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Abstract

Systematic reviews of diagnostic tests often involve a mixture of case-control and cohort studies. 

The standard methods for evaluating diagnostic accuracy only focus on sensitivity and specificity 

and ignore the information on disease prevalence contained in cohort studies. Consequently, such 

methods cannot provide estimates of measures related to disease prevalence, such as population 

averaged or overall positive and negative predictive values, which reflect the clinical utility of a 

diagnostic test. In this paper, we propose a hybrid approach that jointly models the disease 

prevalence along with the diagnostic test sensitivity and specificity in cohort studies, and the 

sensitivity and specificity in case-control studies. In order to overcome the potential computational 

difficulties in the standard full likelihood inference of the proposed hybrid model, we propose an 

alternative inference procedure based on the composite likelihood. Such composite likelihood 

based inference does not suffer computational problems and maintains high relative efficiency. In 

addition, it is more robust to model mis-specifications compared to the standard full likelihood 

inference. We apply our approach to a review of the performance of contemporary diagnostic 

imaging modalities for detecting metastases in patients with melanoma.
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1 Introduction

Comparative effectiveness research relies fundamentally on the accurate assessment of 

clinical outcomes. Rapid escalations in the cost of medical diagnostic tests, together with 

growth in the number of available instruments have generated an increasing need for 

scientifically rigorous methods for comparing diagnostic tests in clinical practice. Many 

quantitative comparisons of diagnostic tests are based on systematic reviews of diagnostic 

accuracy. In such reviews, the performance of a diagnostic test is often summarized by 

paired indices, such as sensitivity and specificity, or positive and negative predictive values 

(PPV and NPV)1,2.

The procedure of pooling paired indices is not straightforward because of three important 

characteristics of such data. The first is that the estimated sensitivities and specificities are 

typically negatively correlated between studies3. A possible cause of this negative 

correlation is that studies may have used different thresholds to define positive and negative 

test results. The second important characteristic is the substantial between-study 

heterogeneity in paired indices4,5,6. Such heterogeneity may arise due to differences in study 

population characteristics, variability of assessment, and other factors. The third 

characteristic is that some prevalence-dependent indices, such as predictive values, i.e., PPV 

and NPV, require knowledge about disease prevalence that is not estimable in case-control 

studies. In addition, it has been suggested that sensitivity and specificity can be correlated 

with disease prevalence. One of the reasons is that the classification of disease status is 

typically based on a continuum of measurable traits. For classification of disease status 

based on continuous traits, the underlying distribution of the continuous traits not only 

determines disease prevalence, but also determines misclassification rates (i.e., sensitivity 

and specificity), because subjects with true levels close to the cut-point are more likely to be 

misclassified7,8. If the underlying distributions of continuous traits are heterogeneous across 

studies, the sensitivities and specificities are likely to be correlated with the prevalence.

A variety of methods have been proposed to account for the first two characteristics of data 

encountered in systematic reviews of diagnostic test accuracy, see a recent review by Ma et 

al.9. The current methods can be classified into two categories. The first category consists of 

methods based on a summary receiver operating characteristic curve generated from the 

study data10,4 and hierarchical summary receiver operating characteristic model11,6,12,13. 

The second category consists of methods that use bivariate general mixed-effects model and 

bivariate generalized linear mixed-effects model (GLMM) to describe sensitivity and 

specificity simultaneously14,15,3,16,13,17,18. Interestingly, the hierarchical summary receiver 

operating characteristic model and the bivariate GLMM have been found to be very closely 

related, and even identical in the absence of covariates19,20.

More recently, a trivariate GLMM has been proposed that can simultaneously account for all 

three aforementioned characteristics of the data in systematic review of diagnostic test 

accuracy8. The trivariate GLMM jointly models disease prevalence with diagnostic test 

sensitivity and specificity based on the data from the cohort studies. Based on the estimated 

disease prevalence, the clinically meaningful indices, such as PPV and NPV, are 

immediately available. However, the trivariate GLMM also has a few limitations. First, 
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systematic reviews often involve a mixture of case-control and cohort studies; whereas 

trivariate GLMM is restricted to cohort studies. In this situation, discarding all of the case-

control studies can lead to a substantial loss of efficiency. Secondly, the correlations among 

disease prevalence, sensitivity and specificity need to be estimated, and three-dimensional 

integrals has to be evaluated in the likelihood. In this case, non-convergence problems and 

singular information matrices have been reported when maximizing the likelihood, 

especially when the number of studies is relatively small17. Although modern computational 

techniques such as Laplace or adaptive Gaussian quadrature approximation are available in 

software, such as NLMIXED in SAS (SAS Institute Inc., Cary, NC) and ADMB (Automatic 

Differentiation Model Builder), these approximations may still have non-negligible 

approximation errors and the estimates may be sensitive to initial values, leading to unstable 

or unreproducible results. To the best of our knowledge, there is currently no satisfactory 

solution to these limitations.

Our motivating study is a systematic review of modern diagnostic imaging modalities for 

surveil-lance of melanoma patients. Melanoma is the least common but most deadly type of 

skin cancer and occurs in melanocytes, which are cells that produce the skin pigment 

melanin. Melanoma accounts for more than 75% of deaths related to skin cancer21. Sentinel 

lymph node biopsy is the gold standard for pathological staging of metastasis in melanoma. 

Diagnostic imaging is often utilized following the surgical treatment of melanoma in 

patients who are at high risk of disease recurrence. The type of imaging and the interval of 

testing which is the most effective and cost-effective have not been defined. The goal of 

surveillance imaging is to detect melanoma recurrence in regional lymph nodes and/or 

distant sites at a point when it remains treatable and/or possible surgically resectable. 

Current diagnostic imaging modalities for the surveillance of melanoma patients include 

ultrasonography (US), computed tomography (CT), positron emission tomography (PET) 

and a combination of both (PET-CT). It is critical to assess and compare the performance of 

these contemporary diagnostic imaging modalities to compare accuracy in various clinical 

settings and to support clinical decision making. A systematic review of published studies 

has examined diagnostic modality characteristics and identified 98 studies from 10, 528 

patients with melanoma between January 1, 1990 and June, 30, 200922. Out of 98 studies, 57 

were cohort studies and the numbers of case-control and cohort studies stratified by type of 

cancer and type of imaging modality are summarized in Table S1 in the supplementary 

materials. The original analysis in Xing et al.22 treated the case-control studies and cohorts 

equivalently, and ignored the information on prevalence of melanoma. Consequently, 

clinically more relevant measures, such as the overall PPV and NPV, cannot be obtained. In 

this paper, we propose a hybrid multivariate random effects model to combine case-control 

and cohort studies. Such a strategy of joint modeling fully utilizes the data and can provide 

estimates of measures related to disease prevalence (e.g., PPV and NPV). However, the 

standard likelihood-based inference of the proposed hybrid model is still subject to the 

aforementioned non-convergence problem and computational difficulty. Motivated by the 

fact that the commonly used measures of diagnostic tests (e.g., sensitivity, specificity, PPV 

and NPV) do not involve correlation parameters, we propose an alternative inference 

procedure based on the composite likelihood23,24 where a working independence 

assumption is adopted. Simulation studies suggest that the composite likelihood, which 
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avoids an explicit modeling of the dependence structure, does not lead to a substantial 

efficiency loss. Therefore, the composite likelihood inference is a practical solution to the 

non-convergence problem and computational difficulty. Furthermore, the inference based on 

the composite likelihood only relies on the marginal normality of logit prevalence, 

sensitivity and specificity. Hence the composite likelihood method can be more robust than 

the standard full likelihood inference to mis-specifications of the joint distribution. In fact, 

the composite likelihood has been widely applied to applications such as longitudinal data 

analysis and multivariate survival data analysis25,26,27,28. However, to the best of our 

knowledge, the present paper is the first application of composite likelihood in systematic 

reviews of diagnostic tests.

This paper is organized as follows. In Section 2, we describe the proposed hybrid model and 

two inference procedures, namely the full likelihood and composite likelihood methods. In 

Section 3, we conduct simulation studies to compare these two inference procedures. We 

apply our method in Section 4 to a systematic review of the accuracy of contemporary 

diagnostic imaging modalities for detecting metastases in patients with melanoma. We 

provide a brief discussion in Section 5.

2 Statistical Methodology

Denote D and T as the respective disease status ascertained by a gold standard and the result 

from a diagnostic test under investigation (1: positive; 0: negative). Sensitivity (Se) and 

specificity (Sp) are respectively the probability of a positive test result in a subject with the 

disease and the probability of a negative test result in a subject who does not have the 

disease, i.e., Se = Pr(T = 1|D = 1) and Sp = Pr(T = 0|D = 0). The positive predictive value 

(PPV) and negative predictive value (NPV) are the probability of having the disease given a 

positive test result and the probability of not having the disease given a negative test result, 

i.e., PPV = Pr(D = 1|T = 1) and NPV = Pr(D = 0|T = 0), respectively.

We consider a systematic review of diagnostic test accuracy with m studies. For simplicity 

of notations, assume that the first m1 studies are case-control studies and the remaining m2 

studies are cohort studies (m = m1 + m2). Table 1 summarizes typical data from the ith study 

by a 2 × 2 table29. Specifically, denote ni11, ni00, ni01, and ni10 as the number of true 

positives, true negatives, false negatives, and false positives, respectively, and denote ni1 = 

ni11 + ni01 and ni0 = ni10 + ni00 as the numbers of subjects with and without the disease, 

respectively. Let πi, Sei and Spi be the study-specific disease prevalence, and diagnostic test 

sensitivity and specificity, respectively. Note that πi is estimable only in cohort studies, i.e., i 

= m1 + 1, . . . , m.

In practice, there is often significant heterogeneity in the study-specific disease prevalence, 

and test sensitivity and specificity across studies due to differences in study population 

characteristics, assessment methods and intervals, and other related factors. Additionally, in 

practice, diagnostic test sensitivity and specificity are often negatively correlated, and such 

sensitivity and specificity can be correlated with disease prevalence in cohort studies7,8. To 

account for these characteristics and to effectively combine case-control and cohort studies, 

we propose the following hybrid generalized linear mixed-effects model (referred to as the 
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hybrid model hereafter). This model can be formulated in two stages. The first stage 

specifies the probability of observing the data described in Table 1 for a given study-specific 

disease prevalence (for a cohort study only), and diagnostic test sensitivity and specificity,

(1)

where ni is the number of subjects in the ith study, and Binomial(·; ·) and Multinomial(·; ·) 

are defined as

where p1 + p2 + p3 + p4 = 1 and y1 + y2 + y3 + y4 = n. At the second stage, a random effects 

model is assumed to take into consideration the heterogeneity between studies, the 

correlation between (Sei, Spi) for i = 1, . . . , m1 and the correlations among (πi, Sei, Spi) for 

i = m1 + 1, . . . , m,

(2)

where g(·) is a known link function such as a logit function, Wi, Xi, Zi are vectors of study-

level covariates, possibly overlapping, related to πi, Sei and Spi respectively. Examples of 

such study-level covariates include type of disease (e.g., regional cancer versus distant 

cancer), and the Quality Assessment of Diagnostic Accuracy Studies (QUADAS) scale30. 

Here we model specificity (i.e., Pr(T = 0|D = 0)) instead of the probability Pr(T = 1|D = 0) 

because correctly identifying the disease status (i.e., T = 0) given a patient without disease 

(i.e., D = 0) is considered as a “success event”. The random intercepts (μi1, μi2) for a case-

control study and (μi0, μi1, μi2) for a cohort study are assumed to respectively follow a 

bivariate normal distribution with mean zero and covariance matrix Σ1 for i = 1, . . . , m1, 

and a trivariate normal distribution with mean zero and covariance matrix Σ2 for i = m1 + 

1, . . . , m, defined as

The parameters ,  and  capture the between-study heterogeneity in disease prevalence, 

and test sensitivities and specificities, respectively, and the parameters ρ01, ρ02 and ρ12 
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describe the correlations between the respective random effects (πi, Sei), (πi, Spi) and (Sei, 

Spi) in the transformed scale, respectively.

To simplify the notations and make our discussion concrete, we assume Wi = Xi = Zi = 1 

and choose a logit link function. In this case, β0, β1 and β2 specify the overall disease 

prevalence, and diagnostic test sensitivity and specificity (in logit scale), respectively. 

Besides sensitivity and specificity, other clinically relevant measures, e.g. the overall PPV 

and NPV, can be calculated as

(3)

In practice, a high NPV is required for a diagnostic test to be useful in ruling out disease, 

and a high PPV is required for a diagnostic test to be useful in detecting disease.

For simplicity of notation, denote , ,  and ρ = (ρ01, 

ρ02, ρ12)T Under the hybrid model assumption, the log likelihood function is

(4)

where ϕ1(·, ·; θ1, θ2, ρ12) is the bivariate logit normal density with mean (β1, β2)T and 

covariance matrix Σ1 and ϕ2(·, ·, ·; 0, θ1, θ2,ρ) is the trivariate logit normal density with 

mean (β0, β1,β2)T and covariance matrix Σ2 at the logit scale. The integrals in equation (4) 

do not have a closed-form and have to be calculated using numerical methods such as 

adaptive Gaussian quadrature31. In practice, the package NLMIXED in SAS version 9.3 

(SAS Institute Inc., Cary, NC) can be used to maximize the approximation to the log 

likelihood function in equation (4). Other methods such as automatic differentiation model 

builder (ADMB; http://admb-project.org) can also be used to approximate this likelihood.

Although conceptually straightforward, the standard maximum full likelihood method 

(hereafter referred to as the FL method) faces the non-convergence and computational 

problems as described in the introduction section. These problems are due to the two- and 

three-dimensional integrals in the likelihood function L(θ0, θ1, θ2,ρ) and the need of 

estimating correlation parameters ρ17. In fact, the FL method encounters the issues of non-

convergence and a singular covariance matrix when used to analyze the motivating study on 

metastases. Specifically, for the subgroup of the PET-CT test with a total of 8 studies, we 

failed to obtain the maximum likelihood estimates as the likelihood in equation (4) contains 

9 parameters. For the subgroup of the CT test with a total of 12 studies, the convergence of 

the FL method heavily depends on the choice of the initial values: the FL method leads to 

non-convergent results for some default choice of initial values. For the subgroup of the PET 

test with a total of 29 studies, a “poor” choice of initial value results in a singular covariance 

matrix. These results are summarized in Table S2 in the supplemental material.
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As suggested in equation (3), the commonly used measures of diagnostic tests are functions 

of (β0, β1, β2) only and do not involve the correlation parameters. Therefore, we propose an 

alternative inference procedure that focuses on (β0, β1, β2) without inferring ρ. The key of 

the proposed procedure is the factorization of the multinomial likelihood function as a 

product of three independent binomial likelihoods. Specifically, the likelihood function 

based on a cohort study for given (πi, Sei, Spi) can be factored as

where i = m1 + 1, . . . , m. Given the above factorization, we can construct a composite 

likelihood function under a working independence assumption. Mathematically, by letting 

ρ01 = ρ02 = ρ12 = 0 in equation (4), we obtain the following composite likelihood function

(5)

where

and ϕ(·; θj) is the univariate logit normal distribution with mean βj and variance  in logit 

scale, and is indexed by θj (j = 0, 1, 2).

Since each component of the composite likelihood function, log Lj(θj) (j = 0, 1, 2), is a true 

log marginal likelihood, the score equation of composite likelihood is unbiased. 

Consequently, the estimator  defined as a solution of the score equation, is 

consistent and asymptotically normal. However, the conventional covariance matrix 

estimator , where 

, is no longer valid because 

 is not the covariance matrix of ∂Lc(θ0, θ1, θ2)/∂(θ0, θ1, θ2) in the 

presence of correlations among (πi, Sei, Spi).

Assume m2/m → r > 0 as m → ∞. As shown in Section 1 of the supplementary material, the 

estimator  is asymptotically normal with mean zero and symmetric covariance 

matrix
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where

for j = 1, 2. In practice, the asymptotic covariance matrix Σ can be consistently estimated by 

its empirical counterpart  as follows.

where r̃ = m2/m,

and

The composite likelihood method (hereafter referred to as CL method) reduces the 

computationally demanding three-dimensional integrals in the full likelihood to 

computationally much simpler one-dimensional integrals. More importantly, the non-

convergence problem of FL method is alleviated since no correlation parameter (i.e., ρ01, ρ02 

or ρ12) is involved in the composite likelihood. The maximum composite likelihood estimate 
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 can be obtained by conducting a univariate meta-analysis with a random effects model, 

which is available in most statistical software. The covariance matrix of  can be 

easily calculated using the above formulas, which involve only one-dimensional integrals. 

Note that the off-diagonal matrices in Σ properly account for the covariance between the 

estimated overall disease prevalence and diagnostic test sensitivity and specificity, which is 

not possible if investigators conduct meta-analysis by univariate meta-analysis. We consider 

the CL method as a method between multivariate and univariate meta-analyses, inheriting 

the ability of multivariate meta-analysis to infer functions of overall parameters such as PPV 

and NPV (i.e., functions of β0, β1 and β2) while not suffering from its limitations.

The asymptotic results of  can be used to construct approximate Wald-type 

confidence intervals/regions for diagnostic measures of interest. Alternatively, composite 

likelihood ratio based inference is available. In general, the composite likelihood ratio test 

statistic converges to a nonstandard asymptotic distribution as a weighted sum of 

independent  distributions, which can be derived as a special case of results on 

misspecified likelihoods32,33. Several adjustments of composite likelihood have been 

proposed in order to have an approximate or asymptotic χ2 distribution34,35,36,37,24,38.

3 Simulation Study

To evaluate and compare the finite sample performance of the FL and CL methods, we 

conduct simulation studies. The data are generated from a two-stage procedure, as specified 

by equations (1) and (2). Two settings of covariates are considered. In the first setting, there 

is no study-level covariate except the intercept, i.e., Wi = Xi = Zi = 1. In the second setting, 

we consider two covariates: a binary covariate (e.g. 1 for regional cancer and 0 for distant 

cancer), and a continuous covariate sampled from a uniform distribution (e.g., QUADAS 

score with range of 1 ~ 14). We consider a moderate size meta-analysis with m = 30 studies, 

and a relatively large meta-analysis with m = 50 studies. We assume equal numbers of case-

control and cohort studies. The numbers of subjects in each study (i.e., (ni0, ni1) in case-

control studies and ni in cohort studies) are randomly drawn from the studies on metastases 

described in Introduction Section. Specifically, in the case-control study, the range of the 

number of subjects per study is 10 to 100 for patients with metastasis, and 10 to 124 for 

patients without metastasis. In the cohort studies, the number of subjects per study ranges 

from 20 to 220. For the setting without study-level covariate, two configurations of overall 

disease prevalence, and test sensitivity and specificity are considered, namely, β0 = 

logit(0.2), β1 = logit(0.6) or logit(0.9) and β2 = logit(0.9). For the setting with study-level 

covariates, the values of regression coefficients are set at the estimates from fitting the 

model on the studies on metastases. We let the between-study variances in disease 

prevalence and test sensitivity and specificity be . To evaluate the impact of 

the correlation structure on the inference, we let the correlation parameters (ρ01, ρ02, ρ12) 

take values of (0, 0, 0), (0, 0, −0.6), (0.2, −0.2, −0.6), (0.6, −0.6, −0.6) or (0.8, −0.8, −0.8) 

to represent different levels of correlation among disease prevalence and test sensitivity and 

specificity (in logit scale).We also consider the heterogeneity in correlation where the 

correlation parameters (ρ01, ρ02, ρ12) take the values of (0, 0, −0.6) in half of the studies and 
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take different values of (0.6, −0.6, −0.6) in the remaining half. Under this setting, the 

likelihood of the FL method is mis-specified, whereas the likelihood of the CL method is not 

because the CL method does not assume homogeneous correlation across studies. For each 

simulation setting, we generate 1, 000 samples. The samples are simulated in R (R 

Development Core Team, Version 2.14.1). The CL method is implemented in R by using the 

glmmML package39. The FL method is implemented in SAS where adaptive Gaussian 

quadrature method in the NLMIXED procedure is used to maximize the full likelihood. 

Programming codes are provided in Section 6 of the supplementary material.

Figure 1 summarizes the empirical bias and the coverage of the 95% Wald-based confidence 

intervals of estimates from the FL and CL methods based on 1, 000 samples when the 

number of studies is 30. The parameters of interest are the overall disease prevalence (Prev), 

test sensitivity (Se) and specificity (Sp), and positive and negative predicted values (PPV 

and NPV). We note that PPV and NPV are functions of parameters (β0, β1, β2) as described 

by equation (3). Delta method is used to derive their standard errors. From the left two 

panels of Figure 1, the FL method gives approximately unbiased estimates and its coverage 

is close to the nominal level when the correlations are zero, i.e., (ρ01, ρ02, ρ12) = (0, 0, 0). 

When the correlations become stronger, the estimates from the FL method are still 

approximately unbiased, but the coverage of the confidence intervals deteriorates (range of 

coverage: 76.3 ~ 95.1%). Furthermore, when the correlation structures are heterogeneous 

across studies (denoted as “heterogeneous”), the bias of the FL method becomes larger and 

its coverage is below 70%. In contrast, the CL method provides approximately unbiased 

estimates and confidence intervals with better coverage under all correlation structures 

considered (range of coverage: 85.3 ~ 95.3%), including the scenario with heterogeneous 

correlation structures. We note that the non-convergence rate (i.e., number of iterations 

reaches the default number of 200 iterations while the relative gradient convergence 

criterion < 10−10 is not satisfied) for the FL method increases as the degree of correlation 

increases, and varies from 10.9% to a substantial proportion of 47.6%, whereas the non-

convergence rate for the CL method is less than 1.5% under all settings considered. We also 

calculate the relative efficiency (RE) of CL method, defined as the square of the empirical 

standard error of the estimates from the CL method, divided by that of the FL method. The 

range of RE under all correlation structures except the heterogeneous one is 76.6% to 

122.2%. The efficiency loss is expected because the FL method is asymptotically the most 

efficient method, while the efficiency gain can be explained by the advantage of not 

estimating the correlation parameters in the CL method. There is a 82 to 109% efficiency 

gain in the CL method under heterogeneous correlation structure setting due to the better fit 

of the CL method compared to the FL method. We also conducted simulations for scenarios 

with m = 8 and 50 studies, and similar findings are obtained in that the CL method has better 

coverage, avoids the non-convergence problem and is robust to the heterogeneous 

correlation structures. We note that when the number of studies is small (e.g., m = 8), 

although the CL method has substantially better coverage than the FL method (range of 

coverage: 77.5 ~ 89.4% versus 29.3 ~ 88.7%), bootstrap standard errors from the CL method 

should be used for more satisfactory coverage. The detailed simulation results are 

summarized in Tables S3 ~S8 in the supplementary material.
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Figure 2 summarizes the simulation results when study-level covariates are available and the 

number of studies is 30. In this case, the regression coefficients are parameters of interest. 

The CL method has slightly larger bias but much better coverage than the FL method. The 

range of the non-convergence rate of the FL method is 10.1 to 12.7%; whereas the non-

convergence rate of the CL method is less than 1.5%. The range of the RE of the CL method 

is 55.9 to 116.6%. There is a substantial loss of efficiency for the CL method when the 

correlations are high (i.e., ρ01 = 0.8, ρ02 = −0.8 and ρ12 = −0.8). However, the 

corresponding coverage of β00 is 90.6% for the CL method and 78.9% for the FL method 

when the RE is 56.0%. This suggests that choosing the FL method over the CL method in 

this setting to achieve better efficiency comes at the cost of a much lower coverage. A 

similar finding is obtained when the number of studies is 50; these results are summarized in 

Tables S9 ~S10 in the supplementary material.

To investigate the robustness of both methods to mis-specifications of the model, we 

generate study-specific prevalence, sensitivity and specificity from a trivariate t-distribution 

with 4 degrees of freedom. This setting mimics the situation in which the distributions have 

heavier tails than those of the normal distributions. Under this setting, both the likelihood of 

the FL method and the likelihood of the CL method are mis-specified. Figure 3 summarizes 

the bias and coverage from 1, 000 simulations for various correlation structures when the 

number of studies is 30. The simulation results suggest that despite the mis-specification, the 

bias of both methods is in a reasonable range. The only exception is that the FL method has 

relatively large biases under heterogeneous correlation structures. The coverage of the FL 

method is close to the nominal level only when the correlations are small, and deteriorates 

quickly as the correlation increases. In contrast, the CL method has better coverage in all 

settings considered. Similar findings are obtained when the number of studies is 8 or 50. 

These results are summarized in Tables S11 through S16 in the supplementary material.

In summary, both FL and CL methods perform well when the number of studies is relatively 

large and the correlations are relatively small, and the CL method outperforms the FL 

method when the number of studies is relatively small, or when the correlations are 

relatively large. In addition, the CL method has certain robustness to heterogeneous 

correlation structures, and model mis-specifications. The CL method maintains relatively 

high efficiency except that the correlations are exceptionally high, which is consistent with 

the previous findings in settings of longitudinal data analyses40,41,42,25. Considering these 

performances of the CL method, and its computational advantages, we recommend the use 

of the CL method for practical investigators.

4 A systematic review of modern diagnostic imaging modalities for 

surveillance of melanoma patients

We apply the proposed model and the CL method to a systematic review of published 

studies which examined diagnostic modality characteristics for melanoma. This systematic 

review contains 98 studies that had obtained data from 10, 528 patients with melanoma 

between January 1, 1990 and June 30, 200922. As mentioned, the available studies includes 

41 case-control studies and 57 cohort studies. To effectively combine the case-control and 

cohort studies, we fit the model described by equations (1) and (2). A sequence of nested 
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models are fitted where the smallest model (referred to as the baseline model) includes a 

variable for stage of cancer (i.e., 1 for regional and 0 for distant), and three dummy variables 

for types of imaging modalities with PET-CT as the reference group. Larger models were 

considered by including interaction terms between type of cancer and imaging modalities. 

For the CL method, modifications of Akaike's information criterion (AIC) and Bayesian 

information criterion (BIC) have been proposed in the literature43,44. Specifically, the 

composite likelihood version of AIC is defined as43

(6)

where , Ĵ is the estimated covariance matrix of ∂Lc(θ0, θ1, θ2)/∂(θ0, 

θ1, θ2) evaluated at  and Ĥ is −∂2 log Lc(θ0, θ1, θ2)/∂(θ0, θ1, θ2)2 evaluated at 

. In Section 2 of the supplementary materials, we show that for our model 

converges with increasing m to the number of parameters in the model. The composite 

likelihood version of BIC is defined as44

where P is the number of model parameters, and γ is a tuning parameter and is taken as 0 

when P is relatively small compared to the number of studies as suggested in Gao and 

Song44. The results of fitting the sequence of nested models are summarized in Table 2. 

Both composite likelihood versions of AIC and BIC suggest the use of the baseline model 

with 18 model parameters. To investigate the model assumptions, we start with checking the 

normality assumption on the logit prevalence, sensitivity and specificity. QQ-plots are 

provided in Figure S3 of the supplementary material. Test of normality is conducted by 

Shapiro-Wilk test45 for each subgroup and the p-values are all greater than 0.05, suggesting 

that the normality assumption is appropriate. The sequence of models in Table 2 implicitly 

assume equal variance in logit prevalence, sensitivity and specificity for different subgroups. 

To check such assumption, we apply the Bartlett's test46 for the homogeneity in variances 

across subgroups. The test suggests that homogeneity assumption is appropriate for logit 

prevalence and specificity, but not for logit sensitivity (p < 0.001). To study the sensitivity 

of the results from the baseline model (as recommended by both CL-AIC and CL-BIC) to 

the equal variance assumption, we conduct an alternative analysis within each of the 

subgroups (stratified by stage of cancer, and type of imaging modality). And we found that 

the results from the subgroup analyses are generally similar to those from the baseline 

model. There are only 2 case-control studies and 1 cohort study in the subgroup of CT for 

regional cancer. In this subgroup, the CL method cannot be applied since the model for the 

metastasis prevalence contains two parameters and the estimation requires at least two 

cohort studies. Instead, the bivariate GLMM was fitted to obtain estimates of diagnostic 

sensitivity and specificity, but not metastasis prevalence, PPV, nor NPV.

Figure 4 presents the results from the subgroup analyses with CL method on the overall 

metastasis prevalence, diagnostic sensitivity and specificity, PPV and NPV, and the 
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associated 95% confidence intervals for the four diagnostic imaging modalities. The 

confidence intervals are symmetric around the estimates in the logit scale and asymmetric in 

the original scale. The results from fitting bivariate GLMM are displayed as the dashed lines 

in Figure 4 for comparison. In general, our results are consistent with those from bivariate 

GLMM, with respect to sensitivity and specificity. Here we highlight selected results of 

diagnostic sensitivities and specificities, and the PPV and NPV. For the surveillance of 

regional lymph node metastasis, US has the highest sensitivity (68%; 95% CI = 44% to 

85%) and specificity (98%; 95%CI = 96% to 99%) among all four imaging modalities. On 

the other hand, patients diagnosed by PET-CT or PET have higher estimated metastasis 

prevalence and hence higher estimated PPV, compared to patients diagnosed by US. For the 

surveillance of distant lymph node metastasis, PET-CT has the highest sensitivity (87%; 

95% CI = 75% to 94%), specificity (94%; 95% CI = 88% to 97%), PPV (93%; 95% CI = 

83% to 97%) and NPV (87%; 95% CI = 83% to 91%). There is a significant heterogeneity 

in prevalence of metastasis across different imaging modalities and stage of metastasis 

(regional vs distant). These differences are potentially meaningful in practice. Patients with 

distant metastasis have higher PPV than patients with metastasis that is confined to regional 

lymph nodes. The results of this systematic review of imaging modalities used to stage 

melanoma suggest that US is a more accurate imaging modality for diagnosing lymph node 

involvement and PET-CT is the preferred imaging modality to diagnose distant metastasis. 

In addition, due to the low metastasis prevalence among patients for whom lymph node 

metastasis is diagnosed by US, a positive test result from US yields the lowest PPV among 

all imaging modalities.

As we know, a univariate summary measure of diagnostic tests may not be su cient, and the 

use of bivariate summary measures is preferred when describing diagnostic tests such as 

(sensitivity, specificity) or (PPV, NPV). Additionally, estimates of these bivariate summary 

measures are often correlated. Therefore, separate confidence intervals that do not account 

for such a correlation may be misleading19, and confidence regions should be used. Figure 5 

shows the summary points and 95% confidence regions for sensitivity versus 1 minus 

specificity (upper left panel), PPV versus NPV (upper right panel), sensitivity and 

specificity versus metastasis prevalence (middle panels), and predictive values versus 

metastasis prevalence (lower panels) without stratification on stages of metastasis (i.e. 

regional or distant). These regions are calculated as Wald-based confidence regions and are 

not elliptical because they are in the original scale. The elliptical confidence regions in the 

logit scale are displayed in Figure S4 in the supplementary material. Specifically, following 

Douglas47, the parametric representation of the boundary of the elliptical Wald-type 

confidence region for sensitivity and specificity (in logit scale) is

where sS1 and sC1 are the estimated standard errors ofŜ1 andĈ1 , r is the estimate of their 

correlation, ϕ runs from 0 to 2π, and f2,n−2;α is the upper 100 % point of the F distribution 

with degrees of freedom 2 and n − 2, and n is the number of studies. For joint confidence 

regions of PPV and NPV (or pairs of other measures), delta method is used to obtain the 

covariance matrix.
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As suggested by the upper left panel, there is more variation in sensitivity than in specificity. 

This is because the number of true positives is much less than the number of true negatives. 

The PPV and NPV tend to have similar variations as seen in the upper right panel. The 

middle panels suggest that the confidence region covers a larger range of prevalence than 

specificity, which suggests more variation in estimated prevalence than specificity. Such a 

finding is consistent with that from the upper left panel of Figure 4, where a significant 

heterogeneity in the estimated metastasis prevalence is found. As seen in the lower panels, 

the PPV and NPV tend to have similar variation as compared to the prevalence. In summary, 

given the wide ranges of those confidence regions, it suggests that more studies are needed 

to increase the precision of those estimates, and to reach definitive conclusions comparing 

those imaging modalities.

Figure 6 shows the estimated PPV and NPV with their pointwise 95% confidence intervals 

based on the overall estimates of sensitivity and specificity for each of imaging modalities. 

This figure is particularly useful for clinicians who want to obtain the PPV and NPV for a 

different cohort of patients under investigation. The solid vertical dashed lines indicate the 

estimated prevalence of metastasis for patients diagnosed by the imaging modality. For 

example, the estimated prevalence for patients diagnosed by US is 15%, and the estimated 

overall PPV and NPV are 85% (95% CI: 80%, 88%) and 95% (95% CI: 89%, 98%) 

respectively. In contrast, the estimated overall PPV and NPV for patients diagnosed by CT 

are 79% (95% CI: 76%, 82%) and 78% (95% CI: 71%, 83%) with estimated prevalence 

being 42%. This suggests that US is more useful than CT in ruling out disease and detecting 

disease for patients diagnosed by the corresponding imaging modality. We note that we did 

not stratify by stage of cancer in this analysis as the number of studies stratified by both 

stage of cancer and type of imaging modality is very limited.

5 Discussion

Multivariate meta-analysis gains its popularity recently, especially in systematic review of 

diagnostic tests48. In this paper, we proposed a hybrid multivariate random effects model for 

study of diagnostic test accuracy. There are two major advantages of multivariate meta-

analysis over univariate meta-analysis. First, unlike univariate meta-analysis, multivariate 

meta-analysis can provide valid inference on functions of overall population parameters, 

such as PPV and NPV. Secondly, by jointly modeling the study-specific effects, multivariate 

meta-analysis is expected to have more efficiency than univariate meta-analysis in terms of 

parameter estimation. On the other hand, multivariate meta-analysis may suffer the non-

convergence problem and computational difficulties, especially when the number of studies 

is relatively small, a common situation in practical meta-analysis.

In this paper, we propose the composite likelihood inference procedure, which can be 

thought as a procedure between multivariate and univariate meta-analyses, inheriting the 

ability of multivariate meta-analysis to infer functions of overall parameters while not 

suffering from their limitations. Through simulation studies, we find that the composite 

likelihood inference does not suffer severe efficiency loss except the situations with 

exceptionally high correlations. The composite likelihood inference is also more robust than 

the full likelihood inference to model mis-specifications. Therefore, the composite 
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likelihood method can serve as a useful alternative in multivariate meta-analysis of 

diagnostic tests.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Bias and coverage for estimated disease prevalence, sensitivity, specificity, PPV and NPV 

from the full likelihood (FL) and the composite likelihood (CL) methods. The true overall 

disease prevalence is 0.2, sensitivity is 0.9, and specificity is 0.9. The data are generated 

from bivariate GLMM (for case-control studies) and trivariate GLMM (for cohort studies). 

Results are summarized from 1000 simulations. The x-axis represents for the different 

settings of pairwise correlations among study-specific prevalence, sensitivity and specificity 

(in logit scale).
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Figure 2. 
Bias and coverage for estimated meta-regression parameters in equation (2) from the full 

likelihood (FL) and the composite likelihood (CL) methods. The true values of regression 

parameters are (β00, β01, β02) = (0.173, −1.295, 0), (β10, β11, β12) = (1.712, −1.266, 0) and 

(β20, β21, β22) = (1.912, 1.263, 0). The data are generated from bivariate GLMM (for case-

control studies) and trivariate GLMM (for cohort studies). Results are summarized from 

1000 simulations. The x-axis represents for the different settings of pairwise correlations 

among study-specific prevalence, sensitivity and specificity (in logit scale).
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Figure 3. 
Bias and coverage for estimated disease prevalence, sensitivity, specificity, PPV and NPV 

from the full likelihood (FL) and the composite likelihood (CL) methods. The true overall 

disease prevalence is 0.2, sensitivity is 0.9, and specificity is 0.9. The data are generated 

from bivariate t-distribution (for case-control studies) and trivariate t-distribution (for cohort 

studies). Results are summarized from 1000 simulations. The x-axis represents for the 

different settings of pairwise correlations among study-specific prevalence, sensitivity and 

specificity (in logit scale).
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Figure 4. 
Upper panels: estimated metastasis prevalence, sensitivities and specificities and 95% 

confidence intervals of four diagnostic imaging modalities using the composite likelihood 

method; Lower panels: estimated PPVs and NPVs and 95% confidence intervals of four 

diagnostic imaging modalities using the composite likelihood method. Solid lines: 

confidence intervals estimated from the CL method. Dashed lines: confidence intervals 

estimated from the bivariate GLMM method.
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Figure 5. 
Summary points and 95% confidence regions of sensitivity versus 1-minus-specificity (up 

per left panel), PPV versus NPV (upper right panel), sensitivity and specificity versus 

metastasis prevalence (middle panels), predictive values versus metastasis prevalence (lower 

panels) for four diagnostic imaging modalities. Filled circle: summary point; solid line: 

boundary of 95% confidence region for the summary point.
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Figure 6. 
The overall PPV and NPV plot for a given prevalence based on the meta-analysis without 

study-level covariate using CL method. Solid and dotted lines denote the estimate and 95% 

confidence interval. Dashed vertical lines denote the estimated overall prevalence.
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Table 1

Possible data outcomes and probabilities for study i (i=1, . . ., m). In each cell, the first row shows the 

observed count, the second row shows the corresponding conditional probability of test outcome given disease 

status in case-control studies, or the corresponding probability of cell memberships in cohort studies.

Disease Status by a Gold Standard Test (D)

Diagnostic test (T) 1a. Case-control studies (i=1, 2, . . ., m1) 1b. Cohort studies (i=m1+1, m1+2, . . ., m)

Disease (+) Non-disease (−) Disease (+) Non-disease (−)

Positive (T+) ni11

Sei

ni10

1 – Spi

ni11

πiSei

ni10

(1 – πi) (1 – Spi)

Negative (T−) ni01

1 – Sei

ni00

Spi

ni01

πi (1 – Sei)
ni00

(1 – πi)Spi

Total ni1

1
ni0

1
n i1
π i

ni0

1 – πi
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Table 2

Model selection using the CL-AIC and CL-BIC when analyzing the data in Xing et al. (2011).

Model ds
∗ −2logCL CL-AIC CL-BIC

baseline 18 1537 1573 1620

+ I(Regional)*I(US) 21 1534 1576 1632

+ I(Regional)*I(CT) 21 1535 1577 1632

+ I(Regional)*I(PET) 21 1534 1576 1632

+ I(Regional)*I(US) + I(Regional)*I(CT) 24 1532 1580 1643

+ I(Regional)*I(US) + I(Regional)*I(PET) 24 1529 1577 1641

+ I(Regional)*I(CT) + I(Regional)*I(PET) 24 1533 1581 1644

+ I(Regional)*I(US) + I(Regional)*I(CT) + I(Regional)*I(PET) 27 1525 1579 1650

baseline: meta-analysis model with study-level covariates of I(Regional) + I(US) + I(CT) + I(PET).
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