in Bangladesh, we tested paired serum specimens from 852 children presenting fever and cough for diagnostic increases
in titers of antibody to hRSV and hMPV by enzyme immunoassay (EIA). Unexpectedly, of 93 serum pairs that showed a >4-fold
increase in titers of antibody to hRSV, 24 (25.8%) showed a concurrent increase in titers of antibody to hMPV; of 91 pairs show-
ing an increase to hMPV, 13 (14.3%) showed a concurrent increase to hRSV. We speculated that common antigens shared by
these viruses explain this finding. Since the nucleocapsid (N) proteins of these viruses show the greatest sequence homology, we
tested hyperimmune antisera prepared for each virus against baculovirus-expressed recombinant N (recN) proteins for potential
cross-reactivity. The antisera were reciprocally reactive with both proteins. To localize common antigenic regions, we first ex-
pressed the carboxy domain of the hMPV N protein that was the most highly conserved region within the hRSV N protein. Al-
though reciprocally reactive with antisera by Western blotting, this truncated protein did not react with hMPV IgG-positive hu-
man sera by EIA. Using 5 synthetic peptides that spanned the amino-terminal portion of the hMPV N protein, we identified a
single peptide that was cross-reactive with human sera positive for either virus. Antiserum prepared for this peptide was reactive
with recN proteins of both viruses, indicating that a common immunoreactive site exists in this region.

Human respiratory syncytial virus (hRSV) and human metap-
neumovirus (hMPV) are negative single-stranded, enveloped

RNA viruses that are coclassified within the Pneumovirinae sub-
family of the Paramyxoviridae. hRSV is the leading cause of severe
lower respiratory tract infections in infants and young children
and has been associated with community-acquired pneumonia in
adults, with the highest mortality rates found among the hospital-
ized elderly and immunocompromised (1, 2, 3). hMPV was iden-
tified first in 2001 by van den Hoogen et al. (4) and subsequently
has been shown to have clinical and epidemiological features sim-
ilar to but distinct from those of hRSV (5, 6). Most hMPV infec-
tions occur within the first few years of life, usually later than those
for hRSV, and cause 5 to 10% of respiratory infections in children
requiring hospitalization, second only to hRSV (7). Both viruses
are ubiquitous globally, and recent studies have documented a
high prevalence of infection among children in less developed
countries (8, 9). Clinical outcomes similar to those for hRSV have
been described for hMPV infections in the frail elderly (10).

The RNA genomes of hRSV and hMPV are complexed with
nucleocapsid (N) protein that together serve as the templates for
genome replication and transcription (11). The N protein is the
most abundant viral protein and elicits a strong and long-lasting
humoral immune response following acute infection (12, 13). Re-
combinant nucleocapsid (recN) protein has been used success-
fully to replace whole virus antigen in diagnostic serological assays
for hRSV and hMPV by us and others (14, 15).

In a previous serologic study to assess the etiology of febrile
respiratory illness in Bangladeshi children, we observed an unusu-
ally high number of increases titers of antibody to hRSV and
hMPV (unpublished data). Although coinfections with hRSV and
hMPV could explain this observation, coinfections could not be
confirmed by reverse transcription-PCR (RT-PCR) of coinci-
dently collected respiratory specimens from these children, and

only limited cocirculation of these viruses was observed during the
study period (9). An alternative hypothesis was that these hetero-
typic responses were due to hitherto-unreported shared antigens
between these viruses. In this study, we identified a common im-
munoreactive site in the amino acid terminus of the N proteins of
hRSV and hMPV and discuss the implications of this finding.

MATERIALS AND METHODS
Human serum specimens. As part of a population-based respiratory dis-
ease surveillance study in Dhaka, Bangladesh, conducted by the Interna-
tional Center for Diarrheal Disease Research, Bangladesh (ICDDR, B),
paired acute- and convalescent-phase serum specimens were collected
from children �5 years of age presenting with acute respiratory tract
illness and/or fever from April 2004 to Feb 2006. Serum pairs obtained
from 852 children were sent to the Centers for Disease Control and Pre-
vention (CDC; Atlanta, Georgia, USA) for serologic testing for respiratory
pathogens (8). This study was reviewed and approved by the Research
Review and Ethical Review Committees of ICDDR, B and the CDC Insti-
tutional Review Board. Written informed consent was obtained from the
primary adult caretaker for all children from whom samples were col-
lected.
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Expression of the carboxy-terminal domain of hMPV N protein.
Methods used for expression, affinity purification, and Western blot anal-
ysis of the carboxy-terminal fragment of the hMPV N protein (designated
rec�N) were as previously described for the full-length recN proteins of
hRSV and hMPV (15). In that study, we found no difference in the per-
formance of indirect IgG enzyme immunoassays (EIAs) with human sera
using antigen derived from either hMPV subgroup A (CAN97-83) or
subgroup B (CAN98-75) viruses, and results obtained using full-length
CAN97-83 recN protein were highly correlated with whole-virus lysate
antigen. Therefore, for our cross-reactivity studies, we chose the carboxy-
terminal region of hMPV N protein from strain CAN97-83 (accession
number AY297749.1), which showed the highest degree of amino acid
homology with hRSV N protein, for expression in a baculovirus system
(Fig. 1). Genomic RNA was extracted from CAN97-83 and amplified by
RT-PCR using forward (5=-CACCCAAAATCAGAGGCCTTCAGCACC
AG-3=) and reverse (5=-TTACTCATAATCATTTTGACTGTC-3=) prim-
ers to cover the region encoding amino acids (aa) 148 to 394 of hMPV N
protein. The amplified gene fragment was cloned into entry vector
pENTR/D-TOPO using the Baculovirus Expression System with Gateway
technology (Life Technologies). A clone was selected, and sequence was
confirmed and subcloned into Gateway destination vector pDEST10. This
expression clone then was transformed into competent bacterial artificial
chromosome (BAC) Escherichia coli DH10 cells. The resulting recombi-
nant bacmid DNA that contained the His-tagged rec�N gene fragment
was isolated and transfected into Spodoptera frugiperda clone 9 (Sf9; CRL
1711; ATCC) cells. The cells were grown and maintained in suspension at
27°C using serum-free medium Sf-900 II supplemented with antibiotics
(penicillin, 10,000 U/ml; streptomycin, 10,000/ml) (GIBCO, Life Tech-
nologies). To obtain high-titer recombinant baculovirus expressing the
hMPV rec�N protein, SF9 suspension cultures containing 2 � 106

cells/ml were infected with 1 PFU/cell of virus and harvested when 50% of
the cells showed cytopathic effect.

Lysates of SF9 cells expressing rec�N protein and uninfected SF9 cells
were run on 10% SDS-PAGE gels, and bands were analyzed by Western
blotting with mouse anti-His tag antisera (Santa Cruz Biotechnology,
Dallas, TX) and affinity-purified rabbit hyperimmune antiserum pre-
pared for hRSV strain A2 (EMD Millipore) and mouse hyperimmune
antiserum for hMPV strain CAN97-83 (CDC Scientific Resources Pro-
gram). hMPV rec�N protein was reacted against human serum speci-
mens by indirect IgG EIA as previously described for recN (15).

Amino-terminal peptides from hMPV N protein. Five peptides (P1
to P5) covering conserved regions between the hRSV and hMPV N pro-
teins were designed to the amino terminus of the hMPV N protein (strain
CAN97-83) by following recommendations of the commercial vender
(LifeTein, South Plainfield, NJ) (Fig. 1). Peptide-based seroassays were mod-
ified from recN protein bead-based assays developed on the MAGPIX plat-
form (Luminex, Austin, TX) and described in detail elsewhere (15). One
�g of each peptide was coupled to 2.5 � 106 MagPlex microspheres (Lu-
minex), and the beads were combined to permit simultaneous testing.
Reporter fluorescence of the peptide-coupled beads was expressed as the
mean fluorescence intensity of at least 50 beads per well. Rabbit hyperim-
mune antisera was raised against peptide P1 (aa 1 to 31; MSLQGIHLSDL
SYKHAILKESQYTIKRDVGT-Cys) that contained an added carboxy-ter-
minal cysteine residue (Cys) to enable affinity purification using keyhole
limpet hemocyanin (Lifetein).

RESULTS
Serological studies. In a previous serologic study of 852 children
with acute febrile respiratory illness using whole-virus-lysate an-
tigen-based EIAs, 93 (10.9%) and 91 (10.7%) showed diagnostic
increases (�4-fold) in IgG titers of antibody to hRSV and hMPV,
respectively (unpublished data). Unexpectedly, of those with di-
agnostic increases in levels of antibody to hRSV, 24 (25.8%)

FIG 1 Alignment of N proteins of representative hRSV and hMPV strains: hRSV subgroup A (A2; accession number M11486.1), hRSV subgroup B (CH-18537;
accession number D00736.1), hMPV subgroup A (CAN97-83; accession number AY297749.1), and hMPV subgroup B (CAN98-75; accession number
AY297748.1). Location of the amino-terminal peptides P1 to P5 (denoted by arrows) and expressed carboxyl domain (aa 148 to 394) of the hMPV N protein
(highlighted in gray) used in this study.
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showed concurrent (�4-fold and �4-fold) increases in levels of
antibody to hMPV, and of those with diagnostic increases in levels
of antibody to hMPV, 13 (14.3%) showed increased response to
hRSV. In a subsequent study to evaluate the utility of expressed
recN proteins as a substitute for whole-virus-lysate antigen, we
randomly selected 87 serum pairs from this collection showing
increases in levels of antibody to hRSV, hMPV, or both for com-
parison (15). Results obtained with whole-virus-lysate and recN
EIAs were highly concordant, with 10 serum pairs showing clear
diagnostic increases in IgG antibodies to both recN proteins.
However, when we reviewed RT-PCR data from respiratory swab
specimens available from some of these children, 3 were con-
firmed RT-PCR positive for hRSV, 4 were positive for hMPV, but
none were positive for both viruses (9). In every case, the domi-
nant seroresponse corresponded to the virus identified by RT-
PCR.

Immunotypic cross-reactions between hRSV and hMPV
full-length recN proteins. We speculated that serologic cross-re-
actions between the hRSV and hMPV N proteins explain the dual
increases in antibody levels seen with some human serum pairs.
To investigate this possibility, hyperimmune antisera were pre-
pared for hRSV and hMPV and reacted with both full-length recN
proteins and whole virus lysate by Western blotting. Both recN
proteins (Fig. 2) and whole virus lysate were reciprocally reactive
with antisera prepared against each virus. This finding suggested
that the viruses share common antigenic determinants in the N
protein. Notably, blots of hMPV recN with hMPV antisera re-
vealed an additional smaller band which may represent the inter-

nal initiation of translation within the hMPV N gene, as described
for the avian metapneumovirus nucleocapsid gene (16).

Evaluation of the carboxy-terminal domain of hMPV N pro-
tein. In an attempt to localize common immunoreactive regions
within the hRSV and hMPV N proteins, we first investigated the
carboxy-terminal portion of the hMPV N protein that showed the
greatest sequence homology with hRSV. The carboxy domain of N
proteins of all nonsegmented, negative-stranded RNA viruses
have been reported to contain three relatively conserved do-
mains and predicted secondary structure (17, 18). We expressed
the carboxy-terminal truncated fragment of the hMPV N protein
(rec�N; aa 148 to 394) as a His-tagged fusion protein in a baculo-
virus expression system and verified expression with His tag anti-
sera and reactivity with hMPV hyperimmune sera by Western
blotting (Fig. 3). The immunoreactivity of the hMPV rec�N pro-
tein also was evaluated by indirect IgG EIA with human sera con-
taining high-titer IgG antibodies to hMPV, using full-length recN
protein as a positive control. In contrast to hMPV recN, which
showed strong reactivity with the human sera by EIA, rec�N was
not reactive (data not shown).

Evaluation of amino-terminal region of hMPV N protein us-
ing synthetic peptides. We next examined the amino-terminal
region of hMPV N protein (aa 1 to 151) for possible common
antigenic sites and designed 5 peptides (P1 to P5) covering the
most conserved subregions between hRSV N and hMPV N (Fig.
1). The reactivity of these peptides with human serum specimens
was tested using a modified Luminex MAGPIX seroassay previ-
ously developed for recN proteins (15). Each peptide was sepa-
rately coupled to MagPlex microspheres (Luminex) that then
were combined and tested against three groups of 10 human se-
rum specimens for virus-specific IgG reactivity: (i) specimens
lacking detectable antibodies to hMPV and hRSV by whole-virus-
lysate and recN EIAs (hRSV�/hMPV�); (ii) specimens with sta-
ble levels of antibody to hRSV and negative for hMPV antibodies
(hRSV�/hMPV�); and (iii) specimens with stable levels of anti-
body to hMPV and negative for hRSV antibodies (hRSV�/
hMPV�). Of the 5 peptides tested, only P1, which shows 38.7%
amino acid identity to both hRSV subgroups, was reactive with
serum specimens from both hRSV�/hMPV� and hRSV�/
hMPV� sample groups, with no reactivity detected with anti-
body-negative sera (Fig. 4). P1 reactivity was evaluated further
with 10 serum pairs from children with acute virus infections
showing diagnostic increases in titers of antibody to either hRSV
or hMPV (Fig. 5). Increases in concentrations of antibody P1 were
detected with most paired sera and were confirmed on repeat test-
ing, indicating that this region of the N protein (aa 1 to 31) con-
tains an immunoreactive site common to both viruses.

Evaluation of hyperimmune antisera raised against peptide
P1. To affirm that P1 contained an immunoreactive site common
to both hRSV and hMPV, we generated hyperimmune animal

FIG 2 Western blot analysis of different concentrations of purified full-length
hRSV and hMPV recN proteins reciprocally reacted with affinity-purified goat
and rabbit hyperimmune antisera prepared for hRSV (strain A2) and hMPV
(strain CAN97-83), respectively.

FIG 3 Western blot analysis of expressed carboxyl domain of the hMPV N protein (rec�N) and uninfected SF9 cell lysates reacted with mouse anti-His tag
antisera and affinity-purified rabbit hyperimmune antisera prepared for hMPV (strain CAN97-83).
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antisera against P1 and performed Western blotting against full-
length recN proteins. As expected, the antisera prepared to P1
recognized both hMPV and hRSV recN proteins by Western blot-
ting (Fig. 6).

DISCUSSION

During a serologic study of acute respiratory infections among
young children in Dhaka, Bangladesh, we observed an unexpect-
edly high proportion of dual increases in titers of antibodies to
hRSV and hMPV. Although coincident infections could explain
this observation, there was minimal overlap in the temporal cir-
culation of these viruses in this community, and RT-PCR testing
of respiratory specimens from these children detected one or
neither virus but never both (9). Further study revealed that full-
length recN proteins were recognized reciprocally by hyperim-
mune antisera prepared for each virus, and a common immuno-
reactive site located at the amino terminus of hMPV N (aa 1 to 31)
was identified using synthetic peptides. Our findings are consis-

tent with those of previous studies that separately identified a lin-
ear epitope within the amino terminus of hMPV (19, 20) and
hRSV (21), but this is the first study to demonstrate heterologous
antibody responses in both immunized animals and naturally ac-
quired human infections.

hRSV and hMPV are each comprised of two major antigenic
subgroups, which are distinguishable genetically and immunolog-
ically by neutralization with animal hyperimmune antisera and
reactivity with monoclonal antibodies (22, 23). However, these
antigenic differences are associated primarily with the highly vari-
able F and G envelope glycoproteins and are less pronounced with
the immunodominant N proteins that show �95% amino acid
sequence identity between subgroup members (24, 25). hRSV and
hMPV N proteins share up to 44% amino acid identity, with the
greatest homology found in the carboxy domain, where we fo-
cused our efforts to identify cross-reactive sites (17, 18). However,
we were unsuccessful, because, unlike full-length hMPV recN, the

FIG 4 Reactivity of peptides P1 to P5 with human sera. Peptides individually
coupled to Luminex beads were reacted with three groups of 10 selected hu-
man serum specimens containing high stable levels of IgG antibodies to hRSV
(hRSV�/hMPV�) and hMPV (hRSV�/hMPV�) and no detectable antibodies
to either virus (hRSV�/hMPV�) by whole-virus-lysate EIAs and tested by
MAGPIX immunoassay. The reporter fluorescence of the peptide-coupled
beads was expressed as mean fluorescence intensity (MFI).

FIG 5 Reactivity of peptide P1 with human sera. P1-coupled Luminex beads
were reacted with 10 selected acute- and convalescent-phase serum pairs
showing diagnostic increases (�4-fold) in IgG antibodies to hRSV (6 pairs) or
hMPV (4 pairs) by whole-virus-lysate EIAs and tested by MAGPIX immuno-
assay. Reporter fluorescence of the P1-coupled beads was expressed as mean
fluorescence intensity (MFI). MFI ratios, calculated by dividing the convales-
cent-phase serum MFI by the MFI of acute-phase serum, show the relative
magnitude of antibody responses.

FIG 6 Western blot analysis of different concentrations of purified full-length
hRSV and hMPV recN proteins reacted with affinity-purified rabbit hyperim-
mune antisera prepared for peptide P1.
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truncated protein did not react with IgG-positive human sera by
EIA. The hMPV rec�N protein was reciprocally recognized by
both hMPV and hRSV antisera by Western blotting (data not
shown), suggesting that a linear epitope(s) common to both vi-
ruses is present in this region. In fact, other studies have identified
multiple linear epitopes within the carboxy domain of the hRSV N
protein (21, 26, 27), and their potential common antigenicity with
hMPV should be investigated. One possible explanation for the
loss of immunoreactivity of the hMPV rec�N protein with anti-
body-positive human sera by EIA is that N protein antigenicity is
conformation dependent, and the truncation of the amino-termi-
nal portion of the protein changes its natural configuration, re-
sulting in the loss of conformational epitopes or sequestering of
linear epitopes. The existence of conformational epitopes on the
hMPV N protein was demonstrated by Petraitytė-Burneikienė et
al. (20), who showed that monoclonal antibodies directed against
these epitopes reacted with native viral nucleocapsid but not with
its truncated form. Murray et al. (21) showed that linear epitopes
in the carboxyl terminus of the hRSV N protein are blocked on
binding to phosphoprotein during formation of the viral RNA-
dependent RNA polymerase complex.

Given the possibility that the amino terminus of the hMPV and
hRSV N protein contained common antigenic sites, we revisited a
study by Alvarez et al. (19), who identified a peptide (designated N
protein10-29) common to hMPV and group C avian metapneumo-
virus (AMPV) that computational analysis predicted to be highly
antigenic. Rabbit hyperimmune antiserum prepared for this pep-
tide was shown by these authors to react by both Western blotting
and EIA with cultured virus lysate of hMPV (strain CAN98-75)
and AMPV subtypes A to C, but not hRSV (strain A2). Their
finding of a lack of cross-reactivity with hRSV was inconsistent
with our results. However, close examination of the Western blot
image presented in Fig. 2A of their manuscript shows a faint band
of the expected size in lane 6, demonstrating possible reactivity
between N protein10-29 antisera and hRSV A2 lysate. We suspect
that the use of hRSV recN protein in our assays increased sensi-
tivity over whole-virus antigen and may account for this differ-
ence in results.

Patterns of temporal circulation of respiratory viruses in a
given community is governed by many factors, including climate,
geography, population demographics and density, and nonspe-
cific viral interference, among others (28, 29), and distinct recur-
ring seasonal peaks have been described for hRSV and hMPV in
the United States (30, 31), although substantial variation in indi-
vidual years and communities can occur (32). Community circu-
lation patterns also may be influenced by population immunolog-
ical barriers (herd immunity) that can affect the timing and
duration of virus activity. For example, two other members of the
Paramyxoviridae family, human parainfluenza virus (hPIV) types
1 and 3, possess common antigens that show cross-reactions in
serological assays (33). In our study, 50 of 86 (58.1%) children that
showed diagnostic increases in titers of antibody to hPIV1 or
hPIV3 had increases for both types, but no codetections occurred
by RT-PCR in concurrently collected respiratory specimens (data
not shown). Shared antigenicity and immunologic cross protec-
tion has been posited as one explanation for the distinctive sea-
sonal peaks and apparent interactions seen in a national prospec-
tive study monitoring hPIV circulation over a 15-year period;
hPIV1 peaks biennially in the fall of odd-numbered years, while
hPIV3 peaks annually in late spring with increased activity occur-

ring during years when hPIV1 is absent (34). Discontinuous cir-
culation possibly related to shared antigenicity also was evident
with hRSV and hMPV in the larger RT-PCR study of Bangladeshi
children conducted from February 2004 through February 2008,
of which our serological study was a subset (9). hRSV activity
periods were well defined, with peaks in January 2006, July 2006,
and October 2007. In contrast, these peaks were preceded by four
episodes of hMPV peak activity in February 2005, November
2005, February 2007, and September 2007 that showed limited
overlap with hRSV. In the longest consecutive study of hRSV and
hMPV seasonality, Williams et al. (30) conducted an etiological
assessment of acute upper respiratory infections in 1,532 children
monitored over a 20-year period from January 1982 through De-
cember 2001 in Nashville, TN. The authors found that hMPV
infections occurred during the late winter and early spring
months, overlapping the winter peak of hRSV, but with peak fre-
quency occurring approximately 2 months after the hRSV peak. A
similar pattern is found in multiple studies involving different
populations over different time periods from varied geographic
regions, including Argentina (35), Canada (36), China (37), Eng-
land (38), Japan (39), and the United States (40, 41), including
Alaska (42).

It is interesting to speculate on the possible effect of prior in-
fection with one virus on the clinical outcome of subsequent in-
fection with the other. For example, multiple infections with
hRSV and hMPV occur throughout life, but repeat infections with
the same virus generally are much less severe (53), likely due to
prior immunologic priming. Therefore, the presence of common
antigenic determinants within the hRSV and hMPV N protein
may have implications for cross-protection from natural virus in-
fections and may help inform vaccine development and evalua-
tion strategies. Following hRSV or hMPV infection, serum-neu-
tralizing antibodies are produced, principally against the F and G
envelope glycoproteins, and have been shown to be protective (43,
44). Both hRSV and hMPV F and G proteins share limited se-
quence identity, and antisera generated against either virus have
not been shown to be cross-neutralizing (45). Although it is well
known that hRSV serum-neutralizing antibodies are protective,
inducing adequate neutralizing antibodies at the mucosal surface
by vaccination has been unsuccessful (46). It has been suggested
that hRSV vaccines that induce antibody and CD8� T cells are
more effective (47). Notably, the hRSV N protein was the major
target for memory CD8� T-cell responses (48, 49, 50), and mul-
tiple human cytotoxic T lymphocyte epitopes have been identified
within the hRSV N protein, including an epitope located at amino
acid positions 16 to 24 within the P1 peptide (50, 51).

It is important to note that heterotypic antibody responses
were not detected in most children that showed diagnostic in-
creases in antibodies to hRSV or hMPV, and of those children with
increases in titers of antibody to both viruses, most exhibited a
strong and weak response, with the former being attributable to
the infecting virus. Nevertheless, our findings suggest that there
will be some diagnostic uncertainty when using native or recom-
binant N protein-based assays for serological assessment of acute
infection with these viruses. That some children demonstrate het-
erotypic antibody responses and others do not may reflect differ-
ences in their history with either virus; with hPIVs, co-antibody
titer rises are seen more often following reinfection with a hetero-
typic virus (52). However, our study examined only immunoglob-
ulin subclass G in serum and did not evaluate virus-specific IgM or
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IgA antibody responses in serum or respiratory mucosa. More-
over, our study was restricted to available serum specimens from
young Bangladeshi children; therefore, our findings may not be
generalizable due to unanticipated differences associated with this
geographically and demographically distinct population. Further
studies are warranted to establish the full antigenic relatedness of
hRSV and hMPV using well-characterized sera from different
population groups.
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