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Introduction
Alzheimer’s disease (AD) is the most common cause of dementia 
affecting 36 million people worldwide, showing the hallmark 
pathology of amyloid-β (Aβ) deposition, neurofibrillary tangle 
(NFT) formation, extensive synaptic loss, and neurodegenera
tion in the brain.1 The complex interaction between multiple 
genetic and environmental factors affecting various molecular 
pathways plays a key role in AD, although the precise molec-
ular mechanism remains largely unknown.2 Currently, only 
four drugs with limited efficacies are available for the treat-
ment of AD, including donepezil, rivastigmine, galantamine, 
and memantine. Development of disease-modifying drugs for 
AD, mainly targeting Aβ, has been unsuccessful, suggest-
ing that both early diagnosis and early treatment are highly 
important to achieve maximal response to disease-modifying 
treatments.3 However, an accurate diagnosis of AD is often 
difficult, solely based on neuropsychological examinations, 

because the possibility of numerous dementing diseases, such 
as frontotemporal dementia (FTD), dementia with Lewy 
bodies (DLB), vascular dementia, HIV-associated dementia 
(HAD), and prion diseases, should be carefully excluded.4 
Although decreased Aβ42 and increased pTau levels in the 
cerebrospinal fluid (CSF) serve as a biomarker for the diag-
nosis of AD, the collection of CSF is too invasive to apply to 
routine clinical works.5 Therefore, establishment of most reli-
able, non-invasive, ultrasensitive, high-throughput, and inex-
pensive biomarkers that promote the early diagnosis of AD 
would meet a growing demand from the public.6

MicroRNAs (miRNAs), a class of endogenous small 
non-coding RNAs (ncRNAs), mediate posttranscriptional 
regulation of protein-coding genes by binding to the 3′ 
untranslated region (UTR) of target mRNAs, leading to 
translational inhibition or mRNA destabilization or degra-
dation.7 Currently, 1,881 precursor and 2,588 mature human 
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miRNAs are registered in miRBase release 21 in June 2014. 
A single miRNA, capable of downregulating hundreds of 
target mRNAs concurrently, fine tunes diverse cellular func-
tions involved in development, differentiation, prolifera-
tion, apoptosis, and metabolism.8 Overall, the whole human 
miRNome regulates greater than 60% of all protein-coding 
genes.9 Importantly, aberrant regulation of the miRNome 
plays a central role in pathological events underlying cancers 
and neurodegenerative diseases.10–12 Recently, we identi-
fied 852 experimentally validated target genes for more than 
100 miRNAs downregulated in AD brains.13 The molecular 
network analysis of 852 genes revealed that aberrant expres-
sion of cell cycle regulators contributes to neurodegeneration 
in AD.

Increasing evidence indicated that various miRNAs, 
released extracellularly to biological fluids, serve as novel bio-
markers for diagnosis and prediction of prognosis of AD, Par-
kinson’s disease (PD), and cancers.10,14,15 They circulate in the 
serum, plasma, urine and the CSF in a free form binding to 
RNA-binding proteins or in an encapsulated form within exo-
somes protected from endogenous RNase activity. Approxi-
mately 70% of presently identified miRNAs are expressed in 
the brain in a spatially and temporally controlled manner.16 
Certain brain-enriched miRNAs are transported through 
the blood–brain barrier (BBB) into the circulatory system via 
unknown mechanisms.14

The recent breakthrough in deep sequencing technol-
ogy has made a great impact on the field of genome research. 
Whole RNA-sequencing (RNA-Seq) represents an innovative 
tool for the genome-wide transcriptome profiling in a high-
throughput and quantitative manner with excellent reproduc-
ibility.17 It identifies the unbiased expression of the complex 
transcriptome, composed of both mRNAs and ncRNAs, even 
in a single cell at a single base resolution. Small RNA-Seq, one 
of RNA-Seq applications, analyzes the differential expres-
sion of all kinds of small ncRNAs, without prior assumptions 
inevitable in quantitative PCR (qPCR) assays. Furthermore, 
this technology overcomes several drawbacks intrinsic to the 
microarray-based approach, such as the difficulty in detection 
of novel miRNAs and high backgrounds because of cross- 
hybridization. Actually, it provides a powerful approach to the 
comprehensive profiling of miRNAs circulating in biological 
fluids of AD.14 However, at present, it is most often laborious 
to clarify biological implications from billions of sequencing 
read data.

To identify circulating miRNA biomarkers for AD, we 
studied a publicly available small RNA-Seq dataset, com-
posed of blood miRNA profiles derived from AD patients 
and normal control (NC) subjects.18 For this purpose, we 
established a simple web-based miRNA data analysis pipeline 
that combines omiRas19 and DIANA miRPath.20 We found 
that this pipeline helps us to effortlessly identify candidates for 
miRNA biomarkers and pathways of AD from the complex 
small RNA-Seq data.

Methods
miRNA-Seq dataset of blood samples of AD patients 

and NCs. First, we retrieved FASTQ-formatted files of a 
small RNA-Seq dataset from the DDBJ Sequence Read 
Archive (DRA) (trace.ddbj.nig.ac.jp/DRASearch) under the 
accession number of SRP022043. The researchers in Saarland 
University, Homburg, Germany carried out a study of original 
experiments.18 It included 48 samples of AD patients, com-
posed of 23 males and 25 females with average age 70.3 ± 7.9 
years and Mini-Mental State Examination (MMSE) score 
18.7 ± 3.5, along with 22 samples of NC subjects, composed 
of 11 males and 11 females with average age 67.1 ± 7.5 years 
and MMSE score 29.3  ±  1.2. They obtained the samples 
mostly from the Biorepository and Tissue Bank PrecisionMed 
(www.precisionmed.com). Total RNA including miRNA was 
isolated from the blood by the PAXgene Blood miRNA Kit 
(Qiagen, Valencia, CA, USA). A total of 200  ng of RNA 
was processed to generate multiplexed sequencing libraries 
by using the TruSeq Small RNA Sample Kit (Illumina, San 
Diego, CA, USA). Then, DNA library products with the size 
of ∼50 bp were processed for single-end sequencing on HiSeq 
2000 (Illumina).

miRNA-Seq data analysis by omiRas. After removing 
adapters, poly-A tails, and low-quality reads from the original 
sequencing data with cutadapt (code.google.com/p/cutadapt) 
and Qcleaner (Amelieff, Tokyo, Japan), we imported GZIP-
compressed FASTQ files of cleaned data into the analysis tool 
named omiRas (tools.genxpro.net/omiras), a free web server 
established for differential expression analysis of miRNA-Seq 
data between two groups.19 On omiRas, bowtie processed 
mapping of short reads of each library, which are summarized 
to tags in a quantified FASTA format, on the human genome 
reference sequence hg19, allowing at most two mismatches. 
Mapping locus annotations were given for each tag, based on 
information derived from miRbase v19 (www.mirbase.org), 
snoRNABase (www-snorna.biotoul.fr), Repbase (www.gir
inst.org/repbase), Genomic tRNA database (gtrnadb.ucsc.
edu), and Rfam (www.sanger.ac.uk/resources/databases/rfam.
html). Following normalization of the number of reads for 
each tag with the number of mapping loci, differential expres-
sion analysis was carried out between two groups for each 
miRNA according to the DESeq algorithm (bioconductor.
org/packages/release/bioc/html/DESeq.html) in the setting 
of false discovery rate (FDR)-corrected P-value ,0.05.21 We 
excluded tRNAs, rRNAs, scRNAs, snoRNAs, and precur-
sor miRNAs because of lack of the precise annotation of their 
targets. We also removed mature miRNAs showing normal-
ized counts less than 10 in both groups because of their lower 
expression levels.

Receiver operating characteristic (ROC) analysis was 
performed by using SPSS Version 19 (IBM Japan). We 
imported normalized counts of individual miRNAs in the 
setting of the group discrimination number 1 for AD and 0 
for NC. For ROC analysis of the entire panel of 27 miRNAs, 
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comprising a mixture of upregulated and downregulated 
classes, we converted normalized counts into applicable values 
as follows: for miRNAs upregulated in AD, the summation 
of individual counts for each miRNA was adjusted to 1. For 
miRNAs downregulated in AD, the summation of individual 
counts subtracted from total counts was adjusted to 1. Finally, 
all adjusted values for each miRNA in individual samples were 
integrated for ROC analysis.

Pathway analysis of miRNA targets by DIANA miR-
Path. We utilized DIANA miRPath v2.0 (diana.imis.athena-
innovation.gr/DianaTools/index.php?r=mirpath/index), a web  
server established for identification of Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways corresponding to 
the networks of miRNA targets by superimposing numerous 
miRNA-target relationships on the merging and meta-anal-
ysis algorithm.20 This program predicts miRNA targets with 
high accuracy based on the DIANA-microT-CDS algorithm 
that considers the evolutional conservation of miRNA-binding 
sites. KEGG (www.genome.jp/kegg/kegg_ja.html) is a pub-
licly accessible knowledgebase, composed of manually curated 
364,925 pathways that cover a wide range of metabolic, genetic, 
environmental, and cellular processes and human diseases.22

We also utilized the interaction network tool of omiRas 
for identification of miRNA targets. It extracted overlapping 
targets for miRNAs predicted by five distinct algorithms, 
such as miRanda (www.microrna.org/microrna/home.do),  
TargetScan (www.targetscan.org), PicTar (pictar.mdc-berlin.
de), miRDB (mirdb.org/miRDB), and PITA (genie.weizmann.
ac.il/pubs/mir07/mir07_prediction.html). We imported them 
into the functional annotation tool of Database for Annota-
tion, Visualization and Integrated Discovery (DAVID) v6.7 
(david.abcc.ncifcrf.gov).23 DAVID identified gene ontol-
ogy (GO) terms enriched in the set of imported genes and 
extracted relevant pathways constructed by KEGG, followed 
by statistical evaluation with the modified Fisher’s exact test 
and the correction by multiple comparison tests. We consid-
ered P-value ,0.05 after Bonferroni correction as significant.

We also imported the set of miRNA targets into the core 
analysis tool of ingenuity pathway analysis (IPA) (Ingenuity 
Systems) (www.ingenuity.com). IPA is a commercial knowl-
edgebase, comprising approximately 3,000,000 biological 
and chemical interactions with definite scientific evidence. By 
uploading the list of Gene IDs, the network-generation algo-
rithm identified focused genes integrated in global molecular 
pathways and networks. IPA calculated the score P-value that 
reflects the statistical significance of association between the 
genes and the pathways and networks by Fisher’s exact test. 
We considered P-value ,0.05 as significant. The present study 
complied with the principles of the Declaration of Helsinki.

Results
miRNA-Seq data analysis by omiRas identified 

miRNAs differentially expressed between AD and NC. 
By analyzing miRNA-Seq dataset of blood samples derived 

from 48 AD patients and 22 NC subjects with omiRas, we 
identified totally 27 differentially expressed mature miRNAs 
that satisfied FDR-corrected P-value ,0.05 (Table  1). The 
omiRas quality control (QC) tool validated the acceptable 
quality of length and mapping of sequencing reads, present-
ing with a discernible correlation in the miRNA expression 
levels between both groups (Supplementary Fig. 1). The set 
of 27  miRNAs included 13  miRNAs upregulated in AD, 
such as miR-26b-3p, miR-28–3p, miR-30c-5p, miR-30d-5p, 
miR-148b-5p, miR-151a-3p, miR-186–5p, miR-425–5p, 
miR-550a-5p, miR-1468, miR-4781–3p, miR-5001–3p, and 
miR-6513–3p, and 14 miRNAs downregulated in AD, such 
as let-7a-5p, let-7e-5p, let-7f-5p, let-7g-5p, miR-15a-5p, miR-
17–3p, miR-29b-3p, miR-98–5p, miR-144–5p, miR-148a-3p, 
miR-502–3p, miR-660–5p, miR-1294, and miR-3200–3p 
(Table 1).

From the identical dataset, a previous study of original 
experiments identified the set of 12  miRNAs differentially 
expressed between AD and NC groups.18 The panel included 
seven miRNAs upregulated in AD, such as let-7d-3p,  
miR-26a-5p, brain-miR-112, miR-151a-3p, brain-miR-161, 
miR-1285–5p, and miR-5010–3p, and five miRNAs down-
regulated in AD, such as let-7f-5p, miR-26b-5p, miR-103a-3p, 
miR-107, and miR-532–5p. Unexpectedly, only upregula-
tion of miR-151a-3p and downregulation of let-7f-5p in AD 
were shared between the present and previous observations. 
Therefore, we reevaluated by omiRas the expression levels of 
previously reported seven miRNAs, such as let-7d-3p, miR-
26a-5p, miR-26b-5p, miR-103a-3p, miR-107, miR-532–5p, 
and miR-5010–3p. Surprisingly, we found that the differential 
expression of none of them reached the levels of statistical sig-
nificance (Table 1).

By hierarchical clustering analysis (HCA) with omiRas, 
the set of 27 miRNAs separated several AD subgroups from 
NC clusters, where the largest AD cluster contained 23 
patients (47.9%) (Fig. 1). Thus, the 27 miRNA panel did not 
perfectly discriminate AD from NC on HCA. The expres-
sion profiles of individual 27 miRNAs were different between 
both groups, although the expression levels were highly vari-
able among each sample (Fig.  2A–F and Supplementary  
Figs. 2 and 3).

By ROC analysis, the set of differentially expressed 
miRNAs, except for let-7e-5p and miR-29b-3p, showed sta-
tistically significant levels of the sensitivity and the speci-
ficity for discrimination between AD and NC (Fig.  3A–C 
and Supplementary Figs.  4 and 5). ROC analysis of the 
entire 27  miRNA panel revealed the area under the curve 
(AUC) =  0.801 (P  =  0.00006) with the sensitivity  =  70.8% 
and the specificity = 81.8% for discrimination of both groups  
(Fig. 3D).

Pathway analysis by DIANA miRPath character-
ized biological pathways of miRNA targets differentially 
expressed between AD and NC. By DIANA miRPath, 
we identified KEGG biological pathways constructed by 
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predicted targets for differentially expressed miRNAs 
based on the DIANA-microT-CDS algorithm. For the set 
of 13  miRNAs upregulated in AD, without the inclusion 
of miR-6513–3p whose information is absent in DIANA-
microT, it identified top three most significant pathways 
potentially downregulated in AD, such as dopaminergic 
synapse (hsa04728) (P  =  2.100E  −  16), long-term potentia-
tion (hsa04720) (P  =  7.706E  −  15) (Fig.  4), and ubiquitin-
mediated proteolysis (hsa04120) (P = 6.233E − 12) (Table 2). 
For the set of 14 miRNAs downregulated in AD, it identi-
fied top three most significant pathways potentially upregu-
lated in AD, such as PI3K-Akt signaling pathway (hsa04151) 
(P  =  4.359E  −  33) (Fig.  5), ECM–receptor interaction 
(hsa04512) (P = 1.404E − 21), and focal adhesion (hsa04510) 
(P = 1.404E − 21).

To verify these results, we studied miRNA targets 
overlapping in the prediction by miRanda, TargetScan, Pic-
Tar, miRDB, and PITA on the interaction network tool of 
omiRas. We identified the set of 749 target genes for miRNAs 
upregulated in AD, including those for miR-30c-5p, miR-
30d-5p, miR-186–5p, and miR-425–5p, and the set of 829 
target genes for miRNAs downregulated in AD, including 
those for let-7a-5p, let-7g-5p, let-7e-5p, let-7f-5p, miR-15a-5p, 
miR-29b-3p, miR-98a-5p, and miR-148a-3p (Supplementary 
Table 1). Overlaps were not found for other miRNAs by the 
prediction on five distinct algorithms described above.

For the set of 749 targets potentially downregulated in 
AD, DAVID indicated their relevance to the KEGG pathway 
termed long-term potentiation (hsa042720) (P = 0.00774 cor-
rected by Bonferroni), while IPA showed the most significant 
relationship with the canonical pathways defined as axonal 
guidance signaling (P = 6.37E − 06) and synaptic long-term 
potentiation (P = 4.53E − 05). Thus, they are well consistent 
with the pathway-finding results of DIANA miRPath. For 
the set of 829 targets potentially upregulated in AD, DAVID 
revealed their relevance to the KEGG pathways termed focal 
adhesion (hsa04510) (P = 7.793E − 06 corrected by Bonferroni) 
and ECM–receptor interaction (hsa04512) (P = 9.082E − 05 
corrected by Bonferroni), again well consistent with the 
results of DIANA miRPath. IPA showed the most significant 
relationship with the canonical pathways defined as hepatic 
fibrosis and hepatic stellate cell activation (P =  3.84E −  14) 
and PTEN signaling (1.56E − 07). The latter is equivalent to 
the KEGG pathway termed as PI3K-Akt signaling pathway 
(hsa04151), which was identified by DIANA miRPath.

Discussion
Utility of the miRNA-Seq data analysis pipeline for 

identification of AD blood biomarkers. Increasing evidence 
indicates that miRNAs circulating in biological fluids serve 
as non-invasive biomarkers for diagnosis of AD.14 Recently, 
small RNA-Seq has been utilized as a powerful approach 
to the comprehensive profiling of disease-relevant circulat-
ing miRNAs. However, it is most often laborious to clarify 
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Figure 2. The expression profile of miRNAs differentially expressed in blood of AD and NC. By omiRas, we identified the set of 27 miRNAs differentially 
expressed in blood samples of AD (blue) and NC (red). The representative profiles of (A) miR-26b-3p, (B) miR-148b-5p, (C) miR-186–5p, (D) miR-148–3p, 
(E) miR-17–3p, and (F) let-7g-5p are shown. All 27 profiles are shown in Supplementary Figures 2 and 3.

Figure 1. HCA of 27 miRNAs differentially expressed in blood of AD and NC. miRNA-Seq dataset of blood samples derived from 48 AD patients and 
22 NC subjects was analyzed on omiRas. It identified 27 differentially expressed mature miRNAs between two groups. They separated several AD 
subgroups (red) from NC clusters (blue), where the largest AD cluster included 23 patients (47.9%).
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biological implications from billions of sequencing read data. 
Here, we established a simple web-based miRNA data analy-
sis pipeline by combining omiRas and DIANA miRPath that 
effortlessly identifies candidates for miRNA biomarkers and 
pathways of AD from the complex small RNA-Seq data. 
We applied this pipeline to a publicly available small RNA-
Seq dataset, comprising blood samples derived from 48 AD 
patients and 22 NC subjects.

First, we identified 27 differentially expressed miRNAs  
between both groups. They included upregulation in AD of miR-
26b-3p, miR-28–3p, miR-30c-5p, miR-30d-5p, miR-148b-5p, 
miR-151a-3p, miR-186–5p, miR-425–5p, miR-550a-5p, miR-
1468, miR-4781–3p, miR-5001–3p, and miR-6513–3p and 
downregulation in AD of let-7a-5p, let-7e-5p, let-7f-5p, let-
7g-5p, miR-15a-5p, miR-17–3p, miR-29b-3p, miR-98–5p, miR-
144–5p, miR-148a-3p, miR-502–3p, miR-660–5p, miR-1294, 
and miR-3200–3p. Among them, previous studies reported 
downregulation of miR-29b targeting BACE1  in the anterior 
temporal cortex and the serum of AD,24,25 downregulation of 
miR-148a-3p in the parietal lobe of AD,26 and upregulation of 
miR-186–5p in the prefrontal cortex of AD.27 ROC analysis 
indicated that discrimination between AD and NC on the entire 
27 miRNA panel satisfies the accuracy over 80%.

Next, we characterized miRNA-regulated pathways 
deregulated in AD blood. We found that the pathways poten-
tially downregulated in AD are linked with neuronal synaptic 
functions, such as dopaminergic synapse and long-term poten-
tiation, while those upregulated in AD are implicated in cell 
survival and cellular communication, such as PI3K-Akt sig-
naling pathway, ECM–receptor interaction, and focal adhe-
sion. Notably, it takes only a couple of days to accomplish all 
analyses online on a PC with standard specifications, suggest-
ing that the pipeline process seems less time consuming. Even 
though the gold standard for small RNA-Seq data analysis has 
not been presently established, our pipeline potentially appli-
cable to large-scale deep sequencing data, including those of 
familial AD patients, would serve as a general standard for 
AD biomarker mining.

Possible explanations for the discrepancy between the 
present and previous studies. The previous study of original 
small RNA-Seq experiments identified the set of 12 miRNAs, 
containing two unannotated ones, differentially expressed 
between AD and NC blood samples.18 They also verified the 
results by qPCR on a larger cohort composed of 202 samples, 
containing those derived from 94 AD patients, 21 NC sub-
jects, and 87 patients with other neuropsychiatric diseases. 

A hsa-miR-26b-3p hsa-miR-148b-5p

27 miRNAs combinedhsa-miR-186–5p

1-specificity

AUC = 0.809

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

P = 0.00004
AUC = 0.712
P = 0.00460

AUC = 0.801
P = 0.00006

AUC = 0.696
P = 0.00882

1-specificity

1-specificity1-specificity

S
en

si
ti

vi
ty

S
en

si
ti

vi
ty

S
en

si
ti

vi
ty

S
en

si
ti

vi
ty

C D

B

Figure 3. ROC analysis of miRNAs differentially expressed in blood of AD and NC. By omiRas, we identified the set of 27 miRNAs differentially expressed 
between AD and NC blood samples. ROC analysis was performed by importing normalized counts of individual miRNAs into SPSS in the setting of the 
group discrimination number 1 for AD and 0 for NC, where 1 is defined as a state variable for miRNAs upregulated in AD. The representative profiles of 
(A) miR-26b-3p, (B) miR-148b-5p, (C) miR-186–5p, and (D) the entire 27 miRNA panel are shown. All 27 profiles are shown in Supplementary Figures 4 
and 5.
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Figure 4. DIANA miRPath analysis of target genes for miRNAs upregulated in AD blood. The set of 13 miRNAs upregulated in AD, except for hsa-miR-
6513–3p whose information is absent in DIANA-microT, was imported into DIANA miRPath. It identified the second-rank significant KEGG pathway 
potentially downregulated in AD, termed long-term potentiation (hsa04720), relevant to target gene network for imported miRNAs. The genes targeted by 
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Figure 5. DIANA miRPath analysis of target genes for miRNAs downregulated in AD blood. The set of 14 miRNAs downregulated in AD was imported into 
DIANA miRPath. It identified the most significant KEGG pathway potentially upregulated in AD, termed PI3K-Akt signaling pathway (hsa04151), relevant 
to target gene network for imported miRNAs. The genes targeted by more than one miRNA are colored by orange, while the genes targeted by a single 
miRNA are colored by yellow.
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Table 2. Top 10 KEGG pathways of target genes for microRNAs differentially expressed in blood samples of AD patients and NC subjects.

Rank KEGG pathway of target genes for  
upregulated microRNAs in AD

No. of  
target genes 

No. of  
microRNAs

FDR-corrected  
p-value 

1 Dopaminergic synapse (hsa04728) 51 11 2.09951E-16

2 Long-term potentiation (hsa04720) 30 9 7.70571E-15

3 Ubiquitin mediated proteolysis (hsa04120) 48 8 6.23343E-12

4 Endometrial cancer (hsa05213) 22 10 6.70195E-11

5 Aldosterone-regulated sodium reabsorption (hsa04960) 18 10 1.24983E-10

6 ErbB signaling pathway (hsa04012) 34 11 1.24983E-10

7 Axon guidance (hsa04360) 46 10 2.66356E-10

8 mRNA surveillance pathway (hsa03015) 32 10 1.41697E-09

9 Wnt signaling pathway (hsa04310) 50 10 2.08198E-09

10 Colorectal cancer (hsa05210) 25 11 3.23945E-09

Rank KEGG pathway of target genes for  
downregulated microRNAs in AD

No. of  
target genes 

No. of  
microRNAs

FDR-corrected  
p-value

1 PI3K-Akt signaling pathway (hsa04151) 108 14 4.36E-33

2 ECM-receptor interaction (hsa04512) 29 12 1.40E-21

3 Focal adhesion (hsa04510) 67 13 1.40E-21

4 p53 signaling pathway (hsa04115) 31 12 4.3261E-20

5 mTOR signaling pathway (hsa04150) 29 14 6.97691E-19

6 Pathways in cancer (hsa05200) 94 14 6.97912E-19

7 Prostate cancer (hsa05215) 34 12 2.78621E-17

8 Small cell lung cancer (hsa05222) 32 12 5.05832E-15

9 Melanoma (has05218) 28 12 6.45591E-15

10 MAPK signaling pathway (hsa04010) 71 13 1.2189E-12

Notes: DIANA miRpath identified KEGG pathways constructed by predicted targets for differentially expressed miRNAs between AD and NC based on the DIANA-
microT-CDS algorithm. Top ten pathways are shown with rank, pathway name, number of target genes and microRNAs, and FDR-corrected P-value. The upper half 
represents the pathways potentially downregulated in AD, while the lower half indicates the pathways potentially upregulated in AD. 

They found that the discrimination of AD from other neurop-
sychiatric diseases is possible with 74–78% accuracy.

However, only 2 of the 12 miRNAs, such as upregula-
tion of miR-151a-3p and downregulation of let-7f-5p in AD,  
were reproduced between the present and previous observa-
tions, regardless of the identical dataset employed. Impor-
tantly, omiRas indicated that differential expression of 
let-7d-3p, miR-26a-5p, miR-26b-5p, miR-103a-3p, miR-107, 
miR-532–5p, and miR-5010–3p reported previously does not 
reach the levels of statistical significance (Table 1, the bottom). 
Since the corresponding qPCR dataset is publicly unavailable, 
we could not currently clarify the precise reason for the incon-
sistency between both by reanalyzing qPCR data.

We suggested the possibility that these discrepancies are 
attributable to differences in data processing, including the 
methods of cleaning raw data of Illumina short reads, ie, cut-
adapt and Qcleaner in the present study versus fastx clipper 
in the previous study and mapping loci annotations based on 
miRbase v19 in the present study versus miRbase v18 in the 
previous study or the methods of statistical analysis utilized to 
identify differentially expressed miRNAs, such as DESeq in 
the present study versus the Wilcoxon-Mann–Whitney test 
with Benjamini–Hochberg adjustment in the previous study. 

The study that includes independent cohorts of large numbers 
of AD patients and controls is required for validation of the 27 
blood miRNA signatures in AD we identified. It is worthy of 
note that omiRas successfully identified previously overlooked 
19 miRNAs differentially expressed in the prefrontal cortex 
between Huntington’s disease (HD) patients and controls.28

Previous studies identified variable profiles of circu-
lating miRNAs in AD. Accumulating studies indicated that 
expression profiles of circulating miRNAs are highly variable 
among the patients with AD, patients with mild cognitive 
impairment (MCI), and NC subjects.29–33 The lack of repro-
ducibility is mostly attributable to great variations in samples, 
ie, the plasma, serum, whole blood, and exosomes, affected 
by sampling time and confounding factors such as smoking 
and medications; study populations, ie, the stage of diseases, 
age, sex, ethnicity, the selection of adequate controls, and the 
size of study population to obtain sufficient statistical power; 
and analytical methods, ie, qPCR, microarray, and the most 
advanced technology of deep sequencing. Our observations 
suggested that data processing pipelines contribute to one of 
major factors greatly affecting the results.

A recent study by qPCR of the plasma miRNAs iso-
lated from 50 AD and 50 NC subjects showed that both the 
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miR-132 family composed of miR-128, miR-132, and miR-874 
and the miR-134 family composed of miR-134, miR-323–3p, 
and miR-382, all of which are upregulated in MCI, differ-
entiate MCI from NC with 87–96% accuracy.29 In contrast, 
another study by qPCR of the plasma miRNAs derived from 
110 AD patients and 123 NC subjects indicated that the levels 
of miR-34c, which represses the genes involved in cell survival 
and anti-oxidative defense, are upregulated in AD.30 A previ-
ous study was performed by microarray analysis of miRNAs 
isolated from the commercially available plasma derived from 
11 AD patients and 20 NC subjects on nCounter containing 
features of approximately 700 human and human-associated 
viral miRNAs.31 It showed that the 7-miRNA signature, 
composed of let-7d-5p, let-7g-5p, miR-15b-5p, miR-142–3p, 
miR-191–5p, miR-301a-3p, and miR-545–3p, all of which 
are downregulated in AD, discriminates AD from NC with 
greater than 95% accuracy, where the miRNA targets are 
involved in lipid metabolism. However, among them, we only 
verified downregulation of let-7g-5p in the miRNA-Seq data-
set of AD blood.

A recent small RNA-Seq study performed on an Ion 
Personal Genome Machine using exosomal miRNAs isolated 
from 23 AD patients and 23 NC subjects showed that miR-
15a-5p, miR-18b-5p, miR-20a-5p, miR-30e-5p, miR-93–5p, 
miR-101–3p, miR-106a-5p, miR-106b-5p, miR-143–3p, miR-
335–5p, miR-361–5p, miR-424–5p, miR-582–5p, and miR-
3065–5p are upregulated, while miR-15b-3p, miR-342–3p, 
and miR-1306–5p are downregulated in AD.32 Surprisingly, 
these observations partially contradicted our results that miR-
15a-5p is downregulated in AD blood, suggesting that the 
source of miRNAs, either purified exosomes or unfraction-
ated whole blood, serves as a critical factor responsible for 
differences in miRNA expression profiles. A different small 
RNA-Seq study performed on HiSeq 2000 using the serum 
miRNAs derived from 50 AD patients and 50 NC subjects 
revealed that the expression levels of let-7d-5p, miR-98–5p, 
miR-191–5p, miR-342–3p, miR-483–3p, and miR-885–5p 
are reduced in AD.33 They also found a trend for upregula-
tion of miR-26b-3p and downregulation of let-7g-5p in AD. 
Among them, we verified upregulation of miR-26b-3p and  
downregulation of miR-98–5p and let-7g-5p in AD blood. 
Importantly, the expression levels of miR-26b-5p, the opposite 
strand of miR-26b-3p elevated in postmortem brains at the early 
stage of AD, represses retinoblastoma protein Rb1, resulting in 
acceleration of tau phosphorylation by activating Cdk5.34

Biological pathways regulated by circulating miRNAs 
aberrantly regulated in AD blood. By pathway analysis 
of target genes for differentially expressed miRNAs with 
DIANA miRPath, we found that biological pathways poten-
tially downregulated in AD are related to neuronal synaptic 
functions. These findings might reflect profound disturbances 
of synapse integrity in AD brains. In contrast, the path-
ways potentially upregulated in AD exhibited a significant 
relationship with biological pathways of cell survival and 

cellular communication functions. These pathways are likely 
to be induced and activated by compensatory responses to 
extensive neurodegeneration in AD brains. Importantly, the 
pathway-finding results obtained by DIANA miRPath are 
well consistent with those from the prediction of overlap-
ping targets by five distinct algorithms, followed by pathway 
analysis with DAVID and IPA. Importantly, various brain-
enriched miRNAs are transported through BBB into the cir-
culatory system.14 Therefore, our observations suggested that 
real-time profiles of AD blood miRNAs might reflect a dis-
ruption of the miRNA–mRNA interaction network in AD 
brains affected by ongoing neurodegeneration.

Conclusions
We reanalyzed a publicly available small RNA-Seq dataset, 
composed of blood samples derived from 48  AD patients 
and 22  NC subjects, by a newly established, simple web-
based miRNA data analysis pipeline that combines omiRas  
and DIANA miRPath. We identified 27 differentially 
expressed miRNAs, including 13 upregulated miRNAs and 
14 downregulated miRNAs in AD. The miRNA-regulated 
pathways potentially downregulated in AD were linked with 
neuronal synaptic functions, while those upregulated in AD 
were related to cell survival and cellular communication. This 
pipeline helps us to effortlessly identify candidates for miRNA 
biomarkers and pathways of AD from the complex small 
RNA-Seq data.
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Supplementary Files
Supplementary Figure 1. Quality control of microRNA-

Seq data on omiRas. MicroRNA-Seq dataset of blood samples 
derived from 48 AD patients and 22 NC subjects was analyzed 
on omiRas. The mapping statistics of a sample of AD num-
bered SRR837437 are shown. The panels (A–D) indicate (A) 
general overview, (B) mapping region specificity, (C) sequence 
length distribution, and (D) the scatter plot of the expression 
levels between AD (x-axis) and NC (y-axis).

Supplementary Figure  2. The expression profile of 
13 miRNAs upregulated in AD blood. By omiRas, we identi-
fied the set of 27 miRNAs differentially expressed in blood 
samples of AD (blue) and NC (red). The profiles of 13 miRNAs  
upregulated in AD are shown.

Supplementary Figure  3. The expression profile of 
14  miRNAs downregulated in AD blood. By omiRas, we 
identified the set of 27  miRNAs differentially expressed in 
blood samples of AD (blue) and NC (red). The profiles of 
14 miRNAs downregulated in AD are shown.

Supplementary Figure 4. ROC analysis of 13 miRNAs 
upregulated in AD blood. By omiRas, we identified the set of 
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27 miRNAs differentially expressed in blood samples of AD 
and NC. ROC analysis was performed by importing normal-
ized counts of individual miRNAs into SPSS in the setting 
of the group discrimination number 1 for AD and 0 for NC, 
where 1 is defined as a state variable. The profiles of 13 miRNAs  
upregulated in AD are shown.

Supplementary Figure 5. ROC analysis of 14 miRNAs 
downregulated in AD blood. By omiRas, we identified the 
set of 27 miRNAs differentially expressed in blood samples 
of AD and NC. ROC analysis was performed by importing 
normalized counts of individual miRNAs into SPSS in the 
setting of the group discrimination number 1 for AD and 0 
for NC, where 0 is defined as a state variable. The profiles of 
14 miRNAs downregulated in AD are shown.

Supplementary Table  1. Predicted target genes for 
microRNAs differentially expressed in blood samples of AD 
patients and NC subjects.
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