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Introduction
The genome of a given organism is a plastic structure, but 
it is nonetheless highly ordered. Shaping factors act on 
the structure and composition of coding and noncoding 
regions.1,2 The most important factor that acts on protein 
coding sequences (CDSs) is undoubtedly the genetic code, 
which is basically a set of rules relating codons to amino 
acids. One of the most important properties of the genetic 
code is its universality, ie, it is the same (or almost the same) 
in all organisms ranging from prokaryotes to eukaryotes 
with minor exceptions, and most of these exceptions occur 
in organelle genomes.

A universal characteristic of the CDSs is their three-
base periodicity. The three-base periodicity is induced by 
the purine bias (Rrr), which was recognized by Shepherd3 
and proposed by him has a universal fingerprint of CDSs. 
According to the purine bias, the relative frequency of 
purines (adenine and guanine, ie, A and G, respectively) 
is larger in the first codon position than in the second 
and third codon positions, which justifies the logo Rrr for 
codons to indicate the larger than expected purine frequency 
(R) in first codon position and the lower than expected 
purine frequency (r) in the two other codon positions. 

As a consequence of the purine bias, one has that 1) the 
product of purine probabilities is the largest for the first 
codon position (PA1PG1); 2) the product of the probabilities 
PC1PG2PA3 of cytosine (C) at the first codon position (C1),  
G in the second codon position (G2), and A in the third 
codon position (A3) has the lowest value in the coding frame 
compared to the other frames4; 3) the relative frequency of 
G1 is larger than that of G2; and 4) the relative frequency 
of thymine (T) in the first codon position (T1) is lower than 
that of A in the second codon position (A2). The formu-
lation of CDS features, which are observed in the coding 
frame ($150 bp) of all living organisms regardless of codon 
usage, according to the universal feature method (UFM),4,5 
allows the coding versus noncoding classifications over six 
frames for open reading frames (ORFs) of sizes larger than 
∼300 bp.

The cause of the three-base periodicity is not trivial given 
1) the large interval of variation in average guanine plus cyto-
sine (GC) covered by coding DNA in all living forms and 
2) the set of codons available in the genetic code allowing for 
random nucleotide distribution. Based on these two lines of 
evidence, one could expect any or no periodicity in coding 
DNA within a species. The existence of a three-base periodicity  
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implies the existence of a codon preference responsible for 
that periodicity that is common to all living forms. This codon 
preference has been shown to be induced by selective pressure 
on the secondary structures and the physicochemical proper-
ties of amino acids in proteins.6 The purine bias observed in 
coding DNA in modern organisms results from a balance in 
selective pressures acting on protein functionality, the energy 
cost of amino acid synthesis, and ribosomal evolution given 
thermodynamic constraints on translation processivity and 
accuracy.7 In reality, the number of amino acids most fre-
quently found in α-helices, β-sheets, and aperiodic (turns or 
coils) secondary structures in modern proteins is small (ala-
nine, glycine, valine), and all are G1.

Because the selective pressures acting on protein func-
tionality are not expected to have changed since the prebi-
otic era, one can ask what can be inferred about the primeval 
genetic code from the amino acid distribution in modern 
proteins. First, let us briefly review the main ideas that were 
animating the research on the origin of the genetic code until 
now.

The RNA world coined by Gilbert,8 which has largely 
been supported by success stories9 with the systematic evolu-
tion of ligands by exponential enrichment (SELEX) technique,10 
is gradually replaced by the notion that nucleotide polymers 
must have existed together with ancillary peptides.11 Despite 
hot debates,12 the idea that both nucleotide and amino acid 
polymers might have been produced by a proto-metabolism 
that might have evolved naturally from autocatalytic physico-
chemical reactions on the hypercycle model13–15 emerged as 
the most robust one. The trend in today’s scientific commu-
nity is to consider that a few triplets, each of which coding a 
corresponding amino acid, must have been at the beginning 
of the genetic codes and that it, then, evolved step by step16 
by mutation following a scheme already intuited by Woese.17 
The hierarchical step-by-step acquisition of complexity gener-
ates a dependency from inherited mechanisms with regard to 
parental ones, a common property of evolving beings, which 
prompted Crick18 to declare the modern genetic code as a “fro-
zen accident” since there is no way back without the extinction 
of present life. Based on considerations on primeval metabo-
lism and conserved base stretches in tRNA, Hartman19,20 pro-
posed that the genetic code might have started with the two 
letters G and C. Under that hypothesis, arginine or lysine, 
which are expected to have come late because of the large 
number of catalytic steps needed for them to be synthesized 
from a primeval citric acid cycle, might be replaced by orni-
thine.21 However, ornithine might not even be necessary for 
short proteins to have catalytic activities.22 Hypothetically, 
the minimal size of proto-tRNA might be a 17-nucleotide 
aptamer with 7 nucleotides in the “anticodon” loop and the 
10 remaining ones for the double helical arm as well as the 
amino acid attachment region of 4 nucleotides.21 Such a pro-
to-tRNA might have co-evolved into the modern tRNA, fol-
lowing the scheme proposed by Di Giulio,23 together with the 

nucleic acid24,25 polymers26–28 and amino acids29 available in 
the prebiotic soup.30 It has been shown that the prebiotic soup 
did not likely include more than 10 among the amino acid list 
used by modern cells29 and that it should be those described 
by Miller.31,32 Later on, it was shown that aminoacyl-tRNA 
synthetases are divided into two classes that match the early 
and late amino acids.33 The prevalence of RNY codons3 in 
coding sequences has been seen as a remnant of a simpler code 
encoding primeval proteins due to the fact that modern pro-
teins use a large proportion of amino acids whose codons start 
with purines.34 This observation has motivated a decomposi-
tion of the evolutionary steps the primeval code could have 
gone through to gain its today’s figure.35

In investigating the evolutionary origin of the genetic 
code, Ikehara et al.7 showed that it may have originated from 
a system of four amino acids: the GNC code. This GNC code  
(G for guanine, N for any of the four nucleotides, C for cyto-
sine) is capable of encoding [GADV]-proteins (G for glycine, 
A for alanine, D for aspartic acid, V for valine) with appro-
priate three-dimensional structures including the character-
istics of water-soluble globular proteins such as hydropathy, 
α-helices, β-sheets, β-turns, and catalytic activities.22 Accord-
ing to Ikehara et al.7, this primitive code may have first evolved 
into a code containing 16 codons and 10 amino acids, the so-
called SNS (S for “strong” ie, G or C) and then the RNY (R 
for purines, Y for pyrimidines) ancestral codon suggested by 
Shepherd3 and revisited by Brooks and Fresco.36 The RNY 
pattern is responsible for the three-base periodicity in cod-
ing sequences by inducing short-range correlations (nucleotide 
correlations on a distance shorter than average CDS size).37,38

Short-range correlations among nucleotides in CDSs can 
be analyzed in heterogeneous genomes, ie, genomes whose 
CDSs cover a wide range of GC variation (.50%) in third 
codon position (GC3), such as the Homo sapiens and Oryza 
sativa genomes, or homogeneous genomes (GC3 variation 
,50%) at different positions of the universal correlation 
regression line (see Fig. 1  in Ref. 39). The universal correla-
tion, shown for the first time by Sueoka,40 describes the lin-
ear relationship that species display when their genomes are 
plotted for the average GC3 versus GC in the second codon 
position (GC2) of their CDSs. In eukaryotes, the genomes at 
both boundaries of this relationship are Plasmodium falciparum 
(AT-rich) and Chlamydomonas reinhardtii (GC-rich).

In this paper, we show that the ancestral codon was RWY 
(RWr) and not the commonly accepted pattern RNY (“W” is 
for “weak”, ie, A or T) because of short-range correlations. 
Here, we distinguish between the “Y” and “r” in the third 
codon position because codon asymmetry is induced by purine 
bias in such a way that R1 . R2, R1 . R3, G1 . G2, and 
G1 . G3. This finding has the consequence that pyrimidines 
most likely have a “compensatory” role, which is consistent 
with DNA structural constraints, and a wobble base at the 
first anti-codon position. We also show that the pattern of the 
ancestral codon is compatible with the synthesis of primeval 
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proteins based on Miller’s41 amino acids list. In Miller’s list41 
(reanalyzed by Johnson et al.42 and Parker et al.43), the most 
representative amino acids of the ancestral codon RWY are 
Asp, Val, and isoleucine (Ile). The amino acid composition 
in primeval proteins based on Miller’s list complies with the 
hydropathy and secondary structure of modern proteins, 
which is in line with ongoing pressures on protein functional-
ity since their appearance on earth.

Materials and Methods
In this study, we focused on eukaryote CDSs; however, it 
would not make difference to sample prokaryote CDSs 
because the universal correlation for prokaryotes matches 
that of eukaryotes.39 This is the reason why this correlation 
can be called universal. One benefit of eukaryote CDSs is 
their larger sample size per genome, which allows a reduc-
tion in the number of genome to be analyzed to cover most 
of the universal correlation without loss of statistical sig-
nificance. Thus, we used CDS datasets from 1) H. sapiens 
(GC3 = 30–90%)44 and O. sativa (GC3 = 30–100%),45 which 
have broad internal GC variations between GC-poor and 
GC-rich CDSs, and 2) P. falciparum (GC3 = 0–30%), which 
is GC-poor,46 and C. reinhardtii (GC3 = 60–100%), which 
is GC-rich47, the last two species having homogeneous 
genomes.

The human CDS sample was obtained from Fedo-
rov’s group (n  =  23,366),48,49 which is stored in the file 
hs37p1.EID.tar.gz (may be downloaded from http://www.
utoledo.edu/med/depts/bioinfo/database.html). To link this 
CDS sample with experimental evidence, we compared 
the protein sequence homology of the CDSs of this sample 
with protein sequences in PDB (E # 0.0001). Homologous 
hits were then filtered so that only the best hit was retained 
(n  =  13,672) for each human accession. We then filtered 
the list, keeping pairs with identities $40%, and we used 
the accession identifiers to retrieve the corresponding DNA 
sequences from the original CDS file. Finally, trivial redun-
dancy was eliminated by discarding sequences with identical 
values for size, GC1, GC2, and GC3 (or a difference of GC3 
,2%). The final sample size was n = 10,892.

Complete nuclear CDSs from O. sativa (n  =  89,665) 
and P. falciparum (n = 10,823) were retrieved from GenBank 
(release 194, February 15, 2013) using ACNUC50 with the fil-
tering options “t = cds”, “no k = partial”, and “no o = mitochon-
drion” (plus “no o = chloroplast” in the case of O. sativa). The 
C. reinhardtii CDS samples (n = 19,526) were obtained from 
f tp: //f tp.jg i-psf.org/pub/compgen/phy tozome/v9.0/ 
Creinhardtii/annotation/Creinhardtii_236_cds.fa.gz.51  
Similar to humans, we also compared the CDS samples of 
O. sativa, P. falciparum, and C. reinhardtii with proteins in 
the PDB using the same filtering process. For O. sativa, we 
obtained n = 8,643 CDSs as a final sample, but for P. falci-
parum and C. reinhardtii the number of CDSs was too small 
(nPf =  2,100 and nCr =  2,100) for proper statistical analysis. 
To obtain larger and unbiased CDS samples, we filtered all 
the CDS samples from P. falciparum and C. reinhardtii with 
UFM5 to remove conflicting CDSs with regard to strand 
allocation, CDSs out of coding frame, or CDSs including in-
frame stop codons. The sizes of the CDS samples obtained by 
this procedure were nPf = 6,844 and nCr = 15,727 for P. falci-
parum and C. reinhardtii, respectively.

To calculate the relative frequencies of amino acids for 
each protein secondary structure (α-helix, β-sheet, and ape-
riodic, which we termed H, E, and A, respectively), we used a 
dataset from Ponce de Leon et al.6 This dataset was obtained 
from a set of 10,731 nonredundant proteins for which the 
three-dimensional structures have been experimentally deter-
mined. This set of proteins was selected from the RCSB Pro-
tein Data Bank (PDB, release 3.2). The average protein size 
for this dataset was 282 amino acids (σ  =  154) accounting 
for 3,025,111 amino acids in total, with 948,410 for H (31%), 
633,489 for E (21%), and 1,443,212 for A (48%). Based on the 
hypothesis that the distribution of amino acids for each sec-
ondary structure follows a similar proportion in modern and 
primeval proteins, we considered the relative frequencies of 
amino acids per secondary structure as an indication for their 
likelihood in primeval proteins. This hypothesis is based on the 
fact that the constraints on functional proteins do not change 
over time because there is no reason why the physicochemical 
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characteristics of amino acids would have changed. Only the 
number of amino acids have increased over time; however, the 
amino acids that came later were more expensive to synthesize 
(in terms of energy), and for this reason the contribution of the 
amino acids in Miller’s list41 to modern proteins is supposed to 
be similar to that of the amino acids actually available at the 
time of primeval proteins.

All relative nucleotide frequencies were calculated as a 
ratio of a given occurrence to the number of contiguous trip-
let N = n/3. The correlations were obtained with the classical 
formula r = cov(X,Y)/σXσY and orthogonal regression lines as 
reported by Jolicoeur.52 The relative frequencies were obtained 
by direct counting from sequence files (FASTA format) using 
Perl scripts, and further calculations were performed in Excel. 
Histograms and plots were obtained in StatView and edited 
in Canvas 6.

Results
Under unbiased nucleotide distribution, one would expect 
a similar guanine frequency in the three codon positions 
as would match their average value for CDSs. However, in 
P. falciparum, G2 (G2 = 10.946, σG2 = 3.268) , G (G = 14.881, 
σG = 2.842) , G1 (G1 = 24.525, σG1 = 5.924) (Fig. 1A) in 
such a way that null hypotheses of G1 = G or G2 = G must 
be rejected according to Student's t-test (α = 0.05 and 0.01), 
which is also true in C. reinhardtii where G2 (G2 = 22.832, 
σG2  =  5.047)  ,  G (G  =  36.026, σG  =  3.825)  ,  G1 
(G1 = 42.451, σG1 = 6.141) (Fig. 1B). For sake of completeness, 
let us note here for G calculation that G3 = 9.171 (σG3 = 2.746) 
in P. falciparum and G3  =  42.795 (σG3  =  5.993) in C. rein-
hardtii (data not shown). Thus, the purine bias is such that 
the G1 and G2 levels (%) are, respectively, higher and lower 
than expected in P. falciparum, which is AT-rich, as well as in 
C. reinhardtii, which is by contrast GC-rich (Fig. 1A, C, E) 
with the consequence that G1  . G2. G2 is negatively cor-
related with T2 (Fig.  2B, D, F); a negative correlation was 
also found between C2 and A2 (Table 1). The negative cor-
relations between R2 and Y2 agree with the observation that 
AT2 is generally larger than GC2. In reality, the average GC2 
level in C. reinhardtii is 53.70% (σ  =  8.31), which indicates 
that the AT2 level is 46.30% (σ = 8.31); thus, this highly GC-
rich eukaryote has GC2 ≈ AT2 ≈ 50% (Fig. 3). By contrast, 
the average GC2 level in P. falciparum is 25.51% (σ = 6.84), 
which indicates that the AT2 level is 74.49% (σ = 6.86), and 
according to the universal correlation, the average GC2 level 
in H. sapiens is 42.54% (σ = 6.62), which falls between that 
of P. falciparum and C. reinhardtii. Thus, one can reasonably 
draw the relationship between GC2 and AT2 for any biologi-
cal species as W2 $ S2. Because A1 is positively correlated 
with A2 (Fig. 4A, D, G), A2 and T2 tend to increase together 
on average (Fig. 4B, E, H), and R1 . R2 is generally true 
in coding frames $300 bp.4 This situation occurs at the cost 
of C1 because A1 and C1 are negatively correlated (Table 1). 
A3 has a strong negative correlation with C3 (r , –0.9), and 
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and P for the statistical significance. Each r coefficient is associated 
with a P-value ,0.001. Gray dots are for UFM-certified CDSs, and 
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the second position is connected to the third via the negative 
correlation between A2 and C3 (Fig. 4C, F, I). Because A1 
is positively correlated with A2 (Fig. 4A, D, G), A1 is also 
negatively correlated with C3 and A3 (Table 1).

In homogeneous genomes (eg, P. falciparum, A. thali-
ana, D. melanogaster, and C. reinhardtii), nucleotide corre-
lations within CDSs may not be detectable because of the 
small range of variation in nucleotide composition and the 
relatively large data noise. In contrast, in heterogeneous 
genomes (H. sapiens and O. sativa), these correlations may 
become apparent (Table 1) because heterogeneous genomes 
have genes with different codon usage. When comparing 
two genomes with different average GC levels, one observes 
a similar trend as found in heterogeneous genomes where 
greater differences in GC levels lead to higher correlation 
values and greater statistical significance. Table 1 shows that 
neat correlations are obtained in inter-genomic comparisons 
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Table 1. Correlations (r) between nucleotide composition in the three positions of codons in H. sapiens (Hs, n = 10,892), O. sativa (Os, 
n = 8,643), and P. falciparum (n = 6,844) plus C. reinhardtii (n = 15,727) (Pf + Cr, n = 22,571). The gray boxes are for r $ +0.55 or r # –0.55.

Sp A1 A2 A3 C1 C2 C3 G1 G2 G3 T1 T2 T3

Hs A1 1

A2 +0.57** 1

A3 +0.58** +0.44** 1

C1 −0.72** −0.46** −0.58** 1

C2 −0.40** −0.59** −0.21** +0.43** 1

C3 −0.52** −0.48** −0.92** +0.55** +0.28** 1

G1 −0.43** −0.12** −0.20** −0.05** +0.12** +0.12** 1

G2 −0.44** −0.50** −0.31** +0.31** +0.11** +0.35** +0.12** 1

G3 −0.53** −0.23** −0.83** +0.57** +0.12** +0.68** +0.34** +0.17** 1

T1 +0.19** +0.03** +0.28** −0.37** −0.20** −0.21** −0.56** +0.04** −0.50** 1

T2 +0.14** −0.13** −0.03* −0.16** −0.41** −0.02* −0.07** −0.43** 0.00 +0.13** 1

T3 +0.52** +0.34** +0.84** −0.59** −0.22** −0.88** −0.24** −0.25** −0.88** +0.42** +0.06** 1

Os A1 1

A2 +0.56** 1

A3 +0.50** +0.41** 1

C1 −0.53** −0.26** −0.30** 1

C2 −0.49** −0.61** −0.35** +0.28** 1

C3 −0.48** −0.44** −0.91** +0.30** +0.36** 1

G1 −0.61** −0.35** −0.46** −0.09** +0.30** +0.41** 1

G2 −0.34** −0.47** −0.27** +0.15** +0.02** +0.29** +0.24** 1

G3 −0.43** −0.28** −0.79** +0.30** +0.31** +0.60** +0.44** +0.21** 1

T1 +0.12** +0.04** +0.35** −0.27** −0.06** −0.28** −0.53** −0.04** −0.41** 1

T2 +0.23** −0.02* +0.18** −0.14** −0.43** −0.16** −0.15** −0.44** −0.24** +0.08** 1

T3 +0.50** +0.42** +0.88** −0.34** −0.38** −0.91** −0.44** −0.28** −0.82** +0.36** +0.22** 1

Pf A1 1

+ A2 +0.89** 1

Cr A3 +0.84** +0.81** 1

C1 −0.89** −0.80** −0.84** 1

C2 −0.82** −0.86** −0.71** +0.76** 1

C3 −0.77** −0.79** −0.94** +0.78** +0.69** 1

G1 −0.89** −0.78** −0.74** +0.67** +0.78** +0.67** 1

G2 −0.81** −0.83** −0.71** +0.70** +0.64** +0.69** +0.76** 1

G3 −0.88** −0.80** −0.93** +0.87** +0.72** +0.80** +0.80** +0.70** 1

T1 +0.74** +0.66** +0.75** −0.76** −0.73** −0.68** −0.84** −0.65** −0.80** 1

T2 +0.46** +0.32** +0.33** −0.41** −0.62** −0.30** −0.57** −0.53** −0.35** +0.62** 1

T3 +0.88** +0.83** +0.93** −0.87** −0.74** −0.92** −0.79** −0.73** −0.94** +0.79** +0.35** 1

Notes: () for a value of r that is not statistically significant at α€ = €0.05. (*) for a value of r that is statistically significant at probability level α , 0.05. (**) for a value 
of r that is statistically significant at probability level α , 0.01.
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between P. falciparum and C. reinhardtii, and these correla-
tions have the same sign as obtained in the intra-genomic 
context of H. sapiens and O. sativa. When comparing the 
correlation coefficients of H. sapiens and O. sativa, we found 
that 63 of 66 (95.5%) had the same sign, and the three sign 
discrepancies involved correlations (A2 vs T2, T1 vs G2, and 
T2 vs G3) with coefficients close to zero. When comparing 
P. falciparum plus C. reinhardtii with H. sapiens and O. sativa, 
we found 61/66 (92.4%) and 64/66 (97.0%), respectively. The 
sign discrepancies found were for the same reasons as out-
lined above for the H. sapiens versus O. sativa comparison 
(Table 1).

The exercise of comparing inter-genomic (P. falciparum 
plus C. reinhardtii) with intra-genomic correlations (H. sapiens 
or O. sativa) is allowed because of the existence of the uni-
versal correlation.39 Evidence for this statement appears in 
Figure 2 where the relative frequencies of nucleotides in CDSs 
from P. falciparum plus C. reinhardtii and H. sapiens are plotted 
together. Data from P. falciparum and C. reinhardtii are at the 
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Figure 3. GC2 in P. falciparum (n = 6,844), H. sapiens (n = 10,892), 
and C. reinhardtii (n = 15,727). The thin line is for P. falciparum with an 
average GC2 of 25.51% (σ = 6.84), the dot line is for H. sapiens with an 
average GC2 of 42.54% (σ = 6.61), and the bold line is for C. reinhardtii 
with an average GC2 of 53.70% (σ = 8.31).
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Figure 4. Correlations between A2 and A1 (panels A, D, G), A2 and T2 (panels B, E, H), A2 and C3 (panels C, F, I) in H. sapiens (Hs, n = 10,892, 
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extremes of this relationship, while data from H. sapiens fall in 
between these two but remaining on the line joining these two 
extremes. Even in the relationship between A2 and T2, one 
can see that the H. sapiens data are between the P. falciparum 
and C. reinhardtii extremes. A similar A2 versus T2 relation-
ship occurs for O. sativa, but the data are not shown in this 
study to avoid unnecessary redundancy. Interestingly, Table 1 
also shows that T2 has lower correlation coefficients with 
other nucleotides in the different codon positions than the 
general trend of P. falciparum plus C. reinhardtii. This relation-
ship is expected from the significant correlation of T2 with the 
physicochemical characteristics of proteins such as secondary 
structures and hydropathy, which indicates that T2 is primar-
ily constrained by characteristics acting on proteins but not on 
DNA.6 On average, T2 is higher in P. falciparum (T2 = 41.64%, 
σT2 = 4.82) than in C. reinhardtii (T2 = 22.19%, σT2 = 5.08; 
Fig. 4E, H) with the consequence that P. falciparum proteins 
are more hydrophobic and contain more E’s, on average, com-
pared with those in C. reinhardtii.

From the observations reported above, one can deduce 
that the ancestral codon RNY can indeed be written as RWY 
and should ideally match R(T|A)Y, ie, encode Asp, Val, and Ile. 
However, RWY is a statistical concept, which does not prohibit 
the existence of other codons in the sequence provided that 
RWY remains prominent. In actuality, if one considers that 
the amino acids available in prebiotic conditions are those in 
Table 3,41 one may note that an adequate proportion of all of 
the amino acids in this table may satisfy the ancestral codon 
RWY. The proportion of amino acids in secondary structures in 
modern proteins (Table 2) allows better inference of the amino 
acid distribution in primeval proteins. The identification of 
amino acids in Miller’s list in Table 2 (bold-italic) shows that, 
in most cases, they remain the most abundant amino acids 
in modern proteins (columns Ept, Hpt, Apt) and have a specific 
pattern of preference for specific secondary structures (columns 
Ess, Hss, Ass).

Interestingly, rescaling the frequency of the numbers in 
Table 3 to their sum (66.85) allows inferring a hypothetical 
contribution of secondary structures to primeval proteins. By 
summing columns E, H, and A after rescaling, we calculated 
21.2%, 30.1%, and 48.2%, respectively, as the proportions of 
secondary structures, almost identical to those found in mod-
ern proteins. Similarly, rescaling Table 3 to the sum (47.16) 
of RNN codons (eliminating Ser and typical YNN codons 
such as Leu and Pro) led to a similar proportion of secondary 
structures as found in modern proteins, ie, 22.3%, 30.9%, and 
46.7% for E, H, and A, respectively.

These considerations suggest that the RNN codons (Gly, 
Ala, Thr, Asp, Val, Glu, Ile) are sufficient to support the nec-
essary catalytic activity and hydropathy of primeval proteins, 
with Asp, Val, and Ile being the most representative in the 
GWY ancestral codon. The amino acids encoded by these 
RNN codons are characterized by low complexity residues 
that are no larger than four bonds.

Table 2. Distribution of amino acids (aa) in secondary structures of 
proteins, ie, β-sheet (E), α-helix (H), and aperiodic (A). The dataset 
of nonredundant proteins is from Ponce de Leon et al.6

Aa Ept
1 Hpt Apt Sum2 Ess

3 Hss Ass Pav4

Ala5 1.35 3.77 3.24 8.36 6.44 12.04 6.79 8.36

Cys 0.33 0.31 0.54 1.18 1.58 1.00 1.13 1.18

Asp 0.68 1.48 3.69 5.85 3.24 4.73 7.74 5.85

Glu 0.99 2.98 3.00 6.97 4.72 9.50 6.29 6.97

Phe 1.20 1.23 1.55 3.99 5.73 3.93 3.26 3.99

Gly 1.03 1.05 5.44 7.52 4.94 3.34 11.41 7.52

His 0.47 0.62 1.19 2.28 2.26 1.97 2.50 2.28

Ile 2.19 1.96 1.72 5.86 10.45 6.24 3.60 5.86

Lys 0.94 2.10 2.82 5.86 4.48 6.71 5.92 5.86

Leu 2.22 3.83 3.15 9.20 10.60 12.21 6.61 9.20

Met 0.48 0.85 0.96 2.29 2.27 2.71 2.01 2.29

Asn 0.53 0.93 2.67 4.13 2.51 2.98 5.60 4.13

Pro 0.42 0.64 3.62 4.67 1.98 2.03 7.58 4.67

Gln 0.55 1.42 1.59 3.55 2.60 4.52 3.33 3.55

Arg 0.95 1.96 2.28 5.19 4.55 6.25 4.77 5.19

Ser 0.99 1.39 3.43 5.81 4.74 4.42 7.18 5.81

Thr 1.32 1.31 2.73 5.36 6.31 4.17 5.73 5.36

Val 2.97 2.04 2.22 7.23 14.18 6.51 4.65 7.23

Trp 0.34 0.44 0.51 1.29 1.64 1.39 1.06 1.29

Tyr 1.00 1.05 1.36 3.41 4.78 3.36 2.85 3.41

Sum 20.94 31.35 47.71 100.00 100.00 100.00 100.00 100.00

Notes: 1In the columns with “pt” as subscript, the frequencies in the table 
are given relative (%) to the total number of aa (n = 3,025,111) in the protein 
samples (n = 10,731) analyzed. The dataset of nonredundant proteins is from 
Ponce de Leon et al.6 2The sum is over the columns Ept, Hpt, Apt and gives 
the average amino acid per protein. 3In the columns with “ss” as subscript, 
the frequencies in the table are given relative (%) to the number of aa per 
secondary structure. 4Pav is for the average of columns Ess, Hss, Ass weighted 
with their average representativeness of these secondary structures in 
proteins (20.94, 31.35, 47.71, respectively) showing the consistency of the 
calculation. 5Bold-italic amino acids indicate the amino acids from the Miller’s 
experiment (1992). The numbers on dark gray background are for values 
larger than 3 for Ept, Hpt, Apt and larger than 10 for Ess, Hss, Ass. The numbers 
on light gray background are for values in the range 2–3 for Ept, Hpt, Apt and 
in the range 5–10 for Ess, Hss, Ass. The numbers on white background are for 
values lower than 2 for Ept, Hpt, Apt and lower than 5 for Ess, Hss, Ass.

Discussion
With regard to the nucleotide correlations in CDSs, there are 
at least three important observations to consider: 1) muta-
tions can be biased toward the accumulation of GCs (as in H. 
sapiens, D. melanogaster, O. sativa, and C. reinhardtii) or ATs 
(as in A. thaliana and P. falciparum); 2) the GC level may vary 
between 12% (P. falciparum) and 100% (O. sativa) in the third 
codon position based on mutation bias; and 3) the purine bias 
(Rrr) is universal to life and is a specific characteristic of CDSs 
regardless of the taxonomic position of a species.5,36,53 Related 
questions include the following: 1) How do the characteris-
tics listed above manage to coexist? 2) What is responsible for 
the nucleotide correlations in CDSs when the genetic code, in 
principle, allows for random nucleotide distribution and large 
mutational bias?
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The range of significant correlations among CDS nucle-
otides in homogeneous genomes is smaller than that for hetero-
geneous genomes. In fact, a homogeneous genome behaves as 
a compositional “point” on the universal correlation regression 
line. In comparison, heterogeneous genomes cover more than 
one point on the universal correlation regression line. For 
example, rice has two gene classes that correspond to two dif-
ferent codon usages within the same genome.54 The search 
for compositional correlations implies the need for variations 
in nucleotide composition large enough for correct testing of 
nucleotide interdependency. The nucleotide compositional cor-
relations found between codon positions at the intra-genomic 
level in a heterogeneous genome can be lost when analyzing 
homogeneous genomes at the same compositional interval as 
that of heterogeneous genomes. In that case, inter-genomic 
nucleotide compositional correlations between homogeneous 
genomes can be substituted for intra-genomic correlations 
corresponding to the compositional interval of heterogeneous 
genomes. This exercise can be performed because translational 
machinery is conserved across all modern cellular life forms55 
and because the protein code56 is something that is absolute in 
essence.57,58 The protein code is partially due to the periodic-
ity of secondary structures, but it is also due to the periodicity 
of hydrophobic amino acids in proteins.59 P. falciparum (GC-
poor) and C. reinhardtii (GC-rich) have genomes that exist at 
both extremities of GC variation among eukaryotes, while the 
H. sapiens genome occurs between these extremes. Given the 
universal correlation,39 these three genomes are sufficient for 
describing nucleotide correlations in eukaryote CDSs. The cor-
respondence between indications for correlation in H. sapiens 
(heterogeneous genome) on one hand and P. falciparum plus 
C. reinhardtii on the other confirms the consistency of this rea-
soning. In reality, such a correspondence between indications 

for correlation cannot be obtained by chance because the spe-
cies under comparison here are separated by at least one billion 
years of evolution from their common ancestor and show dif-
ferent characteristics.

As derived from purine bias, the nucleotide composition 
in CDSs is constrained by the codon position. Compensation 
for nucleotide constraint occurs in a network of correlations 
whose final product is purine bias regardless of the GC com-
position in the third codon position. Given that AT2 $ GC2, 
purine bias may be alternatively characterized by the logo 
RWY or even GWY because R1 . R2 and G1 . G2.

Because R1  .  R2 and AT2 $ GC2 are not a conse-
quence of the genetic code, they must be a consequence of the 
protein code,6,56 which shapes codon usage through tRNAs. 
The imprint of constraints on proteins in CDSs is RWr. “r” 
(or Y by symmetry) in the third codon position is more a 
consequence of A1 ≈ A2 (A1 is slightly lower than A2, on 
average) and G1  .  G2 (G1 is strongly larger than G2, on 
average), which holds true for the first two positions of codons 
and compensation for A and G for mutation bias in the third 
codon position (permitted by tRNA wobble in first position 
of anti-codon).

In this context, the universal correlation could be observed 
as a compensation effect for the mutation bias toward AT or 
GC by T or C, respectively, to maintain RWY.6 This com-
pensation is allowed by the fact that the coding information 
at the wobble position is “degenerate”. A discussion regarding 
selective processes potentially acting on DNA at that position 
is available from Bernardi.2

The amino acids that are encoded by RWY (Ala, Asp, 
Glu, Gly, Ile, Thr, Val) are compatible with 1) the constraints 
on protein functionality,7 2) the necessity of a hydrophobic 
core at the protein center, and 3) the necessity for secondary 

Table 3. Codon usage of ancestral codons RWr in relation to amino acid (aa) availability in primeval terrestrial conditions, aa hydropathy, and 
secondary structure of modern proteins. In adequate proportion, all the aa of this table may satisfy the ancestral codon RWr; more specifically 
1) the white background indicates codons that do not match the ancestral codon RWr, 2) the light gray background indicates codons that 
imperfectly match the ancestral codon RWr, and 3) the dark gray background indicates the aa that exactly match the ancestral codon RWr. Black 
rectangle are for values larger than 2.

Aa Miller1 (µM) Carb. Lat.2 Hydrop.3 Codon Split Degener. Ε4 H A

Gly 440.0 0 −0.4 GG(A|C|G|T) Quartet 1.03 1.05 5.44

Ala 790.0 1 1.8 GC(A|C|G|T)   Quartet 1.35 3.77 3.24

Ser 5.0 1 −0.8 TC(A|C|G|T) AG(C|T) Sextet 0.99 1.39 3.43

Thr 0.8 2 −0.7 AC(A|C|G|T) Quartet 1.32 1.31 2.73

Asp 34 2 −3.5 GA(C|T)   Duet 0.68 1.48 3.69

Val 19.5 3 4.2 GT(A|C|G|T)   Quartet 2.97 2.04 2.22

Glu 7.7 3 −3.5 GA(A|G)   Duet 0.99 2.98 3.00

Ile 4.8 4 4.5 AT(A|C|T)   Triplet 2.19 1.96 1.72

Leu 11.3 4 3.8 CT(A|C|G|T) TT(A|G) Sextet 2.22 3.83 3.15

Pro 1.5 6 −1.6 CA(A|C|G|T) Quartet 0.42 0.64 3.62

Notes: 1Amino acid concentration in the Miller’s experiment.41 2Carbon number in the lateral aa chain. 3Hydropathy, see Figure 4 of D’Onofrio et al.39 4Amino acid 
distribution in proteins as in Table 2 (columns Ept, Hpt, Apt).
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structures (Ε, H, A). In agreement with the ancestral codon 
hypothesis, Ala, Asp, Glu, Gly, and Val may have been alter-
natively used in GC-rich sequences and Ile and Thr may have 
been used in AT-rich sequences.

The fact that amino acids encoded by RWY have simple 
lateral chains and were synthesized by Miller31 in a pilot exper-
iment for primordial earth conditions suggests that RWY is 
a relic of the prebiotic times at the origin of life. Therefore, 
the 10 amino acids missing from Miller’s list41 may have been 
unnecessary for producing functional primeval proteins (meth-
ionine and phenylalanine were later detected by Parker et al.43 
(in 2011) and Johnson et al.42, respectively, in Miller’s extracts). 
These amino acids probably resulted as a byproduct of metabo-
lism evolution.41 For example, arginine also has relatively high 
frequency in the secondary structure of Table 2, but it is nei-
ther in Miller’s list nor has the RWY pattern. The absence of 
arginine in the “prebiotic soup” may appear surprising, but is 
largely accepted60; neither was arginine synthesized through 
spark discharge nor was it found in meteorites29,61 or hydro-
thermal vent.29,62 As indicated by Oba et al.22 and McDonald 
and Storrie-Lombardi,60 the lack of basic amino acids does 
not prevent peptides or proteins from serving useful struc-
tural and biochemical functions. Arginine is encoded by six 
different codons, ie, SSN (including SSS) or ASR codons. In 
principle, SSS codons are compatible with an early incorpora-
tion of arginine to proteins. Actually, it is surprising to note 
that in SELEX experiments driven in different independent 
laboratories using different protocols, aptamers selected to bind 
arginine are predominantly composed of the modern arginine 
codons,63 which is reminiscent of the stereochemical hypoth-
esis by Woese et al.64 and extended by Yarus.65 This finding, 
together with the finding that experiments simulating the early 
earth’s atmosphere32 yielded as many as 10 different natural 
amino acids still dominant in modern proteins,34 lays the foun-
dation for a theory that the genetic code evolved under primor-
dial conditions12,26 in two main steps (early and late) of amino 
acid incorporation to primeval proteins.21 The only reason 
not to consider arginine codons here is because arginine was 
likely not present in the prebiotic soup. However, as soon as it 
became present, it must have been quickly incorporated into 
the protein synthesis system. The free energy of formation of 
the amino acids from CO2, NH4

+, and H2 in surface seawater 
at 18 °C and 1 atmosphere66 strongly correlated (r = 0.96) with 
experimental amino acid concentrations for the 10 early amino 
acids29 according to the series Gly . Ala . Asp . Glu . Val ∼ 
Ser . Leu ∼ Ile ∼ Pro . Thr, in which arginine is not included. 
This finding is confirmed by the fact that class II aminoacyl-
tRNA synthetases that match early amino acids do not include 
aminoacyl-tRNA synthetases for arginine33 and by the con-
sideration that arginine requires several additional metabolic 
steps for synthesis not needed for early amino acids.21

Ikehara et  al.7 proposed that the primitive GNC code 
encoded Gly, Ala, Asp, and Val. Miller’s experiment indicates 
that other amino acids with RNN codons (Glu, Ile, Ser, and 

Thr) together with Ala, Asp, Gly, and Val appeared in pri-
meval earth conditions, satisfying hydropathy and the distri-
bution of secondary structures, such as in modern proteins. 
The comparison of the Miller41 and Parker et  al.43 amino 
acid doses in extracts from spark discharge samples show the 
same trend for Gly and Ala (in the range 0.5–1 mM), which 
are on average three orders of magnitude (four in the case of 
the dosage by Johnson et  al.42) larger than the other amino 
acids. The concentrations of Gly and Ala were .1,000 times 
larger than the other amino acids on average, supporting the 
idea that GSC codons (GGC/GCC) came first15 followed by 
Val (GTC) and Asp (GAC) according to the primeval GNC 
code, which would have then evolved to RNY. Interestingly, 
Gly, Ala, Val, and Asp only need two pairs of complementary 
codons.16 As shown by Oba et al.22, [GADV]-peptides with 
catalytic activity could accumulate and participate in the mul-
tiplication of [GADV]-proteins by pseudo-replication in a pro-
cess of repeated drying/heating cycles, thus without the need 
of an RNA-based translation system. Interestingly, modern 
peptides are synthesized by a complex and apparently universal 
protein machinery termed non-ribosomal peptide synthetase,67 
whose proteins are more ancient than ribosomal proteins68 
and do not involve RNA molecules. Primeval proteins might 
have possessed the catalytic activity to promote the forma-
tion of cyanide and purines from amino acids.69 The route of 
adenine formation from HCN in aqueous solution by physico-
chemical means is relatively simple,70 and it is thought to have 
contributed to the abiotic synthesis of RNA-like polymers via 
oligomer condensation to trigger the emergence of a replicat-
ing system based on RNA.71 At this stage, significant quanti-
ties of Gly, Ala, Asp, and Val might have recruited aptamers 
(tRNA precursors) associated with GNC codons through trial 
and error. With the other amino acids present in media, GNC 
codons must have quickly evolved to GNY and successively 
RNY with the decrease in temperature in the prebiotic envi-
ronment.72 According to this view, the RNY ancestral codon 
appears as a fossil of GNC (a subset of RNY). Because the 
physicochemical constraints acting on the enzyme catalytic 
activity did not change over time, one may understand why 
RNY remains statistically significant and conserved in mod-
ern proteins. Thus, GC-rich sequences might have favored 
Ala, Asp, Glu, Gly, and Val, and the progressive increase in 
AT might have favored Thr and Ile. By consequence, selec-
tion could have driven this primeval code toward AT or GC 
through selective pressures on secondary structures according 
to the energy available for cell metabolism because Ile and 
Val are more favorable to E ’s, Ala and Glu are more favorable 
to H ’s, and Asp and Gly (and Ser) are more favorable to A ’s. 
Metabolic abilities may have progressively increased thereaf-
ter with the codon-amino-acid repertoire.

The average T2 levels found in P. falciparum and  
C. reinhardtii suggest that mutational bias toward AT or GC 
might indeed provide a selective advantage according to the 
environment through the amount of energy available for cell 
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metabolism. P. falciparum and C. reinhardtii are both unicel-
lular eukaryotes that have to thrive in different environments. 
C. reinhardtii is a free-living green alga (housing a chloroplast) 
commonly found in soil and fresh water that can grow in 
simple media consisting of inorganic salts using photosynthesis 
to provide energy; however, it can also grow in total darkness 
by producing energy from the catabolism of acetate as a carbon 
source. With such metabolic ability to grow in environments 
with limited energy access, C. reinhardtii may have benefited 
from a mutational bias toward GC to diminish the average 
cost of protein synthesis by decreasing the E ’s contribution to 
its proteins without affecting the metabolic functionalities. By 
contrast, P. falciparum is a protozoan parasite that thrives in an 
environment that is not characterized by limited energy access 
but extreme aggressiveness due to antibodies in the blood fluid 
and the acidity of the vacuolar environment of host cells. Thus, 
a higher energetic cost due to a larger proportion of E ’s in pro-
teins as a result of a mutational bias toward AT is not a problem 
for P. falciparum metabolism. E ’s are secondary structures with 
larger variability and lower potential energy compared to H ’s as 
can be deduced from the broad plateau in the Ramachandran 
plot73 to which they are associated (centered at ϕ = –120° and 
ψ = +135°). Here, we propose that E-rich proteins might offer 
adaptive benefits for P. falciparum biology74 in the context of 
a mutational bias toward AT due to a set of specific functions 
that they encode.75 The large complexity of H. sapiens likely 
justifies its use of the most protein diversity as deduced from 
the wide interval of T2 variations in Figure 2B.

It is also interesting to note here that RWY uses 7 (8 if 
counting Ser in the gray lines of Table 3) of the 10 Miller amino 
acids. The most abundant (Gly and Ala) in Miller’s experiment 
were possibly not the most abundant in primeval protein as sug-
gested by the minimal code GWY and even by its generalized 
form RWY. In actuality, it is not surprising that the amino acid 
composition of proteins is not correlated to the amino acid con-
centration in the reaction medium of spark discharge experi-
ments because there is no expected correlation between amino 
acid concentration in the medium and protein functionality; 
such a correlation would only address the question of how the 
genetic system effectively came into existence.

If GWY predated RWY, it is likely that it was for a 
short period because it does not appear to have any critical 
difference in the amino acid availability between the codes of 
GWY and RWY. With regard to amino acid precursor car-
riers (tRNA analogs), the situation might have been different 
because they might have needed a time interval for protein 
complexes with 3 or 4 amino acids to increase to 9 or 10 (see 
Trifonov16 for a discussion on the chronology of codon evolu-
tion). The time necessary to reach the final stage of 20 amino 
acids might have been greater because it might have needed an 
additional evolutionary step to increase metabolic complexity, 
ie, evolution toward a protein system that was likely encapsu-
lated in a proto-cell.

Conclusions
We can conclude from the considerations above that purine bias 
likely existed from early times when proteins with functional 
activity were born. Purine bias is observed regardless of 
the coding DNA base composition; therefore, it is the link 
between functional constraints on proteins and the use of the 
genetic code by ribosomes for coding sequences to optimize 
their average processivity and accuracy. Because of the purine 
bias, the ancestral codon pattern is RWY and not RNY, which 
indicates that the amino acids Asp, Val, and Ile (GWY) were 
most likely essential for the formation of functional proteins 
under prebiotic conditions.

Acknowledgments
N. Carels thanks J. Pérez Mercader and the research team of 
Centro de Astrobiología (INTA, Madrid, Spain) for stimulat-
ing his interest concerning the origin of life.

Author Contributions
Conceived and designed the experiments: NC. Analyzed the 
data: NC. Wrote the first draft of the manuscript: NC. Con-
tributed to the writing of the manuscript: NC, MPL. Agree 
with manuscript results and conclusions: NC, MPL. Jointly 
developed the structure and arguments for the paper: NC. 
Made critical revisions and approved final version: NC, MPL. 
Both authors reviewed and approved of the final manuscript.

References
	 1.	 Kudla G, Lipinski L, Caffin F, Helwak A, Zylicz M. High guanine and cytosine 

content increases mRNA levels in mammalian cells. PLoS Biol. 2006;4(e180): 
933–42.

	 2.	 Bernardi G. The neoselectionist theory of genome evolution. Proc Natl Acad Sci 
U S A. 2007;104:8385–90.

	 3.	 Shepherd JC. Method to determine the reading frame of a protein from the 
purine/pyrimidine genome sequence and its possible evolutionary justification. 
Proc Natl Acad Sci U S A. 1981;78:1596–600.

	 4.	 Carels N, Vidal R, Frias D. Universal features for the classification of coding and 
non-coding DNA sequences. Bioinform Biol Insights. 2009;3:1–13.

	 5.	 Carels N, Frias D. A statistical method without training step for the clas-
sification of coding frame in transcriptome sequences. Bioinform Biol Insights. 
2013;7:35–54.

	 6.	 Ponce de Leon M, de Miranda A, Alvarez-Valin F, Carels N. The purine bias 
of coding sequences is determined by physicochemical constraints on proteins. 
Bioinform Biol Insights. 2014;8:93–108.

	 7.	 Ikehara K, Omori Y, Arai R, Hirose A. A novel theory on the origin of the 
genetic code: a GNC-SNS hypothesis. J Mol Evol. 2002;54:530–8.

	 8.	 Gilbert W. Origin of life: the RNA world. Nature. 1986;319:618.
	 9.	 Wochner A, Attwater J, Coulson A, Holliger P. Ribozyme-catalyzed transcrip-

tion of an active ribozyme. Science. 2011;332:209–12.
	 10.	 Wright MC, Joyce GF. Continuous in vitro evolution of catalytic function. Sci-

ence. 1997;276:614–7.
	 11.	 Shimizu M. Molecular basis for the genetic code. J Mol Evol. 1982;18:297–303.
	 12.	 Orgel LE. Self-organizing biochemical cycles. Proc Natl Acad Sci U S A. 2000;97: 

12503–7.
	 13.	 Eigen M, Schuster P. A principle of natural self-organization part A: emergence 

of the hypercycle. Naturwissenschaften. 1977;64:541–65.
	 14.	 Eigen M, Schuster PA. Principle of natural self-organization: part B: the abstract 

hypercycle. Naturwissenschaften. 1978;65:7–41.
	 15.	 Eigen M, Schuster PA. Principle of natural self-organization part C: the realistic 

hypercycle. Naturwissenschaften. 1978;65:341–69.
	 16.	 Trifonov EN. The triplet code from first principles. J Biomol Struct Dyn. 2004;22: 

1–11.

http://www.la-press.com
http://www.la-press.com/bioinformatics-and-biology-insights-journal-j39


RNY and Miller’s amino acids in modern proteins

47Bioinformatics and Biology Insights 2015:9

	 17.	 Woese CR. On the evolution of the genetic code. Proc Natl Acad Sci U S A. 
1965;54:1546–52.

	 18.	 Crick FH. The origin of the genetic code. J Mol Biol. 1968;38:367–79.
	 19.	 Hartman H. Speculations on the evolution of the genetic code. Orig Life. 

1975;6:423–7.
	 20.	 Hartman H. Speculations on the origin of the genetic code. J Mol Evol. 

1995;40:541–4.
	 21.	 Hartman H, Smith TF. The evolution of the ribosome and the genetic code. Life. 

2014;4:227–49.
	 22.	 Oba T, Fukushima J, Maruyama M, Iwamoto R, Ikehara K. Catalytic activities 

of [GADV]-peptides. Orig Life Evol Biosph. 2005;34:447–60.
	 23.	 Di Giulio M. On the origin of the transfer RNA molecule. J Theor Biol. 

1992;159:199–214.
	 24.	 Glaser R, Hodgen B, Farrelly D, McKee E. Adenine synthesis in interstellar 

space: mechanisms of prebiotic pyrimidine-ring formation of monocyclic HCN-
pentamers. Astrobiology. 2007;7:455–70.

	 25.	 Powner MW, Gerland B, Sutherland JD. Synthesis of activated pyrimidine ribo-
nucleotides in prebiotically plausible conditions. Nature. 2009;459:239–42.

	 26.	 Wächtershäuser G. Before enzymes and templates: theory of surface metabolism. 
Microb Rev. 1988;52:452–84.

	 27.	 Srivatsan SG. Modeling prebiotic catalysis with nucleic acid-like polymers and its 
implications for the proposed RNA world. Pure Appl Chem. 2004;76:2085–99.

	 28.	 Benner SA, Kim H-J, Yang Z. Setting the stage: the history, chemistry, and 
geobiology behind RNA. Cold Spring Harb Perspect Biol. 2012;4:a003541.

	 29.	 Higgs PG, Pudritz RE. A thermodynamic basis for prebiotic amino acid synthe-
sis and the nature of the first genetic code. Astrobiology. 2009;9:483–90.

	 30.	 Oparin AI. The Origin of Life. Moscow: Moscow Worker Publisher; 1924.
	 31.	 Miller SL. A production of amino acids under possible primitive earth condi-

tions. Science. 1953;117:528–9.
	 32.	 Miller SL. Which organic compounds could have occurred on the prebiotic 

earth? Cold Spring Harb Symp Quant Biol. 1987;52:17–27.
	 33.	 Klipcan L, Safro M. Amino acid biogenesis, evolution of the genetic code and 

aminoacyl-tRNA synthetases. J Theor Biol. 2004;228:389–96.
	 34.	 Wong JT, Cedergren R. Natural selection versus primitive gene structure as 

determinant of codon usage. Eur J Biochem. 1986;159:175–80.
	 35.	 Ikehara K, Niihara Y. Origin and evolutionary process of the genetic code. Curr 

Med Chem. 2007;14:3221–31.
	 36.	 Brooks DJ, Fresco JR. Greater GNN pattern bias in sequence elements encoding 

conserved residues of ancient proteins may be an indicator of amino acid compo-
sition of early proteins. Gene. 2003;303:177–85.

	 37.	 Tiwary S, Ramchandran S, Bhattacharya A, Bhattacharya S, Ramaswamy R. 
Prediction of probably genes by Fourrier analysis of genomic sequences. Comput 
Appl Biosci. 1997;13:263–70.

	 38.	 Grosse I, Herzel H, Buldyrev SV, Stanley HE. Species independence of mutual 
information in coding and non-coding DNA. Phys Rev E. 2000;61:5624–29.

	 39.	 D’Onofrio G, Jabbari K, Musto H, Bernardi G. The correlation of protein hydrop
athy with the base composition of coding sequences. Gene. 1999;238:3–14.  

	 40.	 Sueoka N. Correlation between base composition of the deoxyribonucleic 
acid and amino acid and composition of proteins. Proc Natl Acad Sci U S A. 
1961;47:1141–9. 

	 41.	 Miller ST. The prebiotic synthesis of organic compounds as a step toward the 
origin of life. In: Schopf JW, ed. Major Events in the History of Life. Boston: Jones 
& Bartlett; 1992:1–28. 

	 42.	 Johnson AP, Cleaves HJ, Dworkin JP, Glavin DP, Lazcano A, Bada JL. The 
Miller volcanic spark discharge experiment. Science. 2008;322:444. 

	 43.	 Parker ET, Cleaves HJ, Dworkin JP, et al. Primordial synthesis of amines and 
amino acids in a 1958 Miller H2S-rich spark discharge experiment. Proc Natl 
Acad Sci U S A. 2011;108:5526–31.

	 44.	 Bernardi G. Isochores and the evolutionary genomics of vertebrates. Gene. 
2000;241:3–17.

	 45.	 Carels N, Hatey P, Jabbari K, Bernardi G. Compositional properties of homolo-
gous coding sequences from plants. J Mol Evol. 1998;46:45–53.

	 46.	 Musto H, Rodriguez-Maseda H, Bernardi G. Compositional properties of 
nuclear genes from Plasmodium falciparum. Gene. 1995;152:127–32.

	 47.	 Naya H, Romero H, Carels N, Zavala A, Musto H. Translational selection 
shapes codon usage in the GC-rich genome of Chlamydomonas reinhardtii. FEBS 
Lett. 2001;501:127–30.

	 48.	 Saxonov S, Daizadeh I, Fedorov A, Gilbert W. EID: the exon-intron database – 
an exhaustive database of protein-coding intron-containing genes. Nucleic Acids 
Res. 2000;28:185–90.

	 49.	 Shepelev V, Fedorov A. Advances in the exon-intron database. Brief Bioinform. 
2006;7:178–85.

	 50.	 Gouy M, Delmotte S. Remote access to ACNUC nucleotide and protein 
sequence databases at PBIL. Biochimie. 2008;90:555–62.

	 51.	 Merchant SS, Prochnik SE, Vallon O, et  al. The Chlamydomonas genome 
reveals the evolution of key animal and plant functions. Science. 2007; 
318(5848):245–50.

	 52.	 Jolicoeur P. Bivariate allometry: interval estimation of the slopes of the ordinary 
and standardized normal major axes and structural relationship. J Theor Biol. 
1990;144:275–85.

	 53.	 Carels N, Frias D. Classifying coding DNA with nucleotide statistics. Bioinform 
Biol Insights. 2009;3:141–154.

	 54.	 Carels N, Bernardi G. Two classes of genes in plants. Genetics. 2000;154: 
1819–25.

	 55.	 Wolf YI, Koonin EV. On the origin of the translation system and the genetic 
code in the RNA world by means of natural selection, exaptation, and subfunc-
tionalization. Biol Direct. 2007;2:14.

	 56.	 Biro JC. The proteomic code: a molecular recognition code for proteins. Theor Biol 
Med Model. 2007;4:1–44.

	 57.	 Berezovsky IN, Trifonov EN. Flowering buds of globular proteins: transpiring 
simplicity of protein organization. Comp Funct Genomics. 2002;3:525–34.

	 58.	 Frenkel ZM, Trifonov EN. From protein sequence space to elementary protein 
modules. Gene. 2008;408:64–71.

	 59.	 West MW, Hecht MH. Binary patterning of polar and nonpolar amino acids in 
the sequences and structures of native proteins. Protein Sci. 1995;4:2032–9.

	 60.	 McDonald GD, Storrie-Lombardi MC. Biochemical constraints in a pro-
tobiotic earth devoid of basic amino acids: the “BAA(-) world”. Astrobiology. 
2010;10:989–1000.

	 61.	 Martins Z, Alexander CMOD, Orzechowska GE, Fogel ML, Ehrenfre-
und P. Indigenous amino acids in primitive CR meteorites. Meteorit Planet Sci. 
2007;42:2125–36.

	 62.	 Hennet RJ-C, Holm NG, Engel MH. Abiotic synthesis of amino acids under 
hydrothermal conditions and the origin of life: a perpetual phenomenon? Natur-
wissenschaften. 1992;79:361–5.

	 63.	 Knight RD, Landweber LF. Rhyme or reason: RNA-arginine interactions and 
the genetic code. Chem Biol. 1998;5:R215–20.

	 64.	 Woese CR, Dugre DH, Dugre SA, Kondo M, Saxinger WC. On the fundamen-
tal nature and evolution of the genetic code. Cold Spring Harb Symp Quant Biol. 
1966;31:723–36.

	 65.	 Yarus M. Amino acids as RNA ligands: a direct-RNA-template theory for the 
code’s origin. J Mol Evol. 1998;47:109–17.

	 66.	 Amend JP, Shock EL. Energetics of amino acid synthesis in hydrothermal eco-
systems. Science. 1998;281:1659–62.

	 67.	 Strieker M, Tanovic A, Marahiel MA. Nonribosomal peptide synthetases: 
structures and dynamics. Curr Opin Struct Biol. 2010;20:234–40.

	 68.	 Bernhardt HS. The RNA world hypothesis: the worst theory of the early evolu-
tion of life (except for all the others). Biol Direct. 2012;7:23.

	 69.	 McGlynn SE, Beard TE, Broderick JB, Peters JW. Life’s origins: poten-
tial for radical mediated cyanide production on the early earth. J Cosmol. 
2010;10:3315–24.

	 70.	 Roy D, Najafian K, von Ragué Schleyer P. Chemical evolution: the mechanism 
of the formation of adenine under prebiotic conditions. Proc Natl Acad Sci U S A. 
2007;104:17272–77.

	 71.	 Cheng LK, Unrau PJ. Closing the circle: replicating RNA with RNA. Cold 
Spring Harb Perspect Biol. 2012;4:a003566.

	 72.	 Di Giulio M. The universal ancestor was a thermophile or a hyperthermophile. 
Gene. 2001;281:11–7.

	 73.	 Zhou AQ , O’Hern C, Regan L. Revisiting the Ramachandran plot from a new 
angle. Protein Sci. 2011;20:1166–71.

	 74.	 Hildebrand F, Meyer A, Eyre-Walker A. Evidence of selection upon genomic 
GC-content in bacteria. PLoS Genet. 2010;6:e1001107.

	 75.	 Nowick JS. Exploring β-sheet structure and interactions with chemical model 
systems. Acc Chem Res. 2008;41:1319–30.

http://www.la-press.com
http://www.la-press.com/bioinformatics-and-biology-insights-journal-j39

