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Abstract
Radioadaptive response (RAR) in mammalian cells refers to the phenomenon where a low-

dose ionizing irradiation alters the gene expression profiles, and protects the cells from the

detrimental effects of a subsequent high dose exposure. Despite the completion of numerous

experimental studies on RAR, the underlying mechanism has remained unclear. In this

study, we aimed to have a comprehensive investigation on the RAR induced in the AG01522

human fibroblasts first exposed to 5 cGy (priming dose) and then followed by 2 Gy (challenge

dose) of X-ray through comparisons to those cells that had only received a single 2 Gy dose.

We studied how the priming dose affected the expression of gene transcripts, and to identify

transcripts or pathways that were associated with the reduced chromosomal damages (in

terms of the number of micronuclei) after application of the challenging dose. Through the

mRNA and microRNAmicroarray analyses, the transcriptome alteration in AG01522 cells

was examined, and the significantly altered genes were identified for different irradiation pro-

cedures using bioinformatics approaches. We observed that a low-dose X-ray exposure pro-

duced an alert, triggering and altering cellular responses to defend against subsequent high

dose-induced damages, and accelerating the cell repair process. Moreover, the p53 signaling

pathway was found to play critial roles in regulating DNA damage responses at the early

stage after application of the challenging dose, particularly in the RAR group. Furthermore,

microRNA analyses also revealed that cell communication and intercellular signaling trans-

duction played important roles after low-dose irradiation. We conclude that RAR benefits

from the alarm mechanisms triggered by a low-dose priming radation dose.
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Introduction
Radioadaptive response (RAR) was first observed in cultured human lymphocytes 30 years ago
[1],. This protective phenomenon is initiated by a low radiation dose (called priming dose and
usually less than 200 mSv), which will alter gene expression profiles in cells and tissues [2–4] to
induce protection against a subsequent high radiation dose (called challenging dose) [1, 5].
RAR has been widely observed in mammalian systems [6–8] such as mouse embryo cells [9],
Chinese hamster fibroblasts [10], rabbit lymphocytes [11], hepatoma cell lines [12], U1-Mel
human malignant melanoma cells [13], mouse germ cells [14, 15] and rat bone marrow cells
[16], and can reduce cytogenetic damages, enhance cell survival and reduce tumor incidence
[17–21].

RAR did not only occur in vitro but also in vivo. For examples, RAR was observed in mouse
models [14, 22] as well as in the zebrafish embryo model [23–29]. The mice pre-exposed to
low-dose radiation showed reduced chromosomal damages upon exposure to high-dose radia-
tion, with the extent of reduction depending on the dose rate and the interval between expo-
sures. Similarly, zebrafish embryos pre-exposed to low-dose radiation or the low-dose
irradiated embryo conditioned medium showed fewer apoptotic signals when they were ex-
posed to a subsequent high-dose radiation.

Nevertheless, our understanding on the underlying mechanism(s) of RAR is still fragmented
and incomplete. Sometimes, there were conflicting results from experiments using different
cell types and irradiation procedures [30]. In general, it is believed that the repair processes are
enhanced in the “primed” cells (those having exposed to a priming dose) when compared to
the “unprimed” cells. Proteins such as p53, protein kinase C, p38-MAPK, PARP, NF-κB, AP-1,
phospholipase Cg2 (PLCG2) and cytosolic epoxide hydrolase (EPHX2) had been proposed [3,
30–32] as potential radiation biomarkers or molecular targets for RAR. For example, the tran-
scription factor HNF4A was suggested to respond to low-dose radiation [33], as it activated
specific target genes in response to oxidative stress [34]. On the other hand, high-dose radia-
tion promoted apoptosis to eliminate cells with considerable DNA and other damages, fol-
lowed by promoted growth and survival [35]. Although radiation responses are results of
multiple signaling pathways, the transcriptional responses usually involve p53 and NF-κB net-
works. For example, TP53 was involved in the response to high-dose radiation, which however
showed less response after low-dose exposures [36–38].

Microarray analysis is one of the most comprehensive approaches to identify gene expres-
sion and has led to significant advances in the knowledge of radiation-induced responses. Until
now, however, limited studies have been performed to assess the RAR at the transcriptional
level. Previous researchers observed RAR in three human lymphoblastoid cell lines and associ-
ated TP53-related genes with RAR [39]. Other studies focused on the changes in gene expres-
sion following direct high- or low-dose radiation [35, 40, 41] or following the induction of
bystander effects [42, 43]. However, there was insufficient systematic analysis in most of the
studies. This prompted us to perform systematic studies in order to understand the underlying
mechanisms for RAR.

The critical factors involved in RAR induction were the priming dose, challenging dose and
time interval between the applications of the two doses. In general, RAR responses are rarely
induced when the priming dose is over 200 mGy, and are almost never induced when it is over
500 mGy [44]. Prior to this research, we studied various combinations of doses and time inter-
vals, and found that a combination of a priming dose of 5 cGy, a challenging dose of 2 Gy dose
and a time interval of 12 could induce a significant RAR response in AG01522 cells. In the
present study, we focused on mRNA and microRNA microarray studies, and aimed to charac-
terize the transcriptome for RAR in AG01522 human skin fibroblasts and to examine the
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functional regulatory networks at the genetic level. AG01522 cells were exposed at a specific
time point to a challenging dose of 2 Gy in the RAR group, or a priming dose of 5 cGy in the
low-dose group. The micronucleus (MN) assay was also employed to quantify the radiation-in-
duced chromosome aberrations. The results could provide useful information for identifying
biomarkers of RAR, and thus help us better understand RAR itself and its potential implica-
tions on radiotherapy procedures.

Materials and Methods

Cell Culture
Human skin fibroblast AG01522 cells, was gifted by Dr. Kevin Prise (Centre for Cancer Re-
search & Cell Biology, Queen's University Belfast, United Kingdom) which were obtained from
the Coriell Cell Repositories at the Coriell Institute for Medical Research (Camden, NJ), previ-
ously employed by several research groups to demonstrate RAR [45], were used in our experi-
ments. The AG01522 cells were cultured in modified α-MEM (Hyclone, Logan, US)
supplemented with 20% fetal bovine serum (FBS) (Hyclone, Logan, US), 1% penicillin/strepto-
mycin, 1% glutamine and 1% non-essential amino acids mix (Sigma-Aldrich, St. Louis, US).
All cultures were grown in a humidified 5% CO2 atmosphere at 37°C. All procedures involving
human cell line use were approved by the Hefei Institutes of Physical Science Committee (Chi-
nese Academy of Sciences).

X-ray Irradiation
Irradiation was provided by an X-ray radiation machine (XSZ-220/20, Kangjia and Dandong,
China). Briefly, the cells were exposed to a priming dose of 5 cGy (60 kV, 4.2 mA and 10.5
cGy/min), or a challenging dose of 2 Gy (120 kV, 12.2 mA and 201.5 cGy/min), or a priming
dose of 5 cGy followed by a challenge dose of 2 Gy (5 cGy + 2 Gy) 12 h later. The samples were
then collected for subsequent experiments performed at 3, 6, 12 and 24 h after the last irradia-
tion. Sham-irradiated samples covered with a lead mask were used as control samples.

MN assay
MN tests were performed to assess the chromosome aberrations in each group. Briefly, the
cells were trypsinized and digested at 3 h after irradiation, and 5×104 cells were seeded in every
well of the 6-well cell culture plate. Cytochalasin B (Sigma-Aldrich, St. Louis, US) was added
into the culture medium with a final concentration of 2.5 μg/ml and the cells were then re-
turned into the incubator. After 48 h, the cells were rinsed with PBS solution, fixed in 2% para-
formaldehyde for 20 min, stained with acridine orange for 3 min and rinsed with PBS solution
for 10 min. At least 1000 binucleate cells were examined and the number of cells with micronu-
clei was scored in each sample under a fluorescence microscope (Leica DMI 4000B, Germany).
The frequency of cells with micronuclei (FMN) was calculated as: FMN = the number of cells
with micronuclei / the number of binucleate cells examined. Statistical analysis was performed
on the means of the data obtained from three independent experiments. Statistical significance
was assessed through t-rests or one-way ANOVA where appropriate.

RNA Preparation
The collected cell pellets were lysed and extracted by TRizol (Life technologies, Carlsbad, CA,
US) following the manufacturer’s instructions, and checked for RNA Integrity Number (RIN)
to assess the RNA integrity by an Agilent Bioanalyzer 2100 (Agilent technologies, Santa Clara,
CA, US).
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Qualified total RNA was further purified using the RNeasy micro kit (QIAGEN, GmBH,
Germany) and genomic contamination was removed by RNase-Free DNase Set (QIAGEN,
GmBH, Germany). Small molecular RNA was extracted using the mirVana miRNA Isolation
Kit (Ambion, Austin, TX, US) following the manufacturer’s instructions. The purified RNA
was stored at—80°C.

Microarray Hybridization
For Affymetrix PrimeView Human Gene Expression Chip:

The total RNA was amplified, labeled and purified using the GeneChip 3’IVT Express Kit
(Affymetrix, Santa Clara, CA, US) following the manufacturer’s instructions to obtain biotin-
labeled cRNA. After hybridization on Human PrimeView Arrays for 16 h at 45°C and 60 rpm
in the Hybridization Oven 640 (Affymetrix, Santa Clara, CA, US), slides were washed and
stained with a Fluidics Station 450 (Affymetrix, Santa Clara, CA, US). Scanning was performed
on a seventh-generation GeneChip Scanner 3000 (Affymetrix, Santa Clara, CA, US). Affyme-
trix GCOS software was used for image analysis to generate raw intensity data.

For Agilent Human miRNA v19.0 Chip (Catalog ID: G4872A-046064):
Each miRNA v19.0 slide was hybridized with 100 ng Cy3-labeled RNA using the miRNA

Complete Labeling and Hyb Kit (Agilent technologies, Santa Clara, CA, US) in the Hybridiza-
tion Oven (Agilent technologies, Santa Clara, CA, US) at 55°C, 20 rpm for 20 h according to
the manufacturer’s instructions. After hybridization, slides were washed with the Gene Expres-
sion Wash Buffer Kit (Agilent technologies, Santa Clara, CA, US). Slides were scanned by Agi-
lent Microarray Scanner (Agilent technologies, Santa Clara, CA, US) using the Feature
Extraction software 10.7 (Agilent technologies, Santa Clara, CA, US) with default settings.

Microarray data analysis for differential expression gene (DEG)
All microarray data analysis was performed in R (http://www.r-project.org/) with multiplex
packages involving Affymtriex and Angilent platforms for data analysis and statistical analysis
in Bioconductor. The initial data quality was assessed by the background level, RNA quality,
and pair-wise correlation among the samples.

For the PrimeView Chip, the customized CDF file (version 17, ENTREZG) downloaded
from the BrainArray website was performed in probe set mapping [46, 47]. IQR was used for
raw data filtering with the genefilter package; with the threshold set to remove intensities lower
than 20% of the IQR global intensity. Normalization was performed with the RMA algorithm
which included the global background adjustment and quantile normalization. Empirical
Bayes moderation of the standard error and Benjamini and Hochberg false-discovery rate cor-
rection for multiple testing were employed, as implemented in the limma package [48]. Differ-
entially expressed genes were identified with threshold fold changes of more than 1.2 and p
values smaller than 0.05.

For the miRNA chip, the quality and comparability of samples before and after normaliza-
tion were further checked by statistics, intensity boxplots and MA figures. The raw data were
normalized with quantile normalization to ensure comparability across samples. The probes
corresponding to the same miRNA were summarized for each sample by the median of the re-
spective normalized expression values. To identify miRNAs that were differentially expressed,
we applied the empirical Bayes moderated t-statistics implemented in the limma package
(p< 0.05). Statistical models were fitted to the data, and comparisons of interest were extracted
as contrasts. Unsupervised hierarchical clustering with complete linkage, using both Euclidean
and (1-Pearson correlation) as distance metrics, was applied to cluster the samples according
to their miRNA expression levels.
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Venn diagrams were used to select the miRNAs specific to RAR. The three-way Venn dia-
gram indicated the numbers of miRNA identified as significant (p< 0.05) from the 5 cGy, 2
Gy and (5 cGy + 2 Gy) groups. The numbers inside the intersections of circles denote the num-
bers of miRNAs significant for two or three of the groups.

Gene set enrichment analysis (GSEA)
Gene set enrichment analyses (GSEA) for the samples from the 5 cGy, 2 Gy, (5 cGy + 2 Gy)
groups and RAR samples were carried out using the GSEA software (http://www.
broadinstitute.org/gsea/index.jsp) at the gene level (Collapse dataset to gene symbols = false)
with 1,000 gene set permutations. The genes in the expression datasets were ranked using the
Signal2Noise metric (comparison with each time point and baseline) and Pearson metric
(time-course dataset) following GSEA recommendations for our sample sizes. Significance was
defined at the False Discovery Rate (FDR) q-value = 0.25 level. Some results out of the FDR
threshold, NOM p-value = 0.01, were considered alternatively. The Cytoscape (v 3.1.1) plugins
Enrichment Map (v 2.0) [49] andWord Cloud (v 2.0.1) were used to visualize the GSEA net-
works. The cutoff for the overlap coefficient was set to 0.3, FDR q-value to 1 and p-value to
0.01.

Gene ontology categories analysis
To link our data to prior knowledge we performed gene ontology categories analysis by using
the Cytoscape (http://www.cytoscape.org/) plug-in BiNGO (v2.44)[50]. To include only signifi-
cant results, the FDR threshold was set to 0.05.

Pathway enrichment analysis
Pathway enrichment analysis was performed using the Cytoscape plug-in ClueGO (v2.1.1) and
CluePedia (v1.1.1) [51, 52]. The KEGG, REACTOME andWikiPathways databases were em-
ployed. The Benjamini and Hochberg false-discovery rate was set to 0.05.

qRT-PCR analysis of mRNA expression
To validate the differentially expressed mRNAs by real-time PCR, 1 μg of the total RNA was re-
verse-transcribed using the One Step PrimeScript RT-PCR Kit (TaKaRa, Japan). Quantitative
RT-PCR was carried out by using a Light Cycler 480 II instrument (Roche, Indianapolis, IN).
The primer sequences used for RT-PCR can be found in the S1 Table. Fold changes in gene ex-
pression were calculated using the ΔΔCt method.

Western blot
In this experiment, AG01522 cells were exposed under each strategy and harvested at 12, 24 or
48 h post exposure. The cells were rinsed once with ice-cold PBS, centrifuged at 230 g for 5 min
and lysed in ice-cold lysis buffer containing protease and phosphatase inhibitors (Thermo Fish-
er Scientific, Rockford, IL, USA) and then 2 mM phenylmethanesulfonyl fluoride (PMSF) was
added. Subsequently, the cells were kept on ice for 30 min and vortexed every 10 min to ensure
a complete cell lysis. Lysates were centrifuged at 10000 rpm. The supernatants were isolated
and the protein concentration was adjusted in all samples prior to heating at 95°C for 5 min in
1× loading buffer (0.25 M Tris, 2% SDS, 10% glycerol, 2% β-mercaptoethanol, 0.004% brom-
phenolblue) and then subjected to SDS-PAGE (sodium dodecyl sulfate poly-acrylamide gel
electrophoresis) on precast 12% PAGE gels. The proteins were blotted onto PVDF membranes.
Subsequently, unspecific binding was blocked with 0.5% nonfat milk powder in Tris-buffered
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saline (20 mM Tris, 13.7 mMNaCl) containing 0.1% Tween (TBS-T) for 30 min. After this, the
membrane was incubated with the corresponding primary antibody, p21/WAF1 (Millipore)
(#05–345), Phospho-p38 MAPK (#4511) and Phospho-NF-κB p65 (#3036) (Cell Signaling,
Beverly, MA, USA) with appropriate dilution at 4°C overnight. Incubation was followed by
three washing steps with TBS-T and incubation with horseradish peroxidase-coupled second-
ary antibodies 1:1000 for 1 h at room temperature. After three washing steps with TBS-T, the
membranes were visualized by using the Western Blotting Substrate system. The same mem-
branes were stripped and relabeled with antibodies directed against the corresponding total
protein as well as β-tubulin as a loading control.

miRNA and their targets
Three web databases of miRNA target prediction were used in this research. One was the miR-
Base::Targets (release 5) database (http://microrna.sanger.ac.uk/targets), which used the mi-
Randa algorithm to predict miRNA targets [53]. Another database was the TargetScan (release
4.1) (http://www.targetscan.org), which provided the prediction results computed by the Tar-
getScanS algorithm [54, 55]. The third database was miRGen, which incorporated algorithms
including TargetScan, miRanda and PicTar (http://www.diana.pcbi.upenn.edu/cgibin/
miRGen).

qRT-PCR analysis of miRNA expression
To validate the differentially expressed miRNAs by real-time PCR, 1 μg of small RNA was used
for reverse transcription with the miScript II RT Kit (QIAGEN, GmBH, Germany). Quantita-
tive RT-PCR was carried out using a Light Cycler 480 II instrument (Roche, Indianapolis, IN).
The PCR primers for hsa-let-7b-3p, hsa-miR-1185-5p, hsa-miR-1236-5p, hsa-miR-222-5p,
hsa-miR-3659 hsa-miR-4535, hsa-miR-492, hsa-miR-877-5p and U6 were synthesized and
listed in S2 Table miScript SYBR Green PCR Kit (QIAGEN, GmBH, Germany) were used in
the real time PCR reaction according to the manufacturer’s suggested protocols. The relative
gene expression was calculated using the ΔΔCt method based on the U6 RNA levels.

Results

MN induction in RAR
As shown in Fig 1, a low-dose irradiation (5 cGy) slightly increased the MN yield (4.77%) com-
pared with the control (3.91%) while a high-dose irradiation (2 Gy) significantly enhanced the
MN yield (9.88%). However, a priming radiation dose of 5 cGy applied at 12 h beforehand re-
duced the amount of chromosomal aberrations induced by the subsequent challenging dose of
2 Gy by about one third. These results were similar to those reported previously [45], and con-
firmed significant RAR in this cell model. As such, this cell model could be applied in
microarray profiling.

Gene expression profiles
The gene profiles for the single dose groups i.e., those subjected to 5 cGy (top panel of Scheme
1 in Fig 2) or 2 Gy (middle panel of Scheme 1 in Fig 2) irradiation at different time points after
irradiation, at 0 (baseline), 3, 6, 12 and 24 h after irradiation were examined). Similarly, the
gene profiles for the (5 cGy + 2 Gy) groups only after application of the challenging dose were
examined (illustrated in the bottom panel of Scheme 1 in Fig 2). Finally, the gene profiles for
the RAR groups, i.e., those subjected to a priming dose of 5 cGy applied at four different time
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points (viz., 0, 3, 6 and 12 h) and then subjected to a challenging dose of 2 Gy at 12 h after the
priming dose, were examined, the procedures of which are shown as Scheme 2 in Fig 2.

After exposures to the desired radiation doses, the numbers of differentially expressed genes
reached a maximum at 24 h post irradiation (Table 1), with fewer genes responding at 6 or 12
h and no genes with FDR< 10% at 3 h. Due to the limited numbers or absence of genes signifi-
cantly expressed at early time points for each group, we relaxed the FDR requirement for all
data set analysis in the limma function, by choosing an unadjusted p value of 0.05 as the thresh-
old. The heat maps of different expression genes are shown in S1 Fig.

Furthermore, we also validated the gene profile results by qRT-PCR method for a number
of genes. The qPCR results confirmed the microarray results in terms of the trends in gene

Fig 1. The RAR effect revealed by the micronucleus assay. The 0 Gy group was a sham control, without
any radiation treatment. The 5 cGy and 2 Gy groups were irradiated with 5 cGy and 2 Gy doses, respectively.
The (5 cGy + 2 Gy) group was irradiated with a priming dose of 5 cGy, followed by a challenging dose of 2 Gy,
with a 12 h interval between application of the two doses.

doi:10.1371/journal.pone.0123316.g001

Fig 2. Themicroarray analysis timeline.

doi:10.1371/journal.pone.0123316.g002
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changes (as shown in S3 Table). These data have been deposited in NCBI’s Gene Expression
Omnibus and are accessible through GEO Series accession number GSE 59863 (mRNA profile
data GSM number: GSM 1448246–1448285, miRNA profile data GSM number: GSM
1448296–1448307).

Gene Set Enrichment Analysis
GSEA detects statistically significant differences in a priori defined gene sets (pathways)
through a weighted Kolmogorov-Smirnov statistic (Normalized Enrichment Score (NES))
based on over-representation of gene-set members toward the top or bottom of a list of genes
ranked by the strength of their correlation to the phenotypes (irradiation doses and groups).

Considering the time-course data, positive correlations indicated that the gene sets were en-
riched at later time points, while negative correlations indicated that the gene sets were en-
riched at earlier time points. For some groups, no gene sets were significant at FDR< 25%, in
which case we chose the pathways or gene ontology (GO) terms with nominal p values< 1%
for further analysis, as shown in Table 2 in detail.

Table 1. Summary of gene numbers under differential statistical thresholds.

5 cGy 2 Gy 5 cGy + 2 Gy

3 h 6 h 12 h 24 h 3 h 6 h 12 h 24 h 3 h 6 h 12 h 24 h

Unadjp0.05 Up 99 152 369 815 669 170 346 976 234 279 542 1272

Down 92 148 240 615 249 179 428 860 206 392 510 1195

Total 191 300 609 1430 918 349 774 1836 440 671 1052 2467

Unadjp0.01 Up 10 37 100 315 139 55 125 403 61 100 167 628

Down 16 33 51 235 45 31 147 390 57 105 184 608

Total 26 70 151 550 184 86 272 793 118 205 351 1236

Unadjp0.005 Up 4 16 59 188 55 31 74 250 32 57 101 430

Down 5 10 30 140 24 16 92 264 30 54 113 437

Total 9 26 89 328 79 47 166 514 62 111 214 867

BH p0.1 Up N/A N/A N/A 14 N/A N/A 7 101 1 1 10 411

Down N/A N/A N/A 11 N/A N/A 8 128 1 0 15 424

Total N/A N/A N/A 25 N/A N/A 15 229 2 1 25 835

BH p0.05 Up N/A N/A N/A 4 N/A N/A 1 33 N/A N/A 4 181

Down N/A N/A N/A 2 N/A N/A 3 54 N/A N/A 5 221

Total N/A N/A N/A 6 N/A N/A 4 87 N/A N/A 9 402

doi:10.1371/journal.pone.0123316.t001

Table 2. Summary of gene set numbers which were significantly enriched.

Correlation FDR < 25% Nom p value < 1% Nom p value < 5%

5 cGy Positive 0 11 84

Negative 0 38 188

2 Gy Positive 0 3 43

Negative 0 37 159

5 cGy + 2 Gy Positive 0 11 62

Negative 31 45 183

RAR Positive 0 12 77

Negative 91 48 176

doi:10.1371/journal.pone.0123316.t002
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Fig 3. Clustering of GSEA results enriched with negative correlation with increased time profile.
Sorting negative correlation The GSEA results were sorted by FDR < 25% or nom p value < 1% thresholds,
where appropriate. The heatmap illustrated the gene sets for each irradiation group. The red color codes for
the presence of the shown gene sets in a particular group, while the blue color codes for absence of the
shown gene sets in a particular group.

doi:10.1371/journal.pone.0123316.g003
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In general, for the 5 cGy group, the enriched gene sets with negative correlations (Fig 3) in-
volved unfolded protein response, apoptotic execution, spliceosome, DNA and RNAmetabolic
processes, G protein activation and signaling amplification, kinase activity, DNA repair and
replication, and cell cycle arrest. These showed that the cells initiated many biological processes
to respond to the stress within a short time after X-ray exposure. Moreover, the 5 cGy low-dose
irradiation also induced gene sets or pathways for lysosome organization, hydrolase activity
and histone modification, which led to repair of radiation, induced damages and enriched in-
clination to positive correlation with timeline (Fig 4). The enrichments with negative and posi-
tive correlations are presented in S2 Fig.

For the 2 Gy group, most gene sets enriched at early time points were negatively correlated
with time-course phenotypes (Fig 3). These gene sets included kinase activity and regulation,
phosphorylation and cascade of STAT, RAS, JAK-STAT, CREB transcription factors, regula-
tion of cell cycle and DNA replication, and moreover, some responses to stress pathways or ex-
ternal stimuli. Only three terms involved nuclear and peroxisome organization biogenesis
showed positive correlation with timeline (Fig 4), which suggested that the cells detoxicated
various toxic substances induced by irradiation. In particular, peroxisomes were shown to gen-
erate superoxide (O2

•–) and nitric oxide (•NO) radicals [56, 57]. The enrichments with negative
and positive correlations are presented in S3 Fig.

For the (5 cGy + 2 Gy) group, response to DNA damage stimulus, G protein activation and
signaling amplification, kinase activity, cell cycle, DNA replication and chromosome mainte-
nance showed enrichments at early time points after the application of the 2 Gy challenging
dose (Fig 3). However, the RNA metabolic process and transcriptional regulation were up-reg-
ulated sustainably. Similar to the 5 cGy group, the gene sets and pathways for lysosome and
histone modification were present. Furthermore, some terms involving iron uptake and

Fig 4. Clustering of GSEA results enriched with positive correlation with increased time profile, for
various irradiation groups (viz. 5 cGy, 2 Gy, (5 cGy + 2 Gy) and RAR). The GSEA results were sorted by
FDR < 25% or nom p value < 1% thresholds, where appropriate. The heatmap illustrated the gene sets for
each irradiation group. The red color codes for the presence of the shown gene sets in a particular group,
while the blue color codes for absence of the shown gene sets in a particular group.

doi:10.1371/journal.pone.0123316.g004
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transport were also positively enriched (Fig 4). The enrichments with negative and positive cor-
relations are presented in S4 Fig.

To further study the RAR effect, we combined part of the gene profiles for the 5 cGy group
with those of the (5 cGy + 2 Gy) group, to provide more information or to show the variance in
details. The Notch1 signaling pathway and nucleotide excision repair term were enriched in
the positive correlation of RAR (shown in S5 Fig), while most of the gene sets were essentially
comparable regardless of the positive or negative correlations.

These GSEA results revealed that the 5 cGy radiation could induce early cell response, alter
the metabolism and biological process to defend against radiation-induced damages, and pro-
mote repair of the damages. However, the 2 Gy high-dose radiation tended to provoke survival
and did not resist the damages or repair them rapidly, which might be detrimental to the basic
biological functions of the cells.

Investigation of radiation-induced gene expression alteration through
GO analysis
Within any given gene sets, GO-based functional analysis provides statistically enriched GO
terms, describing gene products and demonstrating their relationships according to three on-
tology categories: biological process, molecular function and cellular component. To analyze
our microarray data based on groups of functionally related genes instead of individual genes,
BiNGO was used as a Java-based high-throughput functional genomic analysis tool in Cytos-
cape. We then identified the significantly enriched GO terms and characterized the radiation
responses to different radiation doses and their dynamic changes over time after exposures.

Low-dose radiation (5 cGy) could up-regulate G-protein coupled receptor activity and ol-
factory receptor activity through sensory perception of chemical stimulus. However, high-dose
radiation (2 Gy) induced complex and extensive transmembrane receptor activities, mostly in-
volving G-protein coupled receptor, olfactory receptor, and signal transducer activities in the
downstream. In addition, more biological processes, especially the nucleotide metabolic pro-
cesses were abundant. Interestingly, the (5 cGy + 2 Gy) group did not promote any up-regula-
tion at 3 h, but a large number of genes involved in DNA metabolic processes, DNA
replication, cellular responses to external stress or stimuli, and cell cycle showed down-regula-
tion, suggesting the (5 cGy + 2 Gy) radiation scheme could negatively regulate cell processes,
inhibit DNA replication and cell cycle arrest in the very early phase (data shown in S6 Fig).

At 6 h after exposure (data shown in S7 Fig), the 5 cGy group showed up-regulations of
metal-ion-binding related genes or GO terms, which would be a sign that metal ions were re-
quired during DNA repair and replication. When we examined the 2 Gy radiation-induced
gene expression profiles, some typical processes showed up, including apoptosis, PCNA-p21
activation, cell cycle arrest, DNA damage responses signal transduction by TP53. The GO
terms revealed that the irradiated cells were repairing the radiation-induced damages, surviving
or dying. Meanwhile, for the (5 cGy + 2 Gy) scheme, the cells assembled all resources to partici-
pate in the repair. Most biological processes concentrated on the negative regulation of DNA
replication, transcription, and nucleotide metabolism, to prevent the fatal cascade reactions of
DNA damages.

At 12 h post-radiation (data shown in S8 Fig), 5 cGy radiation induced responses dominated
by positive regulation of ion binding, gene expression and cellular metabolism. Moreover, com-
plicated cellular processes showed down-regulation, including responses to stimuli, cell prolif-
eration, primary metabolism, and kinase phosphatase activity. At this time point, the cells
having been exposed by 2 Gy radiation shifted their focus to negative regulation of DNA repli-
cation, which was largely similar to the characteristics of the cells exposed to (5 cGy + 2 Gy)
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radiation at the 6 h time point. Furthermore, for the (5 cGy + 2 Gy) strategy, in addition to
down-regulation of DNA replication, cellular processes were initiated to control the cell cycle
to give more time for repairing the cellular damages.

Up to 24 h after radiation exposure (data shown in S9 Fig), a wide range of GO terms were
present. The cells irradiated with a 2 Gy dose finally caught up the progress of the cells which
had been subjected to (5 cGy + 2 Gy) radiations. Both these groups showed cell cycle arrest, as
well as negative regulation of cell cycle checkpoint and DNA replication. Nevertheless, activa-
tion or inhibition of similar biological processes in the 2 Gy group were initiated 6–12 h later
than those in the (5 cGy + 2 Gy) group. This could be a critical reason explaining that the prim-
ing dose helped protect against damages induced by the challenging dose.

Furthermore, we assessed the protein expressions of p21/WAF1, phospho-p38 MAPK and
phosphor-NF-κB through the Western Blot assay. The results (shown in S10 Fig) reflected that
the p21 protein was up-regulated after irradiation at various time points, which was consistent
with previous studies [58, 59]. Moreover, the levels of phosphorylated p38 MAPK and NF-κB
were also increased at 24 h, which suggested the activation of the mediated signaling pathways.

Overall, the gene ontology results for each irradiation scheme appeared to be relatively simi-
lar at different time points. However, there were still observable differences. The GO terms of
the 2 Gy group at all-time points showed that they were lagging behind those for the (5 cGy + 2
Gy) group, which suggested that the 5 cGy irradiation changed the cellular response to external
stresses.

Investigation of radiation-induced gene expression alteration through
pathway analysis
Cytoscape plugged ClueGO and CluePedia was performed for functional analysis of each dif-
ferential group gene sets acquired from microarray analyses. The KEGG, REACTOME, and
WikiPathways databases were applied for enrichment analysis.

The pathway enrichment results for low-dose (5 cGy) radiation showed insignificant en-
riched pathways at 3 h post 5 cGy exposure, while the TOR signaling pathway was shown to be
up-regulated at 6 to 12 h post irradiation till 24 h later, and the MAPK signaling pathway was
down-regulated. Up to 24 h, the majority of the enriched pathways focused on the reduction in
DNA replication, cell cycle arrest, RNA metabolism and processing (data shown in Fig 5).

The high radiation dose (2 Gy) led to different cellular responses. At the early stage, most
up-regulated genes were involved in G protein-coupled receptors (GPCR) downstream signal-
ing, cytokine-cytokine receptor interaction and interferon gamma signaling pathway at 3 h
post irradiation. As early as 6 h post irradiation, some genes were involved in promotion of the
p53 signaling pathway and responded to DNA damages, either through apoptosis or miRNA,
and also slowed down cell replication via controlling cell cycle checkpoints. At later time points
from 12 to 24 h post irradiation, more and more resources were spent on the negative regula-
tion of DNA replication and cell cycle, particularly at 24 h post irradiation, and the DNA dou-
ble-strand break repair term indicated repair in order to rescue the cells from the X-ray
induced damages (data shown in Fig 6).

Interestingly, the (5 cGy + 2 Gy) irradiation invoked different pathways when compared to
the 2 Gy irradiation at corresponding time points. The fundamental discrepancy was that most
of the cellular events for the (5 cGy + 2 Gy) group were initiated after those for the 2 Gy group.
For example, the p53 signaling pathway or network, miRNA regulation of DNA damage re-
sponse, cell cycle terms were initiated as early as 3 h post exposure, and extended to 6 or 12 h.
Moreover, some of pathways involving cell cycle control or checkpoints, DNA replication or
regulation would be then strengthened at later time points. Meanwhile, some special pathways
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appeared. For examples, the Notch andWnt signaling pathways were enriched at 3 h, and lyso-
some activation was enhanced at 24 h, which suggested that the cells initiated autophagic diges-
tion to process the injured cell to avoid larger-scale damages (data shown in Fig 7).

Identification of specific radiation-induced microRNA
According to the previous microarray study, microRNA(s) were likely involved in irradiation-
induced gene regulation. To investigate the potential microRNA(s), we made use of the irradi-
ated samples from the 5 cGy group at 12 h post radiation, the 2 Gy group at 24 h post radiation,
and the (5 cGy + 2 Gy) group at 24 h post radiation. Using Bayes’ estimation in the limma
method, we found 32, 39 and 70 significantly expressed microRNAs in the 5 cGy, 2 Gy and (5
cGy + 2 Gy) groups, respectively (Fig 8). The majorities of differentially expressed microRNAs
were summarized in Table 3, and were also identified by miRNA qPCR. The RT-PCR data in-
dicated that over 83% (2 out of 24 genes and time points, e.g., hsa-miR-492 in 5 cGy and 2 Gy
groups) of the ratios generated by microarray hybridizations were valid. Three microRNA da-
tabases (miRBase, TargetScan and miRGen) were used to identify the mRNAs, and to analyze
the gene functions and pathways of the predicted mRNA.

When we compared the mRNA GO terms predicted for the three groups, the low-dose 5
cGy group showed that most GO terms focused on cell communication, intracellular signal

Fig 5. The pathway enrichment analysis results of the 5 cGy group at different time points. The KEGG,
REACTOME andWikiPathways databases in ClueGOwere employed for pathway enrichment analysis of
each differential group gene sets acquired frommicroarray analyses. The Enrichment/Depletion was tested
by the two-side hypergeometric test, and the Benjamini and Hochberg false-discovery rate was set to 0.05.
The green and red colors code for down-regulation and up-regulation of genes, respectively, in each group.
The result for 3 h post 5 cGy radiation was not shown due to absence of significant enriched pathways.

doi:10.1371/journal.pone.0123316.g005
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transduction and system development (Fig 9). Meanwhile, the enrichment pathway also indi-
cated that these predicted mRNAs were dominnat in translation, chromosome maintenance,
meiotic recombination and Wnt signaling pathways and other metabolic pathways or terms
(Fig 9). On the other hand, however, a high-dose (2 Gy) radiation induced many genes in-
volved in regulation of cellular processes and primary metabolic processes, multicellular organ-
ismal development and regualtion of signaling (Fig 9). These were also confirmed by the
pathway results (S10 Fig). The more notable results were the EGFR pathway, eukaryotic trans-
lation elongation and RNA process, metabolism of vitamins and cofactors, calcium and Wnt
signaling pathways (S11 Fig). The RAR group, with 5 cGy priming dose and 2 Gy changelling
dose, showed that the GO results were most likely a combination of the individual results for
the 5 cGy and 2 Gy groups. It combined both of their GO terms, comprising cell communica-
tion, intracellular siganl transduction, including most of the enriched results for the 5 cGy case,
and also regulation of cellular processes for the 2 Gy group. Furthermore, the enrichment re-
sults also showed complicated pathways, including EGFR signaling, insulin signaling, exon
junction complex, metabolic and RNA and DNA processes (S12 Fig).

Discussion
RAR is a non-targeted effect that does not require direct irradiation of the cell nucleus [60]. It
occurs when a preceding low priming dose decreases the biological effectiveness of a

Fig 6. The pathway enrichment analysis results of the 2 Gy group at different time points. The KEGG,
REACTOME andWikiPathways databases in ClueGOwere employed for pathway enrichment analysis of
each differential group gene sets acquired frommicroarray analyses. The Enrichment/Depletion was tested
by the two-side hypergeometric test, and the Benjamini and Hochberg false-discovery rate was set to 0.05.
The green and red colors code for down-regulation and up-regulation of genes, respectively, in each group.

doi:10.1371/journal.pone.0123316.g006
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subsequent high challenging dose. For clinical radiotherapy, RAR can potentially be exploited
to avoid or to reduce the excessive damages on normal somatic cells inflicted by the radiation
used to kill the tumor cells. Until now, the mechanisms underlying RAR are still largely ob-
scure. Most previous researches focused on a single gene or protein that was linked to RAR,
which was not entirely accurate and precluded a holistic view on the process. In this study, we
aimed to examine the extensive radiation responses at the entire transcriptome level for a low
dose (5 cGy), a high dose (2 Gy) and a combination of 5 cGy priming dose and 2 Gy challeng-
ing dose (5 cGy + 2 Gy) on irradiated AG01522 cells, and to identify RAR or dose
specific factors.

Moreover, the results in previous studies on RAR were not always consistent, which might
depend on the cell type, the dose range and time interval between exposures [45]. As such, all
critical factors including the priming dose, challenging dose and the time interval between ex-
posures were optimized, which were described in the previous text.

The present results clearly demonstrated that pre-exposure to a low-dose radiation changed
the cellular responses at the early stage. From the GO and pathway results, we found that the
defense mechanisms triggered by the 5 cGy irradiation at least 6 to 12 h earlier than those trig-
gered by the 2 Gy irradiation. Therefore, the (5 cGy + 2 Gy) group benefited more from the 5
cGy dose which stimulated acute-phase responses. Our time-course data also revealed that the

Fig 7. The pathway enrichment analysis results of the (5 cGy +2 Gy) group at different time points. The
KEGG, REACTOME andWikiPathways databases in ClueGOwere employed for pathway enrichment
analysis of each differential group gene sets acquired frommicroarray analyses. The Enrichment/Depletion
was tested by the two-side hypergeometric test, and the Benjamini and Hochberg false-discovery rate was
set to 0.05. The green and red colors code for down-regulation and up-regulation of genes, respectively, in
each group.

doi:10.1371/journal.pone.0123316.g007
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radiation induced cellular responses within as early as 3 to 6 h, including cell cycle arrest, pro-
liferation, DNA and RNA metabolism, replication and transduction. These agreed with the
previous finding on radiation-induced bystander effect that the early response within 2 h in-
volved p53-induced or regulated genes in fibroblast cells irradiated with a dose of 2 Gy [42].

Based on gene ontology or pathway analysis, the GPCRs were activated within 3 h post irra-
diation for both the 5 cGy and 2 Gy groups. Ionizing radiation is known to induce expression
of cytokine receptors and G proteins [61], which was confirmed by our present results showing
up-regulation of G–protein-mediated signaling pathway. The activation of G proteins and cy-
tokine receptors could be explained in terms of mitogenic/proliferative signaling to promote
cellular survival under genotoxic stress. At downstream to those receptors and G proteins sig-
naling, phospholipase C-g (PLC-g), protein kinase C (PKC)/Ras/Raf network would probably
be involved in the proliferative response [62, 63]. Moreover, from any group of early response
after irradiation, the olfactory pathway or terms had been enriched, and neural cell adhesion
molecule (NACM) interaction term had also been found in GSEA. Based on the GSEA gene
family database, we found some core genes (ARTN, GDNF) in the NACM interaction term

Fig 8. The heatmap of expressedmiRNAs and Venn diagram of overlap for the three irradiation groups. The left panel shows the significantly
expressed miRNAs using Bayes’ estimation in the limma package. The right panel shows the Venn plot of DEG numbers of the three groups, with green and
red colors code for the numbers of down-regulated and up-regulated genes, respectively.

doi:10.1371/journal.pone.0123316.g008
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including cytokines and growth factors. Furthermore, other critically enriched genes included
the olfactory receptors (COL4A5, COL4A4, COL4A3 and COL9A3) and also GPCRs, which
suggested that olfactory factors might trigger radiation response that promoted the

Table 3. Significantly expressedmicroRNAs for different irradiation groups and qPCR validation.

microRNA Group Microarray relative change (log2 Fold change) qPCR relative change

hsa-let-7b-3p 5 cGy 1.655 1.041 ± 0.200

hsa-let-7b-3p 2 Gy - 1.082 ± 0.020

hsa-let-7b-3p 5 cGy + 2 Gy - 0.933 ± 0.448

hsa-miR-1185-5p 5 cGy -0.146 0.883 ± 0.084

hsa-miR-1185-5p 2 Gy -1.381 0.821 ± 0.158

hsa-miR-1185-5p 5 cGy + 2 Gy -2.821 0.718 ± 0.034

hsa-miR-1236-5p 5 cGy 3.841 1.014 ± 0.300

hsa-miR-1236-5p 2 Gy - 1.606 ± 1.194

hsa-miR-1236-5p 5 cGy + 2 Gy - 1.280 ± 0.142

hsa-miR-222-5p 5 cGy - 0.653 ± 0.044

hsa-miR-222-5p 2 Gy - 0.528 ± 0.070

hsa-miR-222-5p 5 cGy + 2 Gy -5.431 0.377 ± 0.055

hsa-miR-3659 5 cGy 0.039 1.423 ± 0.523

hsa-miR-3659 2 Gy 1.615 1.675 ± 0.249

hsa-miR-3659 5 cGy + 2 Gy 4.421 2.184 ± 0.360

hsa-miR-4535 5 cGy 2.097 1.624 ± 0.522

hsa-miR-4535 2 Gy 1.717 2.254 ± 0.864

hsa-miR-4535 5 cGy + 2 Gy 1.928 2.734 ± 0.895

hsa-miR-492 5 cGy 4.076 0.853 ± 0.042

hsa-miR-492 2 Gy 4.167 0.870 ± 0.184

hsa-miR-492 5 cGy + 2 Gy 4.132 1.158 ± 0.336

hsa-miR-877-5p 5 cGy 1.782 1.235 ± 0.394

hsa-miR-877-5p 2 Gy 2.715 1.341 ± 0.434

hsa-miR-877-5p 5 cGy + 2 Gy 5.541 2.282 ± 0.617

doi:10.1371/journal.pone.0123316.t003

Fig 9. The pie charts showing the predictedmRNA enrichment GO terms for the three irradiation groups. The mRNAs predicted using three
microRNA databases were input into ClueGO plugged in Cytoscape for enrichment analysis for gene ontology. The Cellular Component, Biological Process,
Molecular Function and Immune System Process GO terms were selected for this analysis. The two-sided hypergeometric test was used in the statistical
inference, and the Benjamini-Hochberg method was applied in p value correlation. The adjusted p-value threshold was set to 0.001.

doi:10.1371/journal.pone.0123316.g009
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downstream effects. Previous research also indicated that radiochemical formation of ozone
and free radicals might stimulate olfactory receptors in radiation processes [64, 65].

Several types of cellular responses to low-dose ionizing radiation, such as adaptive response
and bystander effect, are very different from their high-dose counterparts. Accumulated evi-
dence has also shown that the biological effects are not linearly related to the dose. The pre-
dominant functional groups responding to low-dose radiation are those involved in cell-cell
signaling, signal transduction, development and DNA damage responses. At high doses, the re-
sponding genes are involved in apoptosis and cell proliferation [41]. In the present study, our
results showed that 5 cGy irradiation induced minor DNA lesions which did not extensively
damage the cells. Instead, the injury accelerated signaling transduction in the downstream to
stimulate or promote cell repair. On the other hand, a high dose of 2 Gy undermined normal
cellular processes irreversibly, despite the initiation of cell cycle arrest and down-regulation of
DNA replication. However, application of a small priming dose of 5 cGy benefited the cells
when they responded to the damages through cell cycle control, DNA replication blocking, nu-
cleotide metabolism, lysosome and apoptosis, with an enhancement in cell repair and survival.
Our microRNA expression profiles also confirmed this observation, in that cell communication
and intercellular signaling transduction could be induced for the 5 cGy, or (5 cGy + 2 Gy) irra-
diation groups, but not for the 2 Gy irradiation group. This result hinted at a distinction be-
tween the biological effects triggered by low-dose and high-dose irradiation. The Notch
signaling pathway is important in the regulation of cell fate specification, cell proliferation and
cell death. Some core enriched genes, including PSEN, NCSTN and APH-1 genes, were up-reg-
ulated in the 5 cGy group, which affected the cell fate. In the RAR group, one of the GO terms
involving synthetic chemical penetration coupling and uncoupling of heat-mediated respirato-
ry electron transport of ATP, suggested that a low-dose priming radiation might provide some
extra time for getting more energy to repair the damages.

From our results (data not shown) on the microRNA confirmed and predicted database en-
riched in the sub-network “miRNA regulate DNA damage”, we could observe that has-let-7b-
5p was also involved in the 5 cGy group, which directly or indirectly regulated abundance of
genes including MYC, MDM2, CCND1, CDKN1A, GADD45A, CEBPG and SESN1.

The microarray analyses revealed that many genes responsible for regulating cell cycle and
cell proliferation were responsive to alteration of let-7 levels, including cyclin A2, CDC34, Au-
rora A and B kinases (STK6 and STK12), E2F5, and CDK8 [66]. Subsequent experiments con-
firmed the direct effects of some of these genes, such as CDC25A and CDK6 [67]. Let-7 also
inhibits several components of the DNA replication machinery, transcription factors, even
some tumor suppressor genes and checkpoint regulators [66]. Apoptosis is regulated by let-7
as well, through Casp3, Bcl2, Map3k1 and Cdk5 modulation.

Previous studies revealed that miR-222 impaired TRAIL-dependent apoptosis by inhibiting
the expression of PTEN and TMIP3 [68, 69]. This microRNA plays a crucial role in the down-
regulation of PTEN and TIMP3 in several types of cancers. The tumor suppressor PTEN regu-
lates the PI3K/AKT pathway, which is a major cell survival pathway, and plays a key role in the
development of multiple drug resistance [70]. TIMP3 has been reported to activate both cas-
pase-8 and caspase-9 [71]. In this study, we found that miR-222 was down-regulated in the
(5cGy + 2 Gy) group, which might indicate the cellular status of migration and apoptosis.

In this study, we performed mRNA and miRNA microarray profiles to explore further fac-
tors which regulated the RAR in normal human fibroblasts. Taken together, our microarray
data identified multiple genes that were significantly up-/down-regulated during the radiation
treatments. We observed that a low-dose X-ray exposure produced an alert, which triggered
and altered cellular responses to defend against subsequent high-dose induced damages, and
which accelerated the cellular repair process. Furthermore, microRNA analyses also revealed
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that cellular communication and intercellular signaling transduction played important roles
upon low-dose irradiation. We conclude that RAR benefits from the alarm mechanisms trig-
gered by a low-dose priming radation dose.

Supporting Information
S1 Fig. Transcriptional profiles of irradiated AG 1522 cells. Patterns of changes in the tran-
script abundance are shown on a heatmap for a robust set of 3665 transcripts using a p value of
0.05 and fold change>1.2. For each sample, the data were normalized to the average of base-
line time points. The red color represents relative increase in abundance; the blue color repre-
sents relative decrease, while the white color represents no changes. The colorful bars above the
map indicate time points and radiation doses.
(TIF)

S2 Fig. Enrichment of GSEA for the 5 cGy group. The two phenotypes (positive and negative
correlations) for the 5 cGy group obtained from GSEA were input into Enrichment app
plugged in Cytoscape to perform enrichment analyses. The red color represents phenotype 1
(positive NES score in GSEA) and the blue color represents phenotype 2 (negative NES score
in GSEA). The color of the inside refers to dataset 1 and the color of the outside refers to data-
set 2. The size of the node (inner circle) corresponds to the number of genes in the negative-
correlation phenotype (dataset 1) within the gene set, while the color of the node (inner circle)
corresponds to the significance of the gene set for the negative-correlation phenotype (dataset
1). The edge size corresponds to the number of genes that overlap between the two connected
gene sets. A green edge corresponds to both datasets when it is the only color edge. When there
are two different edge colors, the green edge corresponds to the negative-correlation phenotype
(dataset 1) while the blue edge corresponds to the positive-correlation phenotype (dataset 2).
(TIF)

S3 Fig. Enrichment of GSEA for the 2 Gy group. The two phenotypes (positive and negative
correlations) for the 2 Gy group obtained from GSEA were input into Enrichment app plugged
in Cytoscape to perform enrichment analyses. Keys to the colors and shapes are the same as
the description in the caption to S2 Fig.
(TIF)

S4 Fig. Enrichment of GSEA for the (5 cGy + 2 Gy) group. The two phenotypes (positive and
negative correlations) for the (5 cGy + 2 Gy) group obtained from GSEA were input into En-
richment app plugged in Cytoscape to perform enrichment analyses. Keys to the colors and
shapes are the same as the description in the caption to S2 Fig.
(TIF)

S5 Fig. Enrichment of GSEA for the RAR group. The two phenotypes (positive and negative
correlations) for the RAR group obtained from GSEA were input into Enrichment app plugged
in Cytoscape to perform enrichment analyses. Keys to the colors and shapes are the same as
the description in the caption to S2 Fig.
(TIF)

S6 Fig. Comparison of GO results at 3 h post irradiation for the different irradiation
groups. The Gene Ontology analysis was performed by BiNGO plugged-in Cytoscape. The Bi-
ological Processes (BP), Molecular Function (MF) and Cellular Components (CC) terms were
involved. To include only significant results, the FDR threshold was set to 0.05. The top 50
terms were selected, and represented as bar charts with the gene number involved in these GO
terms. The adjusted p values are represented by the—log10 (adj-P value) values shown as
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yellow dots.
(TIF)

S7 Fig. Comparison of GO results at 6 h post irradiation for the different irradiation
groups. The Gene Ontology analysis was performed by BiNGO plugged-in Cytoscape. The Bi-
ological Processes (BP), Molecular Function (MF) and Cellular Components (CC) terms were
involved. To include only significant results, the FDR threshold was set to 0.05. The top 50
terms were selected, and represented as bar charts with gene number involved in these GO
terms. The adjusted p values are represented by the—log10 (adj-P value) values shown as
yellow dots.
(TIF)

S8 Fig. Comparison of GO results at 12 h post irradiation for the different irradiation
groups. The Gene Ontology analysis was performed by BiNGO plugged-in Cytoscape. The Bi-
ological Processes (BP), Molecular Function (MF) and Cellular Components (CC) terms were
involved. To include only significant results, the FDR threshold was set to 0.05. The top 50
terms were selected, and represented as bar charts with gene number involved in these GO
terms. The adjusted p values are represented by the—log10 (adj-P value) values shown as
yellow dots.
(TIF)

S9 Fig. Comparison of GO results at 24 h post irradiation for the different irradiation
groups. The Gene Ontology analysis was performed by BiNGO plugged-in Cytoscape. The Bi-
ological Processes (BP), Molecular Function (MF) and Cellular Components (CC) terms were
involved. To include only significant results, the FDR threshold was set to 0.05. The top 50
terms were selected, and represented as bar charts with gene number involved in these GO
terms. The adjusted p values are represented by the—log10 (adj-P value) values shown as
yellow dots.
(TIF)

S10 Fig. Western blotting analysis and validation of several key proteins from microarray
results. 12, 24 and 48 h after various X-ray radiations exposure, cell lysates were collected, gel
electrophoresed, and the p21WAF1, phospho-p38 MAPK, phospho-p65 NF-κB and beta-
tublin were measured.
(TIF)

S11 Fig. Predicted mRNA from the pathway enrichment results for the 5 cGy group. The
mRNAs predicted using three microRNA databases were input into ClueGO plugged in Cytos-
cape for enrichment analysis of pathways. The KEGG, Reactome, Wikipathway databases were
selected for this analysis. The two-sided hypergeometric test was used in the statistical infer-
ence, and the Benjamini-Hochberg method was applied in p value correlation. The adjusted p-
value threshold was set to 0.05.
(TIF)

S12 Fig. Predicted mRNA from the pathway enrichment results for the 2 Gy group. The
mRNAs predicted using three microRNA databases were input into ClueGO plugged in Cytos-
cape for enrichment analysis of pathways. The KEGG, Reactome, Wikipathway database were
selected for this analysis. The two-sided hypergeometric test was used in the statistical infer-
ence, and the Benjamini-Hochberg method was applied in p value correlation. The adjusted p-
value threshold was set to 0.05.
(TIF)
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S13 Fig. Predicted mRNA from the pathway enrichment results for the (5 cGy + 2 Gy)
group. The mRNAs predicted using three microRNA databases were input into ClueGO
plugged in Cytoscape for enrichment analyses of pathways. The KEGG, Reactome, Wikipath-
way database were selected for this analysis. The two-sided hypergeometric test was used in the
statistical inference, and the Benjamini-Hochberg method was applied in p value correlation.
The adjusted p-value threshold was set to 0.05.
(TIF)

S1 Table. mRNA qPCR Validation Primer Sets.
(XLSX)

S2 Table. microRNA qPCR Validation Primer.
(XLSX)

S3 Table. Verification of Gene Expression Changes in AG1522 12 h and 24 h after Irradia-
tion.
(XLSX)
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