Skip to main content
. 2013 Aug 3;73(8):2509. doi: 10.1140/epjc/s10052-013-2509-4

Fig. 15.

Fig. 15

Ratio of the measured inclusive jet double-differential cross-section at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}=2.76~\mbox{TeV}$\end{document} to the one at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}=7~\mbox{TeV}$\end{document} as a function of the jet x T in bins of jet rapidity, for anti-k t jet with R=0.4. The theoretical prediction from NLOJET++ is calculated using the CT10 PDF set with corrections for non-perturbative effects applied. Also shown are Powheg predictions using Pythia for the simulation of the parton shower and hadronisation with the AUET2B tune and the Perugia 2011 tune. Only the statistical uncertainty is shown on the Powheg predictions. Statistically insignificant data points at large x T are omitted. The 4.3 % uncertainty from the luminosity measurements is not shown