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Abstract

This paper proposes a new energy minimization method called multiplicative intrinsic component 

optimization (MICO) for joint bias field estimation and segmentation of magnetic resonance (MR) 

images. The proposed method takes full advantage of the decomposition of MR images into two 

multiplicative components, namely, the true image that characterizes a physical property of the 

tissues and the bias field that accounts for the intensity inhomogeneity, and their respective spatial 

properties. Bias field estimation and tissue segmentation are simultaneously achieved by an energy 

minimization process aimed to optimize the estimates of the two multiplicative components of an 

MR image. The bias field is iteratively optimized by using efficient matrix computations, which 

are verified to be numerically stable by matrix analysis. More importantly, the energy in our 

formulation is convex in each of its variables, which leads to the robustness of the proposed 

energy minimization algorithm. The MICO formulation can be naturally extended to 3D/4D tissue 

segmentation with spatial/sptatiotemporal regularization. Quantitative evaluations and 

comparisons with some popular softwares have demonstrated superior performance of MICO in 

terms of robustness and accuracy.
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1. Introduction

Image segmentation is a fundamental problem in medical image computing. In magnetic 

resonance imaging (MRI), segmentation is challenged by an inherent artifact, called 

intensity inhomogeneity, which manifests itself as slow intensity variations in the same 

tissue over the image domain. Intensity inhomogeneity in MRI may be attributed to a 

number of factors, including B1 and B0 field inhomogeneities and patient-specific 

interactions. Due to the intensity inhomogeneity, there are overlaps between the ranges of 
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the intensities of different tissues, which often causes misclassification of tissues. Other 

image analysis algorithms, such as image registration, can also be misled by intensity 

inhomogeneities. Therefore, it is often a mandatory step to remove the intensity 

inhomogeneity through a procedure called bias field correction before performing 

quantitative analysis of MRI data. Bias field correction is usually performed by estimating 

the bias field that accounts for the intensity inhomogeneity in the MR image and then 

dividing the image by the estimated bias field to generate a bias field corrected image.

Traditional segmentation algorithms, such as K-means algorithm, often fail in the presence 

of intensity inhomogeneities in the images. To apply these algorithms, one has to perform 

bias field correction in a separate preprocessing step to remove the intensity inhomogeneity. 

Some advanced image segmentation algorithms have an internal mechanism to handle 

intensity inhomogeneities, and therefore can be directly used for segmentation without the 

need for bias field correction in a separate preprocessing step. These methods typically 

interleave bias field estimation and image segmentation in an iterative process.

In [1], Wells et al. developed an approach based on an expectation-maximization (EM) 

algorithm for interleaved bias field estimation and segmentation. This method was later 

improved by Guillemaud and Brady in [2]. However, these EM based methods require good 

initialization for either the bias field or for the classification estimate [3]. They typically 

require manual selections of representative points for each tissue class to perform 

initialization. Such initializations are subjective and often irreproducible [4]. Moreover, the 

final result of bias field correction and segmentation are sensitive to the specific choices of 

initial conditions [5].

In [6], Pham and Prince proposed an energy minimization approach for segmentation and 

bias field estimation in which a fuzzy c-means (FCM) algorithm was used for segmentation. 

Their method, called adaptive FCM (AFCM), is an extension of FCM by introducing a bias 

field as a factor in the cluster centers. In their energy function, a smoothing term was 

introduced to ensure the smoothness of the bias field. The coefficient of the smoothing term 

is, however, sometimes difficult to adjust [5], which limits the utility of the algorithm. In a 

later paper [7], Pham extended AFCM to an improved formulation called FANTASM by 

adding a spatial regularization mechanism on the tissue membership functions. The spatial 

regularization overcomes the effect of the noise, but FANTASM still has the same problem 

associated with the smoothing term for the bias field as in AFCM.

Bias field correction itself is an important medical image processing task. Many bias field 

correction algorithms have been proposed in the past two decades. The existing bias 

correction methods can be broadly categorized into two classes: prospective methods [8–14] 

and retrospective methods [1,15–17,6,4,3,18–20]. Prospective methods try to avoid intensity 

inhomogeneity in the acquisition process by using special hardware or specific sequences. 

These methods are able to correct some of the intensity inhomogeneities caused by the MR 

scanner, but fail to handle the inhomogeneities that are patient dependant, which makes 

them of limited value for in practical applications [21]. In contrast to the prospective 

methods, retrospective methods rely exclusively on the information within the acquired 
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image and thus can be applied to remove the intensity inhomogeneities caused by patient 

dependant effects. A recent review of bias correction methods can be found in [5].

One of the earliest retrospective methods for bias field correction is the homomorphic 

filtering [15]. This method assumes that intensity inhomogeneity is a low spatial frequency 

signal that can be suppressed by high pass filtering. However, the imaged objects themselves 

usually contain low frequencies as well and, as a result, filtering methods often fail to 

produce satisfactory bias field corrections [5]. Dawant et al. [16] proposed a method that 

estimates the inhomogeneity field by fitting splines to the intensities of selected points. 

Their method relies on manually selecting reference points inside white matter. In [17], an 

iterative method, called N3, based on intensity histograms was proposed for bias field 

correction. It aims to derive the smooth bias field that optimally sharpens the intensity 

histogram of the image. In [22], the implementation of the N3 algorithm was improved by 

using a faster and more robust B-spline approximation to compute the bias field.

In this paper, we propose a new approach for bias field estimation and tissue segmentation 

in an energy minimization framework. The proposed method jointly performs bias field 

estimation and the tissue membership functions in an energy minimization process to 

optimize two multiplicative intrinsic components of an MR image, the bias field that 

accounts for the intensity inhomogeneity and the true image that characterizes a physical 

property of the tissues. The spatial properties of these two components are fully reflected in 

their representations and the proposed energy minimization formulation. Our method, which 

we call multiplicative intrinsic component optimization (MICO), is robust due to the 

convexity of the energy function in each of its variables. The proposed MICO formulation 

can be naturally extended to 3D/4D segmentation with spatial/spatiotemporal regularization.

2. Multiplicative intrinsic component optimization

In this section, we present the formulation of MICO for bias field estimation and tissue 

segmentation based on the decomposition of an MR image into two multiplicative 

components. We propose an energy minimization approach to optimize these two 

multiplicative components, which leads to the MICO algorithm for joint bias field 

estimation and tissue segmentation.

2.1. Decomposition of MR images into multiplicative intrinsic components

From the formation of MR images, it has been generally accepted that an MR image I can be 

modeled as

(1)

where I(x) is the intensity of the observed image at voxel x, J(x) is the true image, b(x) is the 

bias field that accounts for the intensity inhomogeneity in the observed image, and n(x) is 

additive noise with zero-mean. The bias field b is assumed to be smoothly varying. The true 

image J characterizes a physical property of the tissues being imaged, which ideally take a 

specific value for the voxels within the same type of tissue. Therefore, we assume that J(x) 
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is approximately a constant ci for all point x in the i-th tissue. The above assumptions have 

been generally accepted in the literature [1,4,6].

In this paper, we consider (1) as a decomposition of the MR image I into two multiplicative 

components b and J and additive zero-mean noise n. From this perspective, we formulate 

bias field estimation and tissue segmentation as an energy minimization problem of seeking 

optimal decomposition of the image I into two multiplicative components b and J. We refer 

to the bias field b and the true image J as intrinsic components of the observed MR image I. 

In this paper, we view an image I as a function I: Ω → ℜ on a continuous domain Ω.

In the context of computer vision, an observed image of a scene has a similar decomposition 

as in (1). An observed image I can be decomposed as I = RS with two multiplicative 

components: the reflectance image R and the illumination image S. In [23], Barrow and 

Tenenbaum proposed using the terms intrinsic images to represent these two multiplicative 

components. Estimation of the intrinsic images from an observed scene image has been an 

important problem in computer vision. Numerous methods have been proposed to estimate 

the intrinsic images from a scene image based on different assumptions on the two intrinsic 

images [24–26].

In this paper, we consider the bias field b and the true image J as the multiplicative intrinsic 

components of an observed MR image. We propose a novel method to estimate these two 

components from an observed MR image. We note that the method proposed in this paper is 

different from those methods for estimating reflectance and illumination images in computer 

vision. In fact, the estimation of intrinsic images is an ill-posed problem due to the lack of 

sufficient knowledge about the unknown intrinsic images R and S.

Estimation of the multiplicative components b and J of the observed MR image I is an 

underdetermined or ill-posed problem if no knowledge about them is used. To make the 

problem solvable, we have to use some knowledge about the bias field b and true image J. In 

this paper, we propose a method that uses the basic properties of the true image and bias 

field, namely, the piecewise constant property of the true image J and the smoothly varying 

property of the bias field b. The decomposition of the MR image I into two multiplicative 

intrinsic components b and J with their respective spatial properties are fully exploited in the 

formulation of our method.

2.2. Representations of multiplicative intrinsic components

To effectively use the properties of the bias field b and true image J, we need appropriate 

mathematical representation and description of the bias field and true image. In our method, 

the bias field is represented by a linear combination of a given set of smooth basis functions 

g1, ⋯, gM, which ensures the smoothly varying property of the bias field. Theoretically, a 

function can be approximated by a linear combination of a number of basis functions up to 

arbitrary accuracy [27], given a sufficiently large number M of the basis functions. In the 

applications of MICO to 1.5 T and 3 T MRI data, we use 20 polynomials of the first three 

degrees as the basis functions.
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The estimation of the bias field is performed by finding the optimal coefficients w1, ⋯, wM 

in the linear combination . We represent the coefficients w1, ⋯, wM by a 

column vector w = (w1, ⋯, wM)T, where (·)T is the transpose operator. The basis functions 

g1(x), ⋯, gM(x) are represented by a column vector valued function G(x) = (g1(x), ⋯, gM 

(x))T. Thus, the bias field b(x) can be expressed in the following vector form

(2)

The above vector representation will be used in our proposed energy minimization method 

for bias field estimation, which allows us to use efficient vector and matrix computations to 

compute the optimal bias field derived from the energy minimization problem, as will be 

described in Section 2.4.

The piecewise approximately constant property of the true image J can be stated more 

specifically as follows. We assume that there are N types of tissues in the image domain Ω. 

The true image J(x) is approximately a constant ci for x in the i-th tissue. We denote by Ωi 

the region where the i-th tissue is located. Each region (tissue) Ωi can be represented by its 

membership function ui. In the ideal case where every voxel contains only one type of tissue, 

the membership function ui is a binary membership function, with ui(x) = 1 for x ∈ Ωi and 

ui(x) = 0 for x ∉ Ωi. In reality, one voxel may contain more than one type of tissues due to 

the partial volume effect, especially at the interface between neighboring tissues. In this 

case, the N tissues can be represented by fuzzy membership functions ui(x) that take values 

between 0 and 1 and satisfy . The value of the fuzzy membership function 

ui(x) can be interpreted as the percentage of the i-th tissue within the voxel x. Such 

membership functions u1, ⋯, uN can be represented by a column vector valued function u = 

(u1, ⋯, uN)T, where T is the transpose operator. We denote by u the space of all such vector 

valued functions, i.e.

(3)

Given the membership functions ui and constants ci, the true image J can be approximated 

by

(4)

In the case that the membership functions ui are binary functions, the function in (4) is a 

piecewise constant function, with J(x) = ci for x ∈ Ωi = {x: ui(x) = 1}. The binary 

membership functions u1, ⋯, uN represent a hard segmentation result, and the 

corresponding regions Ω1, ⋯, ΩN form a partition of the image domain Ω, such that 
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 and Ωi ∩ Ωj = Ø. More generally, fuzzy membership functions u1, ⋯, uN with 

values between 0 and 1 represent a soft segmentation result.

Based on the image model (1), we propose an energy minimization method for simultaneous 

bias field estimation and tissue segmentation. The result of tissue segmentation is given by 

the membership function u = (u1, ⋯, uN). The estimated bias field b is used to generate the 

bias field corrected image, which is computed as I/b.

2.3. Energy formulation for multiplicative intrinsic component optimization

We propose an energy minimization formulation for bias field estimation and tissue 

segmentation based on the image model (1) and the intrinsic properties of the bias field and 

the true image as described in Section 2.1. In view of the image models (1), we consider the 

problem of finding the multiplicative intrinsic components b and J of an observed MR 

image I such that the following energy is minimized

(5)

Obviously, minimization of this energy is an ill-posed problem if there are no constraints on 

the variables b and J. In fact, without any constraint, the energy F(b, J) is minimized by any 

non-zero function b and J = I/b. To make the problem solvable, we need to confine the 

search spaces of b and J by exploiting some knowledge about the unknowns b and J. In fact, 

the properties of the bias field b and the true image J described in Section 2.1 are the 

knowledge that can be used to confine the search spaces of b and J to specific subspaces that 

reflect these properties.

Using the property that the true image J is piecewise approximately constant, we can confine 

the search space of the true image J to the subspace of piecewise constant functions 

 as in (4) with binary membership functions u1, ⋯, uN. On the other 

hand, the search space of the bias field b is confined to the subspace of all the functions in 

the form b(x) = wTG(x) as in (2). With these representations of the true image J and bias 

field b, the energy F(b, J) can be expressed in terms of three variables, u = (u1, ⋯, uN)T, c = 

(c1, ⋯, cN)T, and w = (w1, ⋯, wM)T, namely,

(6)

Thus, the optimization of b and J can be achieved by minimizing the energy F with respect 

to u, c, and w.

Since ui is the binary membership function of the region Ωi, with ui (x) = 1 for x ∈ Ωi and 

ui(x) = 0 for x ∉ Ωi, we have  for x ∈ Ωi. Therefore, the energy F can be 

expressed as:
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(7)

By exchanging the order of summation and integration, we get

(8)

This expression of the energy F allows us to derive an effective energy minimization 

scheme described in Section 2.4. As a result of minimizing the energy F(u, c, w), we obtain 

the optimal membership function û = (û1, ⋯, ûN)T as the segmentation result, and the 

optimal vector ŵ, from which the estimated bias field is computed by b(x) = ŵTG(x).

As will be shown in Section 2.4, the optimal membership functions u1, ⋯, uN that minimize 

the energy defined in (8) are binary functions, with values being either 0 or 1, which give a 

hard segmentation result. In many applications, it is preferable to have fuzzy (or soft) 

segmentation results, which are given by fuzzy membership functions that take values 

between 0 and 1 as in the fuzzy C-means (FCM) clustering method. To achieve fuzzy 

segmentation, we modify the energy function F in (8) by introducing a fuzzifier q ≥ 1 to 

define the following energy:

(9)

For the case q > 1, the optimal membership functions that minimize the energy Fq (u, c, w) 

are fuzzy membership functions, which take value between 0 and 1.

Our method performs image segmentation and bias field estimation by minimizing the 

energy F(u, c, w) in Eq. (8) or Fq(u, c, w) in Eq. (9), subject to the constraints u ∈ u. A 

desirable property of this energy Fq(u, c, w) is that it is convex in each variable, u, c, or w. 

This property ensures that the energy Fq(u, c, w) has a unique minimum point in each of its 

variables.

2.4. Energy minimization

The energy minimization can be achieved by alternately minimizing Fq(u, c, w) with respect 

to each of its variables given the other two fixed. The minimization of Fq(u, c, w) with 

respect to each of its variables is described below.
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2.4.1. Optimization of c—For fixed w and u = (u1, ⋯, uN)T, the energy F(u, c, w) is 

minimized with respect to the variable c. It is easy to show that F(u, c, w) is minimized by c 
= ĉ = (ĉ1, ⋯, ĉN)T with

(10)

2.4.2. Optimization of w and bias field estimation—For fixed c and u, we minimize 

the energy F(u, c, w) with respect to the variable w. This can be achieved by solving the 

equation . It is easy to show that

where v is an M-dimensional column vector given by

(11)

where A is an M × M matrix

(12)

The equation  can be expressed as a linear equation:

(13)

Given the solution of this equation, ŵ= A−1v, we compute the estimated bias field as 

.

It can be shown that the matrix A is non-singular (see Section 2.5). Therefore, the linear 

equation  has a unique solution ŵ = A−1v. From (12), the vector ŵ can 

be explicitly expressed as

(14)

With the optimal vector ŵ given by (14), the estimated bias field is computed by
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(15)

In Section 2.5, we will prove the non-singularity of the matrix A and the numerical stability 

of the above computation for solving the linear system (13), which are two important issues 

in the implementation of our method.

2.4.3. Optimization of u—We first consider the case of q > 1. For fixed c and w, we 

minimize the energy F(u, c, w) subject to the constraint that u ∈ u. It can be shown that F(u, 

c, w) is minimized at u = û = (û1, ⋯, ûN)T, given by

(16)

where

(17)

For q = 1, it can be shown that the minimizer û = (û1, ⋯, ûN)T is given by

(18)

where

2.5. Matrix analysis for numerical stability

The computation for the bias field estimation includes the computation of the vector v in 

(11), the matrix A in (12), and the inverse matrix A−1 in (14). The matrix A is an M × M 

matrix, with M being the number of basis functions. In this paper, we use M = 20 basis 

functions, and therefore the matrix A is an 20 × 20 matrix. It will be shown that the matrix A 

is non-singular, which ensures that the inverse matrix A−1 exists and the Eq. (13) has a 

unique solution. Furthermore, we will also show that the numerical computation of the 

inverse matrix A−1 is stable.

The non-singularity of matrix A given in Eq. (12) is verified as follows. We first define 

. Thus, the (m, k) entry of the matrix A can be expressed as 

the inner product of hm and hk given by
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Therefore, the matrix A is the Gramian matrix of h1, ⋯, hM. By linear algebra [28], the 

Gramian matrix of h1, ⋯, hM is non-singular if and only if they are linearly independent. It 

is easy to see that the above defined functions h1, ⋯, hM are linearly independent, which 

implies the non-singularity of A.

Numerical stability is an important issue in solving the Eq. (13). The numerical stability of 

solving the Eq. (13) is characterized by the condition number of the matrix A [29]. The 

condition number of a positive-definite matrix A is given by

where λmin(A) and λmax(A) are the minimal and maximal eigenvalues of matrix A, 

respectively. If the conditions number κ(A) is very large, small variations in the matrix A or 

the vector v, which likely occur due to the noise in the image and accumulating intermediate 

rounding errors, can cause very large variation of the solution bŵ to the Eq. (13). Therefore, 

to ensure the robustness of the computation of the bias field, it is critical to ensure that the 

condition number κ(A) is not large, which is verified as below.

The following matrix analysis is based on the orthogonality of the basis functions, namely,

(19)

where δmk = 0 for m ≠ k and δmk = 1 for m = k.

For the above defined matrix A in Eq. (12) with the basis functions g1, ⋯, gM satisfying the 

orthogonality condition in Eq. (19), it can be shown that

Therefore, the condition number of A is bounded by

(20)

For example, if maxi{ci} = 250 and mini{ci} = 50, by the inequality (20), we have 

. In the applications of our method to real MRI data, we have found that 

the condition numbers of the matrix A are at this level, which is small enough to ensure the 

numerical stability of the inversion operation.

2.6. Implementation

From Section 2.4, we summarize the scheme of minimization of the energy Fq(u, c, w) for q 

≥ 1 as the following iteration process:

• Step 1. Initialize u and c;
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• Step 2. Update b as  in (15).

• Step 3. Update c as ĉ in (10).

• Step 4. Update u as û in (16) for the case q > 1 or (18) for the case q = 1;

• Step 5. Check convergence criterion. If convergence has been reached or the 

iteration number exceeds a prescribed maximum number, stop the iteration, 

otherwise, go to step 2.

In the above described iteration process, each of the three variables is updated with the other 

two variables computed in the previous iteration. Therefore, we only need to initialize two 

of the three variables, such as u and c in step 1 in the above iteration process. The 

convergence criterion used in step 5 is |c(n) − c(n− 1)| < ε, where c(n) is the vector c updated in 

step 3 at the n-th iteration, and ε is set to 0.001.

To demonstrate the robustness of our method to initialization, we applied it to a synthetic 

image in Fig. 1(a), with three different initializations of the membership functions u1, ⋯, uN 

and the constants c1, ⋯, cN. The initial membership function u = (u1, ⋯, uN) and the vector 

c = (c1, ⋯, cN) can be visualized as an image defined by . The images 

Ju,c for the three different initializations of u and c are shown in Fig. 1(b), (c), and (d), 

which exhibit very different patterns. In particular, the first initialization shown in Fig. 1(b) 

is obtained by generating the membership functions u1(x), ⋯, uN(x) and the constants c1, ⋯, 

cN as random numbers. For these three different initializations of u and c, the bias field 

converges to the same function up to a scalar multiple. By normalizing the bias fields (e.g. 

dividing the bias field b by its maximum value maxx{b(x)}), the three estimated bias fields 

are the same, up to a negligible difference, which is shown in Fig. 1(e). Meanwhile, the 

membership function u converges to the same vector valued function, up to a negligible 

difference, yielding the same segmentation result as shown in Fig. 1(f). The bias field 

corrected image is shown in Fig. 1(g).

In Fig. 1(h), we plot the energy F(u, c, w) of the variables u, c, and w computed at each 

iteration for 20 iterations. It is clearly seen that, the energy F(u, c, w) decreases rapidly to 

the same value from three different initial values corresponding to the three different 

initializations. This figure also demonstrates fast convergence of the iteration in MICO, as 

we can clearly see that the energy is rapidly decreased and converge to the minimum value 

in less than 10 iterations. Therefore, we usually only perform 10 iterations in our 

applications of MICO.

3. Some extensions

3.1. Introduction of spatial regularization in MICO

The basic MICO formulation presented above can be readily built upon to add a 

regularization term on the membership functions. Based on the MICO formulation, 

regularization of the membership functions can be achieved by adding the total variations 

(TV) of the membership functions in the following energy:
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(21)

where F is the energy defined in (8), λ > 0 is the weight of F, and TV is the total variations 

of u defined by

(22)

This energy should be minimized subject to the constraint that 0 ≤ ui(x) ≤ 1 and 

 for every point x. The variational formulation in (21) is referred to by 

TVMICO formulation. The definition of this energy (21) is simple, but in the energy 

minimization, it is not trivial to deal with the above point wise constraint.

In recent years, many researchers have proposed various numerical schemes [30] to solve 

the variational problems in the context of image segmentation with a TV regularization term 

TV(u) for a membership function u subject to the constraint 0 ≤ u(x) ≤ 1. These methods are 

only able to segment the images into two complementary regions, which are represented by 

the membership functions u and 1-u. In general, for segmentation of N > 2 regions, three or 

more membership functions u1, ⋯, uN are used to represent N > 2 regions. In [31], Li et al. 

used the operator splitting method proposed by Lions and Mercier in [32] to develop a 

numerical scheme to solve the energy minimization problem with TV regularization on the 

membership functions as in (21). The minimization of the energy ℱ with respect to the 

membership functions u1, ⋯, uN in (21) can be performed by using the numerical scheme 

described in [31]. The energy minimizations with respect to the variables c and w, which are 

independent of the TV regularization term of the membership functions, remain the same as 

described in Section 2.4.

3.2. Spatiotemporal regularization for 4D segmentation

The TVMICO formulation in (21) can be further extended to 4D MICO with spatiotemporal 

regularization of the tissue membership functions for segmentation of 4D data, which is a 

series of 3D scans of the same subject at different time points. While the basic MICO 

formulation presented in Section 2 allows for various 4D extensions with different 

spatiotemporal regularization mechanisms, we only provide a simple and natural 4D 

extension of the basic MICO formulation in the following as an example.

Before we present the 4D MICO formulation, we first describe a model of serial MR images 

captured from the same subject at different time points. We assumed that all the images in a 

longitudinal series are registered to the first image in the series by using rigid registration 

with six degree of freedom. Therefore, all the registered images in the series are in a 

common space, denoted by Ω, which can be represented by a 4D image I(x, t) with spatial 

variable x ∈ Ω and temporal variable t in a time period [0, L]. The series of images I(·,t) can 

be modeled as
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(23)

where J(·,t) is the true image, and b(·,t) is the bias field, and n(·,t) is additive noise.

We assume there are N types of tissues in the image domain Ω. The true image J(x,t) can be 

approximated by , where N is the number of tissues in Ω, and 

ui(·,t) is the membership function of the i-th tissue, and the constant ci(t) is the value of the 

true image J(x,t) in the i-th tissue. For convenience, we represent the constants c1(t), ⋯, 

cN(t) with a column vector c(t) = (c1(t), ⋯, cN(t))T. The membership functions u1(x, t), ⋯, 

uN(x, t) are also represented by a vector-valued function u(x, t) = (u1(x, t), ⋯, uN(x, t))T.

The bias field b(·,t) at each time point t is estimated by a linear combination of a set of 

smooth basis functions g1(x), ⋯, gM(x). Using the vector representation in Section 2, the 

bias field b(·,t) at the time point t can be expressed as

(24)

with w(t) = (w1(t), ⋯, wM(t))T, where w1(t), ⋯, wM(t) are the time dependent coefficients of 

the basis function gj(x), j = 1, ⋯, M.

The spatiotemporal regularization of the membership functions ui(x,t) can be naturally taken 

into account in the following variational formulation with a data term (image based term) 

and a spatiotemporal regularization term as follows:

(25)

where λ > 0 is a constant, F(u(·,t), c(t), w(t)) is the data term defined in (8) for the image 

I(·,t) at the time point t, namely,

and TV(ui) is the spatiotemporal regularization term on the membership function u, which 

can be expressed as:

(26)

where the gradient operator ∇ is with respect to the spatial and temporal variables x and t. 

We call the above variational formulation a 4D MICO formulation.

The minimization of the energy  is subject to the constraints on the membership function. 

Therefore, we solve the following constrained energy minimization problem:
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(27)

The minimization of the energy  with respect to c(t) and w(t) is independent of the 

spatiotemporal regularization term in (25). The optimal vectors c(t) and w(t) can be 

computed for each time point t independently from the image I(·,t) as in the energy 

minimization for the basic MICO formulation described in Section 2.4. The minimization of 

 with respect to the 4D membership function u subject to the constraint in (27) can be 

achieved by using the numerical scheme in [31] for variational formulations with TV 

regularization. The detailed description of the numerical scheme for solving the constrained 

energy minimization problem in (27) and its modified forms will be provided in our future 

publication that focuses on 4D segmentation based on the basic MICO formulation.

3.3. Modified MICO formulation with weighting coefficients for different tissues

The basic MICO formulation in Section 2 can be modified by introducing weighting 

coefficients λ1, ⋯, λN for the N tissues in the definition of the energy function F(u, c, w) in 

Eq. (8). We defined the modified energy as

(28)

where λi is the coefficient for the i-th tissue.

The introduction of the parameters λ1, ⋯, λN provides an option for the users to improve the 

results of the basic MICO formulation in 2. For example, if the i-th tissue is over segmented 

by using the basic MICO formulation in Section 2, one can use the above modified 

formulation in (28) with a larger λi > 1.

4. Results and discussions

Our method has been extensively tested on synthetic and real MRI data, including 1.5 T and 

3 T MRI data. In this section, we first show experimental results of our method for some 

synthetic and real MR images, including some images with severe intensity 

inhomogeneities. We also present the results of quantitative evaluation and comparisons 

with some popular methods.

In our applications of MICO of 1.5 T and 3 T MR images, we use 20 polynomials of the first 

three orders as the basis functions g1, ⋯, gM with M = 20. Our method with these 20 basis 

functions works well for images acquired from 1.5 T and 3 T MRI scanners. For higher field 

(e.g. 7 T) MRI scanners, the intensity inhomogeneities have more complicated profiles than 

1.5 T and 3 T MR images. In this situation, more basis functions are needed so that a larger 

range of bias fields can be well approximated by their linear combinations. Theoretically, 

any function can be well approximated by a linear combination of a set of basis functions up 

to arbitrary accuracy [27], given a sufficiently large number of basis functions. The 
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numerical stab + ility of the computation of the inverse matrix A−1 in (14), with A being an 

M × M matrix, is an important numerical issue, especially for a large M. Fortunately, by the 

matrix analysis in Section 2.5, we have shown that the condition number of the matrix A is 

bounded by a constant as in (20), which is independent of the number of basis functions. 

This ensures the numerical stability of the computation of the bias field, regardless of how 

many basis functions are used.

We have applied MICO to 1.5 T and 3 T MRI data with desirable results. For examples, we 

show the bias field correction and segmentation results of our method for a 1.5 T and a 3 T 

MR images in Fig. 2. The original images, the bias field corrected images, and the 

segmentation results are shown in the left, middle, and the right columns, respectively. To 

demonstrate the ability of our method to deal with severe intensity inhomogeneities, we 

applied MICO to the two images in the left column in Fig. 3. The estimated bias field, the 

segmentation results, and the bias field corrected images obtained by our method are shown 

in the second, third, and fourth columns, respectively. Despite the severe intensity 

inhomogeneities in the images, our method is able to produce desirable results of bias field 

correction and tissue segmentation as shown in Fig. 3.

In the following experiment, we quantitatively evaluate and compare the segmentation 

accuracy of our method and the well-known softwares FSL, SPM, and FANTASM. These 

three softwares can be downloaded from http://www.fmrib.ox.ac.uk/fsl/ (for FSL), http://

www.fil.ion.ucl.ac.uk/spm/software/ (for SPM), and http://mipav.cit.nih.gov/ (for 

FANTASM), respectively. The data used in our quantitative evaluation are downloaded 

from BrainWeb in [33]. BrainWeb also provides ground truth, which can be used to 

quantitatively evaluate segmentation accuracy.

Note that the intensity inhomogeneities generated by BrainWeb are linear, which are 

relatively easy to be handled. To examine the performance of segmentation algorithms in a 

more difficult situation, we generated simulated MR images with non-linear intensity 

inhomogeneities as follows. The degree of intensity inhomogeneity is indicated by the range 

of values of the bias field in the interval [1 − α, 1 + α] with α > 0. We generated five sets of 

images with α = 0.1, 0.2, 0.3, 0.4, and 0.5. For each α, we generated six different bias fields 

with values in [1 − α, 1 + α] and multiplied them with the original image downloaded from 

BrainWeb to obtain six images with different intensity inhomogeneities. Then we added 

noise of six different levels to these images. Thus, there are 30 images in the five sets of 

images with different degrees of intensity inhomogeneities and different levels of noise. In 

Fig. 4, we first show the segmentation results of the four tested methods for two of the 30 

images, one with the lowest degree of intensity inhomogeneity (generated with α = 0.1) and 

the other one the highest degree of intensity inhomogeneity (generated with α = 0.5). For the 

image with low degree of intensity inhomogeneity, the segmentation results of the four 

methods look similar by visual comparison, as shown in the upper row in Fig. 4. The 

advantage of our method is particularly noticeable for the image with high degree of 

intensity inhomogeneity, as shown in the lower row in Fig. 4.
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More objective and precise comparison of the segmentation accuracy of the four 

segmentation methods can be performed by evaluating the segmentation results using the 

Jaccard similarity (JS) index [34], which is defined as

(29)

where |·| represents the area of a region, S1 is the region segmented by an algorithm, and S2 

is the corresponding region obtained from a reference segmentation result or the ground 

truth. For synthetic data from the BrainWeb, we have the ground truth of the segmentation 

of the WM, GM, and CSF, which can be directly used as S2 in (29) to compute the JS index. 

The larger the JS value, the closer of the algorithm segmentation to the reference 

segmentation.

Fig. 5 shows the comparison of JS values of the four methods on the 30 synthetic images 

with different degrees of intensity inhomogeneities and different levels of noise, as 

described above. Fig. 5 shows the box plot of the JS values for the GM and WM obtained 

from our method (MICO and TVMICO), SPM, FSL, and FANTASM. From the box plot of 

the JS values in Fig. 5, it is clearly seen that both MICO and TVMICO have better 

performance than SPM, FSL, and FANTASM in terms of segmentation accuracy and 

robustness.

We note that the box shown in the box plot for the basic MICO is relatively shorter and 

there are no outliers in the JS values for all the 30 test images. This exhibits desirable 

robustness of the basic MICO. The TVMICO has slightly better accuracy than the basic 

MICO, but there are outliers in the JS values for TVMICO. The performance of TVMICO 

depends on the choice of the parameter λ in (21), which need to be tuned for some cases. In 

this experiment, we fixed λ = 0.01 for all the 30 test images, and we found that the results 

are overall desirable except one case, which leads to the outliers in the box plot in Fig. 5. By 

comparison, the basic MICO is more robust, and the performance is more stable than 

TVMICO, while the latter is slightly more accurate than the former except for most of the 

cases. In fact, for images with reasonable noise level, the difference of the segmentation 

accuracy of MICO and TVMICO is not significant. We suggest that the basic MICO be used 

when robustness is a priority or the noise level in the images is not high. Especially for fully 

automatic segmentation of large data sets, the robustness and stability of performance is a 

major concern, and the basic MICO is preferable to TVMICO for its robustness and stable 

performance.

The 4D MICO algorithm has been tested on synthetic data with promising results. We 

generated a synthetic longitudinal data with simulated atrophy by using the atrophy 

simulator developed in [35]. The atrophy simulator simulates the atrophy by shrinking the 

GM and WM and expanding CSF in the input MR image at a specified rate and location, 

and of a specified size. Based on the images obtained from the atrophy simulator, we added 

different intensity inhomogeneities and noise to them to test the performance of our method 

in the presence of intensity inhomogeneities and noise. We used this synthetic data to test 

the ability of the 4D MICO to capture subtle changes caused by the atrophy.
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The upper row of Fig. 6 shows a portion of the brain in images of three consecutive time 

points. This portion of the images contains the atrophy simulated by the atrophy simulator. 

These images exhibit subtle expanding of CSF and shrinking of WM and GM near the 

cortex, and the same brain tissue structure in the rest of this portion. The results of the 4D 

MICO, shown in the lower row of Fig. 6, indeed agree with structural changes caused by the 

simulated atrophy in these three images, while the segmented tissues in the non-atrophy 

region remain almost the same in these three images. This experiment shows the temporal 

consistency of our method and the ability to capture subtle changes caused by atrophy or 

other biological changes.

In this experiment, we used λ = 0.008 in the 4D MICO formulation in (25). We have noticed 

that the performance of the 4D MICO formulation in (25) depends on the choice of the 

parameter λ and some additional parameters in the numerical scheme for energy 

minimization with respect to the membership functions. More details about the 

implementation and validations of the 4D MICO formulation in (25) and its modified forms 

will be presented in our future publication as an extension of this paper.

The estimated bias field  of MICO can be used to compute the bias field corrected image 

. We have evaluated the performance of bias field correction of MICO and compared it 

with two well-known bias field correction methods, namely, N3 method proposed in [17] 

and entropy minimization method in [21]. The performance of bias field correction can be 

evaluated by quantifying the intensity inhomogeneities of the bias field corrected images 

using the coefficient of variations (CV) and coefficient of joint variation (CJV). For each 

tissue T (WM or GM), the CV is defined by

where σ(T) and μ(T) are the standard deviation and the mean of the intensities in the tissue T. 

The CJV is defined as

The performance of bias field correction is evaluated by the CV and CJV of the bias field 

corrected images, with smaller CV and CJV values indicating better bias field correction 

results.

We applied our method and the N3 and entropy minimization methods implemented in the 

MIPAV software to 15 images acquired from 3 Tesla MRI scanners. The MIPAV software 

is publicly available in http://mipav.cit.nih.gov/. The CV and CJV values of the three tested 

methods for the 15 images are plotted in Fig. 7, which shows better performance of our 

method than N3 and entropy minimization methods.
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Note that, in the standard definition of CV and CJV in the literature on bias field correction 

[5], the GM and WM are the ground truth. Since we do not have the ground truth of GM and 

WM for the real MR images, we used an approximate of the ground truth of GM/WM by the 

intersection of the segmented GM/WM obtained by applying K-means algorithm to the bias 

corrected images by the three compared bias field correction methods: our method and the 

well-known N3 method [17] and the entropy minimization method [21].

As mentioned earlier, we only used 20 polynomials as the basis functions in the estimation 

of the bias field. It can be expected that the capability of the bias field correction of MICO 

can be enhanced by using more and different types of basis functions, such as the B-spline 

functions, which would increase the range of bias fields represented by the linear 

combinations of the basis functions. This would enable the application of MICO to ultra 

high field MRI (e.g. 7 Tesla) and other medical images with more severe intensity 

inhomogeneities.

5. Conclusion

We have proposed a principled method, called multiplicative intrinsic component 

optimization (MICO), for bias field estimation and segmentation of MR images in a new 

energy minimization formulation. By calculus of matrix and vector, we have derived an 

efficient energy minimization scheme for the computation of the bias field, and used matrix 

analysis to verify the numerical stability of the computation for the optimization of the bias 

field. The robustness, accuracy, and efficiency of our method are demonstrated by the 

evaluation and comparison with other methods on synthetic and real MR data. Our method 

has been successfully applied to 1.5 T and 3 T MR images with desirable results. 

Experimental results have shown desirable advantages of our method in terms of 

segmentation accuracy and robustness, compared with popular softwares. In addition, we 

have shown that the basic MICO formulation can be naturally extended to 3D/4D 

segmentation with spatial/spatiotemporal regularization with promising result.
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Fig. 1. 
Demonstration of robustness of our method to initialization. (a) Original image; (b)–(d) 

Visualization of three different initializations of the membership functions; (e) Estimated 

bias field; (f) Segmentation result; (g) Bias corrected image; (h) Curves showing the energy 

F in the iteration process from three different initializations shown in (b), (c), and (d).
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Fig. 2. 
Bias correction and tissue segmentation results of our method on the data from 1.5 T (upper 

row) and 3 T (lower row) MR scanners. The left, middle, and right columns show the 

original images, bias field corrected image, and segmentation results, respectively.
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Fig. 3. 
Results for images with severe intensity inhomogeneity shown in the left column. The 

estimated bias fields, segmentation results, and bias field corrected images are shown in 

columns 2, 3, 4, respectively.
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Fig. 4. 
Comparison of our method with SPM, FSL, FANTASM on synthetic images with different 

degrees of intensity inhomogeneities. The input images are shown in the left column, 

including an image with low degree of intensity inhomogeneity (in the upper row) and an 

image with high degree of intensity inhomogeneity (in the lower row). The corresponding 

segmentation results of our method, SPM, FSL, and FANTASM are shown in the second, 

third, fourth, and fifth columns, respectively.
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Fig. 5. 
Quantitative evaluation for the segmentation results of TVMICO (with λ = 0.01), MICO, 

SPM, FSL, and FANTASM for 30 images using Jarcard similarity with ground truth.
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Fig. 6. 
An example of the application of 4D MICO to a synthetic longitudinal data with simulated 

atrophy.
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Fig. 7. 
Comparison of the performance of bias field correction of our method, N3 algorithm, and 

entropy minimization method in terms of CV and CJV for 15 images from 3 T MR scanners.
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