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Abstract

The immediate-early response mediates cell fate in response to a variety of extracellular sti-
muli and is dysregulated in many cancers. However, the specificity of the response across
stimuli and cell types, and the roles of non-coding RNAs are not well understood. Using a
large collection of densely-sampled time series expression data we have examined the in-
duction of the immediate-early response in unparalleled detail, across cell types and stimuli.
We exploit cap analysis of gene expression (CAGE) time series datasets to directly mea-
sure promoter activities over time. Using a novel analysis method for time series data we
identify transcripts with expression patterns that closely resemble the dynamics of known
immediate-early genes (IEGs) and this enables a comprehensive comparative study of
these genes and their chromatin state. Surprisingly, these data suggest that the earliest
transcriptional responses often involve promoters generating non-coding RNAs, many of
which are produced in advance of canonical protein-coding IEGs. IEGs are known to be ca-
pable of induction without de novo protein synthesis. Consistent with this, we find that the
response of both protein-coding and non-coding RNA IEGs can be explained by their tran-
scriptionally poised, permissive chromatin state prior to stimulation. We also explore the
function of non-coding RNAs in the attenuation of the immediate early response in a small
RNA sequencing dataset matched to the CAGE data: We identify a novel set of microRNAs
responsible for the attenuation of the IEG response in an estrogen receptor positive cancer
cell line. Our computational statistical method is well suited to meta-analyses as there is no
requirement for transcripts to pass thresholds for significant differential expression between
time points, and it is agnostic to the number of time points per dataset.
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Author Summary

Cells respond to stimuli through a set of genes that are primed for rapid activation. These
genes, known as immediate-early genes (IEGs), are regulated at the level of transcription
of the messenger RNA, and at subsequent RNA processing levels. These rapid responders
are then rapidly switched off in normal cells. Immediate-early genes are involved in many
cellular processes, including differentiation and proliferation, that are often dysregulated
in cancer where they become continuously active. We characterise IEGs in a genome-wide
sequencing dataset that captures their transcriptional response over time. Using a novel
analysis technique, we identify both protein-coding and non-coding genes that are activat-
ed comparably to IEGs and investigate their properties. We examine how IEGs are
switched off, including through microRNAs, small non-coding RNAs that act to control
the level of key IEGs. We identify a novel set of microRNAs responsible for the attenuation
of the IEG response in an estrogen receptor positive cancer cell line.

Introduction

Immediate-early (or primary response) genes are induced in response to a stimulus without
the requirement of de novo protein synthesis [1]. The source and duration of the induction sig-
nal can determine alternative cell fates, for example, transient signalling may result in cell pro-
liferation, whereas sustained signalling gives rise to cell differentiation [2]. The activation of
ErbB receptors by epidermal growth factor (EGF) or heregulin (HRG) in the MCF?7 breast can-
cer cell line exemplifies the impact of such transient or sustained signalling on cell fate [3, 4].
The well-studied mitogen-activated kinase (MAPK), and in particular extracellular signal-reg-
ulated kinase (ERK) pathways, play important roles in signal transduction in the immediate-
early response as well as many other cellular responses [1]. The over-expression of immediate
early genes is correlated with cancer progression, and some of the best studied are known onco-
genes [5]. However, in spite of the biomedical importance of the immediate-early response,
our understanding of both its initiation and attenuation is far from complete. We lack a com-
prehensive account of how the mechanisms underlying these phenomena vary across stimuli
and cell types, and few studies have explored the full diversity of transcripts involved

Many immediate-early genes (IEGs) encode transcription factors which regulate secondary
response genes (SRGs) [6]. Necessarily, there is a delay in the expression of SRGs since, unlike
IEGs, they require de novo protein synthesis. However a set of delayed IEGs may also be pres-
ent concurrently with SRGs which can complicate efforts to study IEGs. It is believed that de-
layed IEGs can be identified by their increased length, greater number of exons and lack of
transcription factor activity in addition to the delayed timing of their expression in comparison
with typical IEGs [6]. Delayed IEGs also typically lack the conserved binding sites for SRF, NF-
kB and CREB generally found in IEGs [6]. Chromatin architecture plays a critical role in IEG
expression [7]. The presence of CpG islands and constitutively active chromatin, high polymer-
ase densities at promoters that may indicate a role for the regulation of RNAPII, and a single
CAGE peak at the promoter are all features reported to be associated with IEGs [1, 6]. Howev-
er, many studies have been restricted to a limited number of promoters, and examine a single
cell type and stimulus. The diversity of cell types, stimuli and genes investigated in the literature
makes it difficult to generalize about the molecular mechanisms underlying the induction of
even the best studied IEGs [8].

A more comprehensive understanding of the initiation of the immediate-early response,
and its less well studied attenuation are required. Studies of IEG induction show distinct
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differences between the kinetics of pre-mRNA and mature mRNA which are particularly evi-
dent for delayed IEGs where the mature mRNA may peak up to 3 hours later than the precur-
sor [6]. A transient overshoot in pre-mRNA production has been proposed as a strategy to
shape the timing and magnitude of response in the face of the slow mRNA degradation kinetics
that would otherwise determine the kinetics [9]. The transient induction of phosphorylated c-
Fos in MCF7 cells in response to HRG is thought to be due to multiple negative feedback loops
in the signalling and transcription network [3, 4]. The attenuation of the initial response of de-
layed IEGs to EGF was also shown to depend on negative feedback through de novo transcrip-
tion in HeLa cells [10], but it is unknown whether negative feedback plays roles in other cell
types or under other stimuli.

IEG expression is tightly regulated at multiple levels, including control of transcription initi-
ation and elongation as well as subsequent co-transcriptional and post-transcriptional events
[1]. Recent studies have implicated splicing as an important factor controlling IEG expression,
such that the FOS locus can remain transcriptionally active long after spliced mRNA produc-
tion has ceased [11]. Others have established important roles for mature miRNAs in IEG regu-
lation, with an early decrease in miRNA abundance permitting rapid induction of IEGs [12].
On the attenuation of the immediate-early response, detailed kinetic modelling of the transient
upregulation of the Atf3 transcription factor (an inhibitor of Egrl) has concluded that, follow-
ing induction, the mechanism whereby Atf3 is rapidly repressed is likely to involve newly-
synthesised miRNA [13]. The transcription of primary miRNA transcripts (pri-miRNAs), and
the subsequent role of the mature transcripts in the immediate-early response is unexplored in
genome-wide data.

There has been intense interest in the roles of long non-coding RNAs (IncRNAs) in cellular
differentiation. This class of transcripts is currently under-studied, but IncRNAs are differen-
tially expressed during differentiation, are preferentially localised in chromatin and have been
proposed to ‘fine-tune’ cell fate via their roles in transcriptional regulation [14-16]. Genome-
wide characterisation of histone modifications H3K4me3 and H3K27me3 at IncRNA has dem-
onstrated common features with mRNA, whereas patterns of DNA methylation differ [17].
Until now we have lacked a comprehensive study of non-coding RNA (ncRNA) species active
in the immediate-early response, encompassing different cell types and stimuli.

The FANTOMS5 project has recently produced the most comprehensive expression atlas for
human and mouse cells, based upon cap analysis of gene expression (CAGE) data [18]. In par-
ticular, the CAGE time series datasets obtained for MCF-7 cells and human primary aortic
smooth muscle cells are a unique resource for the study of the temporal response of stimulated
human cells [19]. As CAGE data is obtained from the 5’ end of capped mRNA transcripts, it is
expected to reflect the initial burst of overproduction of mRNA at promoters better than other
expression data, and hence is well suited to explore the immediate-early response. Using these
unique datasets, and a novel approach to time series analysis, we identify a comprehensive set
of transcripts whose expression patterns are altered in response to a stimulus genome-wide, in-
cluding all ncRNA transcripts present. We define kinetic signatures as response patterns corre-
sponding to the likely solutions of kinetic models, including a signature representing the
classical IEG response. Transcripts are categorised according to the kinetic signature they fit
best, if any, and the categories are then explored to identify the over-representation of known
IEGs and the known characteristics of IEGs. Our methods are well suited to meta-analyses,
and we are able to rigorously compare transcript classifications in the immediate-early re-
sponses of different cell types under different extracellular stimuli, revealing novel commonali-
ties among a diverse array of cell type and stimulus specific transcripts. This work is part of the
FANTOMS project. Data downloads, genomic tools and co-published manuscripts are sum-
marised here http://fantom.gsc.riken.jp/5/.
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Results
Four kinetic signature functions were defined as illustrated in Fig 1A (see Materials and meth-
ods for details). These patterns were intended to capture mRNA transcription in response to a
stimulus. Such exponential kinetics are characteristic of formalised systems biology models
(comparable with observed and modelled mRNA and pre-mRNA expression in [4, 9]), and
may reflect changes in both transcription and degradation rates over time [20]. The genome-
wide CAGE data considered here necessarily included transcripts whose functions are un-
known thus we began by hypothesising the possible kinetics they may display, rather than by
constructing a detailed, interconnected systems model. Kinetic signatures serve as prototypical
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Fig 1. Kinetic signatures for IEGs. (A) Kinetic signatures are defined as piece-wise exponential (peak and dip), simple exponential (decay) or linear
functions.(B) CAGE clusters associated with known IEGs show significant expression at time O (left; median 14.7 TPM). The maximum log2 fold change at
any point in the time course over expression at time 0 is typically less than 2 (right; median 1.64). Histograms show data from all four data sets for 194| known
IEGs. (C) Kinetic signatures fitted to the CAGE time course of EGR1 in EGF treated MCF?7 cells yield values for the fit (log Z) and estimates for parameter
moments. Plots show the kinetic signature function using computed parameter means (blue) and confidence intervals (red) for peak (left) and linear (right)
kinetic signatures. In this case, log Z for the peak signature (-27.2) is greater than that for the linear model (-35), indicating a significantly better explanation of
the data. Data values are plotted as circles (median value is filled). (D) CAGE time course data and best-fitting kinetic signature for IEGs JUN, FOS, EGR1
and DUSP1 (colours as in (C)). The vertical green lines indicate the mean switch time ts and one standard deviation above and below.

doi:10.1371/journal.pcbi.1004217.g001
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patterns reflecting changes in regulation, and are used here as a means to categorise time course
responses for each transcript present. We focused on four particular time series datasets:
human aortic smooth muscle cells (AoSMC) treated with FGF2 and with IL-15 (9 time points
from 0 to 360 min; 3 replicates per treatment; IL-1/3 will be referred to as IL1b hereafter), as
well as human MCF?7 breast cancer cells treated with EGF and HRG (16 time points from 0 to
480 min; 3 replicates per treatment). Aortic smooth muscle cells are primary cells which are
components of blood vessels. They are normally growth-quiescent in the normal adult vessels,
but are activated by injury, or exposure to growth factors (including FGF2) and pro-inflamma-
tory cytokines (including IL1b). These cues are sensed by these cells through changes in imme-
diate-early gene expression, and can lead to increased proliferation and migration.

All transcripts for protein-coding genes were represented by conservatively thresholded
FANTOMS5 CAGE clusters (10 TPM; approximately 3 copies per cell [18]). More than one
CAGE cluster could be assigned to each Ensembl gene, since clusters indicate transcription
start sites (TSSs) and many genes possess multiple alternative promoters. A minimum of
500,000 mapped tags were required for a sample to be included in the analysis, and at least two
biological replicates per time point. This led to exclusion of five libraries from the
AoSMC-FGF?2 time series, three from AoSMC-IL1b and one from MCF7-EGF. Supplementary
text 1 of Arner et al. (2015) [19], and references therein, describes CAGE library preparation,
CAGE library quality control, sequencing and transcription start site clustering. Supplementa-
ry text 2 of [19] describes the quality control and experimental protocols for the AoSMC and
MCF7 experiments relevant to the present manuscript, presenting both CAGE and qRT-PCR
data for specific genes.

Peak and dip signatures were defined as piece-wise exponential functions parameterised by
the basal expression (p;), maximal change in expression (p,) and time of the change (t;). The
peak and dip signature functions require a rate constant 6 which is not an explicit parameter of
the model. Instead, the rate is calculated from the switch time ¢, (see Eqs 1 and 2 in Materials
and methods) and the piece-wise function specifies that the response reaches 90% of p, at ;.
This formulation ensures that the initial rise in expression shows an exponential characteristic
that is not limited to the almost linear initial change in expression that might otherwise result
from a small value of the rate constant 8. See Materials and methods for additional details of
model definitions.

CAGE clusters assigned to approximately 200 known IEGs showed significantly elevated ex-
pression at the start of the time course, hence the importance of including the p, parameter in
the kinetic signatures (see Fig 1B). The ratio of the maximum expression to expression at time
0 was typically less than 2 as shown in Fig 1B. For the analysis of time series in this context, we
distinguished early peaks from late peaks by bounding the prior range for the t; parameter by
1-240 minutes (the first half of the time series), and by 240 minutes-end time (the second half)
of the experiment respectively.

The fit between kinetic signatures and the time series CAGE data was assessed using the
nested sampling algorithm to calculate the log of Bayesian evidence (also known as the margin-
al likelihood), log Z, using existing algorithms [21]. The likelihood function was derived on the
basis of maximum entropy and is applicable to any time series dataset with replicated data.
CAGE clusters were assigned to one of the exponential kinetic signatures or to the linear model
according to the value of log Z. A cluster was assigned to a ‘no decision’ category if the values
oflog Z (and the associated standard deviations) computed for each model did not permit a
clear assignment. An example of fitting early peak and linear models to an EGRI time course is
presented in Fig 1C. Further details of the specification of priors for model parameters, and
model selection are given in Materials and methods.
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Core regulatory components in the immediate-early response

The percentage of CAGE time series that could be reliably annotated with a kinetic signature
varied from 21%-39% across the cell types and protein coding or RNA biotypes. The assign-
ment of clusters to signatures showed a slight preference for the early peak category (S1 Fig
and S2 Fig). In contrast, relatively few clusters were assigned to the linear signature (due in part
to the decision making procedure that aimed to distinguish non-linear from linear expression
patterns). Time series that could not be confidently annotated were excluded from further anal-
ysis, see S3 Fig for examples where an annotation could and could not be made.

Assignments of time series to models allowed commonalities and differences between cell
types and stimuli to be identified, even in the presence of varying numbers of time points sam-
pled for each cell type. Eleven genes exhibited the early peak response in all four data sets, in-
cluding eight known IEGs (FOS, FOSB, EGR1, DUSP1, CTGF, CYR61, SCRNP1, and FOSL1,
see S4A Fig). Known IEGs JUN and TRIB1 were among the additional seven IEGs and five
transcription factors that had this response in three of the four data sets, see S4 Fig for the
numbers of Ensembl genes in the intersection of the kinetic signature categories across all data
sets. The two MCF7 data sets had a greater number of common annotations than did the two
AoSMC data sets. CAGE data and the fitted kinetic signatures for JUN, FOS, EGR1 and
DUSP1 are plotted in Fig 1D (with additional examples in S5 Fig). Although immediate early
genes are typically rapidly upregulated, they may also be downregulated as is the case for JUN
in AoSMC-FGF2. Lists of the genes assigned to kinetic signatures and the corresponding
model parameters are provided in Supporting File 1. The picture that emerges suggests com-
monalities at the core of the regulatory networks governing the immediate-early response in
different scenarios, as seen in the known IEGs and TFs shared across cell types and stimuli. Be-
yond this are larger numbers of known and possibly novel IEGs, demonstrating the specificity
of the response to each stimulus. In fact in each case the vast majority of genes assigned to the
early peak signature (candidate IEGs or SRGs) were specific to a particular cell type and stimu-
lus. This offers an explanation for the ambiguity in the literature on the immediate-early re-
sponse, with remarkably diverse arrays of genes implicated across different studies [11].

The early peak signature is enriched for IEGs and signalling pathways

Examining the transcript classifications more broadly we saw further commonalities shared
among the responses to different stimuli. Considering CAGE clusters with kinetic signature
classifications across datasets increased the recovery of known IEGs. The proportion of clusters
associated with known IEGs increased from 1.8% in the data set as a whole to 3.0% in the set of
clusters where a reliable classification to any signature could be made, and then to 5.1% in the
set of early peak clusters. The early peak category was significantly over-represented for known
IEGs as shown in Table 1. This set of 194 IEGs was curated from the literature by the FAN-
TOMS consortium (published as supplementary S6 Table in [19]). It should ne noted that this
list may contain genes that are not necessarily activated rapidly in all cell types and by all sti-
muli. However, to qualify as an IEG these genes must be expressed without de novo protein
synthesis. The enrichment reported in Table 1 is with respect to the set of clusters with any as-
signed kinetic signature, which is already enriched for IEGs (p < 0.002). The measure of effect
size is the odds ratio (the proportion of clusters in a specific category that are IEGs, divided by
the corresponding proportion of non-IEGs in that category).

Notably, IEGs were enriched in the early peak category without specifying a particular
threshold on ;. Our categorisation according to the shape of the response identified a larger set
of genes that retained enrichment for known IEGs in comparison with an alternative approach
where we looked for enrichment of IEGs within early peak genes within specific bounds on .
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Table 1. Enrichment of IEGs in kinetic signatures.

Data set Early peak Late peak Dip Decay Linear

AoSMC-FGF2 1.4 (p = 0.022) 0.35(p=1) 0.64 (p = 0.98) 1.9 (p = 3.2e-3) O(p=1)
AoSMC-IL1b 1.1 (p = 0.33) 1.8 (p = 5.1e-05) 025 (p=1) 0.6 (p = 0.96) O(p=1)
MCF7-EGF 1.7 (p = 9.6e-07) 043 (p=1) 0.91 (p = 0.76) 023 (p=1) O(p=1)
MCF7-HRG 2.6 (p < 1e-16) 0.78 (p = 0.96) 031 (p=1) 029 (p=1) O(p=1)
All data sets 1.7 (p < 1e-16) 0.89 (p=0.91) 053 (p=1) 06((p=1) O(p=1)

Enrichment (odds ratio) and p values by data set, and for all data sets (significant enrichments are in bold: p < 0.05 by hypergeometric test).

doi:10.1371/journal.pcbi.1004217.t001

As will be demonstrated below, IEGs have ¢, values across the 1-240 min range hence an ap-
proach based on thresholds is not likely to succeed. Therefore the early peak category captures
an expression pattern common to IEGs, and thereby enhances the detection of IEGs. Again,
classifications of the data into distinct characteristic profiles appear most useful for large time
series datasets.

Gene ontology terms associated with early peak clusters that were significantly over-repre-
sented in HRG treated MCF7 cells are listed in S1 Table, see also S6 Fig (analysis performed
with GOrilla [22] and REVIGO [23]). The terms listed in S1 Table were also over-represented
in the set of early peak genes when all four data sets were combined (but did not have a signifi-
cant q value after multiple-testing correction in this case). Terms relevant to the immediate-
early response included regulation of gene expression, regulation of transcription from RNA po-
lymerase II promoter, regulation of RNA metabolic process and regulation of metabolic process.
In addition, RNA splicing and several associated terms were found in all four data sets com-
bined, but with q values exceeding 0.05 (p = 9.57E-05; q = 0.07), indicating that early peak
genes have a major impact on the regulation of transcription and splicing, consistent with pre-
vious studies of IEGs [1]. When gene lists were combined in this way, the number of genes in
the target set increased from around 10% to 30% of the background set hence enrichment was
more difficult to demonstrate.

Pathways in the Panther database [24] that were over-represented in gene lists derived from
annotated CAGE clusters in all four experiments are listed in Table 2. Pathways associated
with the early peak signature included the transforming growth factor (TGF) beta signalling
pathway, and the platelet derived growth factor (PDGF) signalling pathway, which play critical
roles in cellular proliferation and development [24] and shares the downstream targets with
the ErbB receptor signalling pathway, the receptors for EGF and HRG and all those belong to
the members of receptor tyrosine kinases (RTK) family. RTK signalling is initiated upon bind-
ing of ligands to the corresponding receptor complex and this leads to the phosphorylation of
other cellular proteins. The phosphatidylinositol 3 (PI3K) pathway is also over-represented.
PI3K binds to tyrosine phosphopeptide sites of receptors serving diverse functions. RTKs can
stimulate cells through either the MAPK pathway, the AKT/PI3K pathway, or a combination
of the two [25]. The promoters of IEGs JUN and FOS contain a number of elements that are
targets for MAPK signalling [26]. The TGF-beta, integrin and Toll-like receptor (stimulating
NF-«B) signalling pathways also provide a route for signals to pass from the extracellular envi-
ronment to the nucleus [5, 27, 28]. Pathway analysis indicates that kinetic signatures identify
the transcription of genes linked to the RTK, AKT, MAPK and NF-xB pathways.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004217  April 17,2015 7/24
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Table 2. Pathway analysis.

Pathway Signature P value
TGF-beta signaling pathway early peak 2.2e-04*
Oxidative stress response early peak 3.9e-04*
Platelet derived growth factor (PDGF) signaling pathway early peak 5.2e-03
Angiotensin Il-stimulated signaling through G proteins and beta-arrestin early peak 0.024
Phosphatidylinositol 3 (PI3)-kinase pathway early peak 0.016
Angiogenesis early peak 0.021
Toll receptor signaling pathway late peak 8.6e-05*
Integrin signalling pathway late peak 8.5e-04*
Cadherin signaling pathway late peak 8.4e-03
Apoptosis signaling pathway late peak 0.037
Notch signaling pathway decay 3.3e-03

P values for the over-representation of CAGE clusters in 73 Panther gene sets containing at least 20
genes. P values are calculated by hypergeometric test on the counts of clusters from all four data sets
combined. Only pathways with p values < 0.05 are listed (those with a FDR significant at 0.1 are indicated
by *).

doi:10.1371/journal.pcbi.1004217.t002

Kinetics and chromatin features underlying IEG induction

Most CAGE clusters associated with known immediate early genes were assigned to the early
peak signature where they constituted 5% of the total CAGE clusters exhibiting this behaviour.
Values for ¢, in the range 1-100 min were more prevalent for early peak clusters in comparison
with clusters annotated with the dip signature (see S7 Fig). When the rates, J, for early peak,
dip and decay signatures were considered (note that the decay model is parameterised by the
half life t;, rather than the switch time t,, see Eq 3 in Materials and methods), dip and decay sig-
natures showed similar distributions to each other, and both were shifted towards higher values
in comparison with early peak rates. This may indicate that the (pre) mRNA kinetics of switch-
ing-on are faster than switch-off kinetics as might be expected due to the latter being dominat-
ed by relatively slow mRNA degradation rates in many cases [9]. The distribution of ¢, values
for early peak clusters of known IEGs was consistent with the overall distribution (S7 Fig)
which may indicate that the larger set of transcripts we assigned to the early peak signature
may be part of a regulatory module under the same control as IEGs, or may include uncharac-
terised IEGs.

Attenuation of the immediate-early response. It has been proposed that nucleotide bind-
ing proteins are among the feedback regulators responsible for the attenuation of the immedi-
ate-early response to EGF [10]. This set of delayed early genes has been shown to be activated
in waves following FOS, JUN and EGR1 expression in HeLa cells [10]. Following Amit et al.
(2007) [10], we constructed a set of 444 genes assigned with the Gene Ontology annotation for
nucleotide binding GO:0000166 (IEA assignments were excluded). Only three of these genes
were transcription factors and six were IEGs therefore these sets were essentially disjoint. The
set of nucleotide binding genes was over-represented in the early peak signature in all four data
sets combined (p = 0.007), and for AoSMC-FGF2 and MCF7-EGF data sets individually
(p =0.018 and p = 0.003 respectively). The timing of immediate early and nucleotide binding
gene expression is shown in Fig 2A and 2B where it can be seen that in AoSMC-FGF2, AoSM-
C-IL1b and MCF7-EGF data the largest proportion of known IEGs is found in the 30-90 min
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interval when t, values are binned in 30 min intervals (the proportion of clusters annotated to
known IEGs is expressed as a percentage of all clusters within each 30 min period according to
t,). This pattern was less apparent in the MCF7-HRG cell line where the proportion of known
IEGs found in an interval exceeded the overall average towards the end of the time course. Fur-
ther, in AoSMC-FGF2, AoSMC-IL1b and HRG treated MCF?7 cells there was a peak in IEGs
around 3 hours after stimulus (180-210min) suggesting genes currently described as IEGs may
also have a role later in the immediate-early response than would be expected. Surprisingly, the
proportion of nucleotide binding genes was maximal in the 60-90 min interval for the AoSM-
C-IL1b and MCF7-EGF data, and in all cases many nucleotide binding genes were activated
concurrently with IEGs in contrast with previous reports [10]. It is also worth noting that sig-
nificant downregulation did not occur until the second hour, and this may require both early
induction of transcriptional repressors and the RNA degradation proteins BTG2 and ZFP36
(tristetraprolin) [29].

Thus, cellular responses to FGF2, EGF, IL1b and HRG may be distinguished by the variable
timing of factors (whether they are known IEGs or nucleotide binding proteins) that constitute
and repress each response.

Further exploration of model parameters yielded other insights. The timing of IEG induc-
tion and that of known transcription factors (TFs) is contrasted in Fig 2C where a relatively
consistent pattern of IEG activation beginning with FOS, DUSP1 and IER2, and continuing
with JUN, C-MYC, EGR1 and DUSP2 can be seen. A number of non-IEG transcription factors
were also activated: TBX2 activates early and RUNXI late in the timelines. After HRG stimula-
tion, genes typically peak later than after EGF stimulation: on average, the genes listed in Fig
2C take 26 min longer to reach their peak after HRG stimulation in comparison with EGF
stimulation. This may be related to the fact that the HRG-induced repressor of FOS transcrip-
tion requires new protein synthesis, whereas this is not required following EGR1 induction [4].
The average difference between IL1b and FGF2 stimulation in AoSMC was approximately 10
min for genes assigned to the early peak category. See S8 Fig for timelines for Aortic smooth
muscle cells and for non-coding genes.

Targets of the MAPK cascade in Fig 2C included the transcription factors ETV3 and KLF4
[30] as well as IEGs JUN and FOS [26]. The transcriptional repressor NAB2 peaked relatively
late in both MCF7 time courses. This is consistent with reports that NAB2 represses EGR1 and
thereby attenuates the immediate-early response in HeLa cells stimulated with EGF [10]. Nu-
cleotide binding genes found to peak within 240 min in both MCF?7 time courses included the
transcription factor RUNX1 and three IEGs: TRIB1, SIK1 and GEM. Significant upregulation
of NAB2, TRIB1 and GEM was previously found in MCF7 cells following EGF and HRG treat-
ment (see S1 Table in [3]) These genes may play a role in the attenuation of the immediate-
early response in MCF?7 cells. Notably, physical interactions between RUNX1 and JUN, FOS
and MYC are listed in BioGRID [31], as are interactions between TRIB1 and MYC, and NAB2
and both EGR1 and EGR2. Interactions between JUN and both FOS and MYC are also listed.

IEG transcription peaks within 120 minutes. Immediate early genes are typically shorter
in length than the genome-wide average [6]. The mean length of genes for which we have
CAGE cluster data was 64Kb, more than twice the mean length of the subset of known IEGs
for which we have data (24Kb). The mean length of genes annotated with the early peak signa-
ture was close to the genome average (67Kb), indicating no enrichment for shorter genes, and
hence that this category contains a mixture of IEGs, co-regulated and delayed early genes and
their downstream targets.

However, a weak positive correlation between gene length and ¢, could be shown for early
peak genes by Pearson correlation (all early peak genes: R = 0.10, p = 2.8e-11; known IEGs:

R =0.11, p = 1.2e-3; nucleotide binding genes: R = 0.11, p = 3.8e-5). Fig 3A and 3B contrast the
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Fig 2. Timing of early peak CAGE clusters. (A) Bar charts showing the percentage of early peak clusters associated with IEGs (t; binned in 30 min
intervals), and (B) and those associated with nucleotide binding genes. The horizontal line indicates the average percentage. (C) The timing of known IEGs
and transcription factors is shown for IEGs (red) and TFs (purple) assigned to the early peak signature in each MCF7 experiment. Symbols indicate the t
(plotted on the x axis) and are labelled with the gene name associated with the CAGE cluster (symbols are positioned on the y axis for legibility only).

doi:10.1371/journal.pcbi.1004217.9g002
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Fig 3. Density plots of gene length against t; for early peak clusters. Grey contour lines indicate the projected ts for the completion of transcription
accounting for gene length (a transcription rate of 60 bases/s is assumed [32]). (A) Early peak known IEGs (red symbols represent the underlying IEG CAGE
cluster data). (B) Early peak known nucleotide binding genes and underlying data (blue symbols). (C) Travelling ratios for known IEGs and for early peak
genes in MCF7 cells demonstrate promoter proximal pausing as the travelling ratio is shifts towards higher values. The intersection of IEGs and early peak
genes (right-most plot) shows that the strong pausing effect seen for IEGs holds for those assigned the early peak signature.

doi:10.1371/journal.pcbi.1004217.9003

density of gene length vs ¢, for known IEGs assigned to the early peak signature with the densi-
ties of early peak nucleotide binding genes. Known IEGs were typically shorter in length and
had lower t, than nucleotide binding genes (combined data from all four datasets). Surprising-
ly, Fig 3A demonstrates that short IEGs ~ 1-5Kb in length were activated with broad range of
kinetics, from the lowest to the highest switch time t,. Thus the typically short length of IEGs
will decrease the time required for their transcription, but IEGs are not necessarily induced
with equally rapid kinetics. The time at which short IEGs reach their transcriptional peak was
up to three hours after the stimulus suggesting their activation rates coordinate their expression

with diverse processes and pathways: late-acting IEGs are not delayed due to gene length. Fur-
ther, many early peak genes not known to be IEGs fell within the range of characteristics of
known IEGs: length from 1.2Kb-240Kb, ¢, less than 210 min.
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The contour lines plotted in Fig 3A and 3B show the projected ¢, for the completion of tran-
scription given the estimate for the 5 kinetics and the length of the gene. For example, the con-
tour plotted at 120 min curves leftwards to identify those longer genes which were transcribed
with lower t; whose complete transcription would peak at 120 min (assuming equivalent splic-
ing regulation). The density for known IEGs was predominantly within the 120 min contour.
In contrast, the density for nucleotide binding proteins was beyond this contour. Comparing
the counts of early peak IEGs, nucleotide binding genes and TFs within the 90 min contour
with those outside this contour shows 28% of early peak IEGs, 17% of nucleotide binding genes
and 22% of TFs lie within this contour in comparison with the 18% average for early peak
genes. IEGs were significantly enriched within the 90 min contour (p = 5.1e-5 by hypergeomet-
ric test). Both early peak IEGs and TFs were enriched within the 120 min contour (p = 1.5e-4
and p = 0.04 respectively by hypergeometric test). While currently identified IEGs have distinct
characteristics, our analysis also identifies a number of TFs induced on a similarly rapid time-
scale that may be part of the initial phase of the immediate-early response, or its attenuation.

Promoter-proximal pausing is prevalent in IEGs in MCF7 cells. The assignment of
genes to kinetic signatures could also be used to explore their association with promoter-proxi-
mal pausing through calculation of the travelling ratio. The travelling ratios for the union of all
genes with CAGE clusters annotated as early peak in the two MCF7 data sets and for the set of
known IEGs are presented in Fig 3C. The travelling ratio is the ratio of RNAPII ChIP density
at the promoter to that over the gene body [33]. We calculated the ratio of exon 1 density (read
depth/locus covered) to the density over all other exons. Using the RNAPII ChIP data (control)
from MCF?7 cells published by Welboren et al.[34], we found IEGs to be associated with pro-
moter-proximal pausing (that is, with a greater travelling ratio than non-IEGs; p = 1.2e-9 by
Wilcoxon rank sum test on 114 IEGs compared with 8438 non-IEGs), and that the larger set of
early peak genes was also associated with pausing (p = 1.4e-14; 1421 early peak genes compared
with 7131 reference genes). The set of 65 early peak genes that were known to be IEGs shows
notably high travelling ratios (p = 3.8e-10; 65 genes compared with 8487 reference genes). The
travelling ratio plots in Fig 3C illustrate these significant shifts towards increased ratios be-
tween promotor-proximal (exon 1) and gene body RNAPII density as the cumulative density
curves shift rightwards.

Discovery of non-coding RNA genes active in the immediate-early
response

CAGE clusters for RNA genes were assigned to kinetic signatures using the procedure de-
scribed above. A lower threshold was used for the initial data selection: A minimum sum of 3
TPM normalised by relative log expression (RLE) over the time course was used as a threshold
to increase the number of time courses from the more conservative 10 TPM criteria used for
protein coding genes. S9 Fig shows the overlap between the assignments to clusters. LncRNA
NEAT]1 showed the early peak response in all four data sets, as did MALAT1 in three of the
four sets. S10 Fig plots the CAGE data and kinetic signatures for NEATI.

The role of ncRNA in the immediate-early response is not well understood. A small number
of mature miRNA that respond to EGF signalling have been identified [12, 35], and, in yeast,
IncRNA have been shown to poise GAL genes for rapid activation [36]. Clusters assigned to the
early peak signature were over-represented relative to other signatures for IncRNA and
miRNA precursors (p = 0.013 and 3.8e-3, respectively, by hypergeometric test), and late peak
and decay signatures were over-represented for snRNA (p = 1.9e-4 and 0.022 respectively).
Thus IncRNA and miRNA precursors showed an analogous kinetic response to IEGs. The dis-
tributions of ¢, for IncRNA, snoRNA, snRNA and miRNA assigned to the early peak category

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004217  April 17,2015 12/24
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doi:10.1371/journal.pcbi.1004217.9004

are shown in Fig 4A. These distributions can be compared with those for protein coding genes,
including known IEGs (S7 Fig). These RNA biotypes had more rapid kinetics as shown by the
number with £, of less than 30 min.
The association between ncRNA ¢, and length is shown in Fig 4B where it is apparent that
IncRNA and miRNA precursors were activated with a range of kinetics—as was the case for
known IEGs (compare with Fig 3). Naturally, these two classes of ncRNA have very different
lengths, and miRNA precursors must be processed further to become part of an
active complex.
Early peak CAGE clusters are located in open chromatin in MCF7 cells. Studies of
known IEGs have suggested that they are transcribed from loci with constitutively permissive
chromatin structure [1]. To determine the accessibility of CAGE clusters, read counts of
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DNasel hypersensitivity data for MCF7 cells [37, 38] were determined for 200 bp windows cen-
tered at the midpoint of each protein-coding and non-coding MCF?7 time course CAGE cluster.
Protein-coding clusters assigned to the early peak category had significantly more reads than
the remaining clusters (14% increase in mean read count, p = 2.1e-6 Wilcoxon rank sum test).
Clusters associated with transcription factors were also in more accessible regions (p = 0.018),
but, surprisingly, clusters assigned to known IEGs or nucleotide binding genes did not differ
significantly from the reference set in either MCF7 time course (p > 0.08 by Wilcoxon rank
sum test). We then explored the relationship between DNasel counts and CAGE expression at
time 0, maximum CAGE expression in the time course, and maximal fold change in CAGE ex-
pression across the time course for both MCF7 data sets. No predictive correlations were found
between DNasel and CAGE expression. However, we saw that CAGE expression at time 0 of
greater than 10 TPM and DNasel counts between 100 and 1000 were typical, whereas DNasel
counts of less than 100 were associated with TPM values of less than 10 at time 0. These obser-
vations suggest that a minimal level of chromatin accessibility is sufficient for the rapid activa-
tion of an immediate early gene on stimulus.

Considering the accessibility of CAGE clusters for non-coding genes, we found no signifi-
cant difference between early peak clusters and the remaining set of non-coding clusters. How-
ever, early peak IncRNA had significantly greater DNasel counts than the remaining non-
coding clusters (40% increase in mean read count, p = 1.3e-8 Wilcoxon rank sum test). S11 Fig
shows the distribution of counts for IncRNA resembles that of early peak protein-coding genes.
Early peak miRNA precursors had fewer counts on average than the reference, but not
significantly so.

Genome-wide analysis of enhancer activity was then performed. Multiple enhancer expres-
sion values arising from the many-to-many assignment of distal enhancers to genes [19, 39]
were associated with genes by averaging. The mean enhancer expression of the union of early
peak genes in MCF7 data was 74% of the mean in non early peak genes (2724 genes; p = 5.9¢-
07), and enhancer expression for IEGs was further reduced to 46% of the mean in non-IEGs
(238 genes; p = 0.16). In contrast, enhancer activity for transcription factors was 30% greater
than for non-TFs (901 genes; p = 2.5e-14).

These results indicate that the promoters of IEGs and early peak genes are in accessible
chromatin (but not more so than average in the case of IEGs), and are poised for transcription
as shown by the high travelling ratios, but prior to stimulus they are not driven by enhancer ex-
pression. It is likely that this state is determined by specific transcription factors for IEGs and
early peak genes.

Non-coding RNA in the attenuation of the immediate-early response. It has been previ-
ously demonstrated that in response to EGF stimulation a set of 23 mature miRNA show a
rapid reduction in expression that upregulates a large number of target mRNAs in non-tumori-
genic MCF-10A breast epithelial cells [12]. These miRNA were named immediately downregu-
lated miRNAs (ID-miRs) [12]. Many mRNA are repressed by more than one ID-miR, for
example, EGR1 is targeted by hsa-mir-191 and hsa-mir-212. In contrast, mature hsa-mir-21
was previously found to be upregulated on EGF stimulation [12, 35, 40].

Observing that the transcription of the host gene for hsa-mir-155 (an ID-miR) showed clear
peaks in the time courses of AoSMC-FGF2, AoSMC-IL1b and MCF7-HRG cells (S12 Fig), and
that the precursor transcript of hsa-mir-21 showed early or late peaks in expression in three of
the CAGE time course datasets we consider, we sought to investigate the relationship between
miRNA-mediated repression and transcriptional attenuation, and to test whether or not kinetic
signatures can be used to find correspondences between time course datasets.

Utilising a small RNA sequencing dataset for MCF7 cells stimulated with HRG (9 time
points from 0 to 480 min; 3 replicates per treatment, minimum library size 5,340,873 reads),
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we applied the kinetic signature assignment procedure once again to identify regulated species.
Of the 716 mirbase miRNA that passed a minimum expression criterion (sum of median nor-
malised reads across the time course > 10), 11.6% were assigned to a kinetic signature (early-
Peak: 25; latePeak: 6; decay: 33; dip: 18; linear: 1;) a somewhat lower proportion than for
CAGE data reflecting a greater variation between replicates. S13 Fig shows examples of the as-
signment of mature miRNA time courses to the dip and decay kinetic signatures that we ex-
pected to observe. None of the miRNA assigned to dip or decay signatures are previously-
described ID-miRs. S14 Fig presents plots of the time courses for the eleven ID-miRs in the
dataset. Surprisingly, only three of the eleven ID-miRs are downregulated from time 0, others
show peaked or increasing profiles (the variation in the data is such that none of the ID-miRs
can be assigned to a kinetic signature with our usual statistical criteria). These data indicate
that ID-miRs may play diverse regulatory roles that are dependent on cell type and stimulus.

Reasoning that miRNA-mediated repression will be reflected in the CAGE signals, either by
direct action on mRNA or indirectly through transcriptional inactivation processes, we sought
to establish a connection between the targets of mature miRNA that are assigned to the dip sig-
nature, and protein-coding genes with CAGE clusters assigned to the early peak signature in
MCF?7 cells stimulated with HRG. Making use of the TargetScan database of miRNA targets
(version 6.2; http://www.targetscan.org) we found all targets for dip miRNAs. For 12 of the 15
dip miRNA present in TargetScan we observed a greater representation of miRNA targets in
early peak genes than in a reference set of unregulated genes (namely, all protein-coding genes
that could not be assigned to a kinetic signature in MCF7-HRG). The targets of seven of these
miRNA were significantly overrepresented (by hypergeometric test): hsa-mir-139 (p = 2.6e-2);
hsa-mir-224 (p = 1.1e-2); hsa-mir-522 (p = 1.5e-6); hsa-mir-548n (p = 9.8e-7), hsa-mir-676
(p = 3.2e-2), hsa-mir-3163 (p = 2.1e-7) and hsa-mir-3662 (p = 3.5e-3) and are candidate ID-
miRs for MCF7 cells. The data for mature hsa-mir-3163 and two of its targets FOSB and EGR3
are shown in Fig 5A.

Of the four established ID-miRs for which we have CAGE data for the precursor, only two
(hsa-mir-320a and hsa-mir-155) satisfied the expression criterion in the small RNA sequencing
data. CAGE and miRNA expression data for these transcripts are presented together in Fig 5B
where a lag between the rise in the CAGE signal and the recovery in the mature miRNA level
for hsa-mir-320a can be seen, whereas the CAGE peak appears concurrent with the rise in ma-
ture hsa-mir-155 (none of these profiles satisfied our statistical criteria but significant changes
occur between selected time points). Consistent with earlier reports on EGF stimulus, mature
hsa-mir-21 increases in response to HRG as does the primary transcript (which was assigned
to the early peak signature), see Fig 5B. Complex regulatory steps intervene between these two
stages of miRNA maturity and impact on the stability of these transcripts hence there is no
simple relationship between them. Further, it can be observed in Fig 5 and S13 Fig that there
are often rapid fluctuations in mature miRNA in the first 100 min. Our kinetic models fit to
the general trend which tends to have a minimum around 240 min, however, the rapid fluctua-
tions may also be biologically significant in the first minutes after stimulus. S15 Fig plots the
time course data for 27 mature miRNAs and the 41 CAGE clusters associated with their pre-
cursors in the MCF7-HRG experiment. Increases in CAGE expression may occur prior to in-
creases in mature miRNA levels as can be seen for hsa-mir-21 and hsa-mir-222, or reductions
in mature miRNA may occur in advance of reductions in CAGE expression as for hsa-mir-
4800. It is readily apparent that there is no simple correlation between precursor and mature
transcript abundance. A complete explanation of their relationship would account for the syn-
thesis and stability of each species and is beyond the scope of the present manuscript.

It has long been known that miRNA host genes may be protein coding or IncRNAs [41]. As
noted above, the host gene for hsa-mir-155 is a IncRNA that is assigned to the early peak
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Fig 5. Mature microRNA regulation and host gene activation. (A) Expression of mature hsa-mir-6163 and transcriptional activation of two of its target
IEGs FOSB and EGR3 in MCF7 cells in response to HRG. Data values are plotted as circles (median value is filled). (B) Median CAGE expression (black
circles) of precursor miRNA and median mature miRNA expression (red triangles) for hsa-mir-320a, host IncRNA MIR155HG and mature hsa-mir-155, and
for hsa-mir-21 in MCF7-HRG (three replicates, lines are a spline fitted to the data). For hsa-mir-320a the increase in CAGE expression is significant when
comparing Omin and 210min and the decrease in mature transcript levels is significant when comparing Omin and 240min (p < 0.05 by t test). For hsa-mir-
155 the increase in CAGE expression of MIR155HG is significant when comparing Omin and 180min, and the increase in mature transcript levels is
significant when comparing Omin and 240min (p < 0.05 by t test). For hsa-mir-21 the increases in CAGE expression and in mature transcript levels are
significant when comparing Omin and 80min (p < 0.05 by t test).

doi:10.1371/journal.pcbi.1004217.9005

signature in three CAGE datasets. We also found MIR99AHG (host gene for hsa-mir-99a, hsa-
let-7c and hsa-mir-125b2) and two other IncRNA whose locus contains miRNA to be similarly
transiently upregulated in two or more datasets. The miRNA in host gene MIR99AHG are pre-
dicted to target 11 IEGs, hsa-mir-155 targets 26, comparable with established ID-miRs hsa-
mir-191 and hsa-mir-212 which target 4 and 8 respectively (these miRNA are not located with-
in a IncRNA locus). Across the four CAGE datasets 22 distinct miRNA are within a IncRNA
locus assigned to a transient kinetic signature, thereby collectively targeting 129 IEGs (73.3% of
known IEGs present in the TargetScan database) indicating a considerable

regulatory potential.

We have identified seven immediately and transiently downregulated mature miRNA that
preferentially target early peak genes. While these regulatory miRNA differ from those previ-
ously associated with the immediate-early response, the regulatory role appears to be the same.
The fine-tuning of signalling pathways by miRNA has been previously described [12, 13, 42—
44] and our analysis demonstrates that this phenomenon can be identified in high-resolution
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time course data. Our findings indicate that a hypothesised negative feedback mechanism for
Atf3-Egr1 kinetics that involves the synthesis of miRNA [13] may also be a more general fea-
ture of the immediate-early response. The relationship between precursor and mature miRNA
transcripts is complex, however, our data suggests that downregulation of mature hsa-mir-
320a is concurrent with increased transcription of the precursor transcript which can be ex-
pected to restore the repression of its target mRNAs which include DUSP4 and FOSL1 at a
later phase of the immediate-early response. Transcriptional activation and repression of
miRNA precursors in the immediate-early response is readily apparent in the small intersec-
tion of the datasets for MCF7-HRG.

Discussion

We have defined kinetic signatures, including a signature representing the classical IEG re-
sponse, as the basis for a novel approach to time series data analysis. We have shown that large
numbers of transcripts can be categorised according to the kinetic signature their expression
profiles fit best, if any, and the categories can then be explored using standard enrichment sta-
tistics. These methods have successfully identified known IEGs as well as many other tran-
scripts displaying the known characteristics of IEGs. A Bayesian approach utilising the nested
sampling algorithm [21, 45] is used to compare the fit of the models to the CAGE time series
data, and in comparison with other methods, we find that more time courses can be assigned
to kinetic signatures and with greater confidence. Model parameters also give the timing of po-
tentially important events such as transitions in expression levels within the time course.
Known IEGs are significantly enriched in CAGE clusters assigned to particular signatures
(those involving early but transient upregulation within 240 minutes which we term the early
peak response) and show other biological features of interest. In addition many relatively lowly
expressed transcripts show expression profiles of interest, implicating the involvement of par-
ticular miRNA and IncRNAs in the immediate-early response.

Genes assigned to the early peak kinetic signature were over-represented in gene annota-
tions and pathways that are biologically relevant to the immediate-early response, including
regulation of transcription from RNA polymerase 1I promoter and the TGF-beta signalling path-
way. Nucleotide binding genes have been proposed as components of the negative feedback ar-
chitecture of the immediate-early response. We found these genes to be activated concurrently
with IEGs in many cases, but, considering the time for completion of transcription where gene
length is accounted for, the translation of these genes would peak later.

In common with known immediate-early genes, early peak genes showed promoter-proxi-
mal pausing in MCEF7 cells, an RNAPII regulatory pathway previously demonstrated for select-
ed IEGs in macrophages [7]. From consideration of DNasel data, CAGE clusters for early peak
genes and transcription factors tended to be located in accessible chromatin in MCF7 cells. The
absence of a correlation between DNasel counts and CAGE expression suggests that IEG pro-
moters need not be located in the most accessible chromatin, rather a minimum level of acces-
sibility is required and is not otherwise predictive of transcriptional activity. These results
suggest that IEGs and early peak genes are primed prior to stimulus, with a permissive chroma-
tin state maintained by transcription [7].

Intriguingly, certain IncRNAs had properties analogous to known IEGs. Such similarities
and differences between the epigenetic regulation of IncRNA and mRNA have been reported
previously in genome-wide data [17]. Many of these genes were activated rapidly after stimu-
lus, and those assigned to the early peak signature originated from CAGE clusters in open
chromatin. Further, regulated IncRNA are host to many miRNA targeting IEGs.
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Mature miRNAs previously found to be immediately downregulated in response to EGF
[12] were found to have diverse responses in the MCF7-HRG dataset. However, the mRNA tar-
gets of a number of immediately downregulated mature miRNA in this data were found prefer-
entially in early peak (transiently upregulated) protein-coding genes in the independent, but
matched CAGE dataset thus supporting the use of kinetic signatures to detect meaningful tem-
poral patterns (with respect to known miRNA targets).

We identify hsa-mir-139 as an immediately downregulated miRNA: miR-139 is a known
regulator of several canonical pathways in the metastatic cascade in MCF7 cells [46], and is
predicted to target the TGF-beta and PI3 signalling cascades [46] that we identify here as tar-
gets of immediate early genes. Differences in the miRNAs that respond to stimulus in MCF7
cells in comparison with MCF10A cells [12] may be due to the former being estrogen receptor
positive, and to the different receptors in the ErbB receptor family that are stimulated. The
MCEF7-HRG data analysed here is the response to a ErbB3/4 ligand whereas the ID-miRs iden-
tified by Avraham et al[12] are responding to a ErbB1/EGFR ligand. Such differences have im-
plications for the translational potential of miRNAs in cancer [47].

LncRNA are typically expressed at very low levels (NEAT1 and MALAT]1 being notable ex-
ceptions), as are precursor miRNA, making their analysis problematic for methods that require
more strictly thresholded expression data. The model definition and selection methodology we
present is not limited by expression level, for example by tests for differential expression, nor
do we rely upon the arbitrary thresholding that is common in clustering analyses. Models are
specified in advance, and selection is based on the integration of model parameters rather than
from a point estimate of best values, an approach which can be sensitive to the optimisation
procedure used. Gene sets assigned to the best fitting model can be tested for over-representa-
tion of established gene and pathway annotations, and can be integrated with genome-wide
data sets to test additional hypotheses.

Materials and Methods
Definition of kinetic signatures

Peak and dip signatures are piece-wise exponential functions parameterised by the basal ex-
pression (p;), maximal change in expression (p,) and time of the change (t;). The decay signa-
ture is parameterised by the basal expression (p;), the maximal change in expression (p,, being
the difference between the expression at time 0 and p;) and the half-life (#;,). The linear model
is parameterised by the expression at time 0 (p;) and the change in expression (p,) from which
the rate of increase or decrease can be calculated. See Fig 1A for plots of these functions.

The peak and dip signature functions require a rate constant § which is not an explicit pa-
rameter of the model. Instead, the rate is calculated from the switch time #; and the piece-wise
function specifies that the response reaches 90% of the expression change p, at £, see Eqs 1 and
2. This formulation ensures that the initial rise or fall in expression shows an exponential char-
acteristic that is not limited to the almost linear characteristic that might otherwise result from
a small value of the rate constant &.

In the peak model, expression increases to 90% of the change in expression parameter p, at
t, from the basal level p; (Eq 1). & is defined in terms of £.

o = log(0.1)/t,

y = pt+p(l—¢) t<t (1)
y P, +0.9p, —0.9p, (1 — ) >t
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In the dip model, expression drops by 90% of the change in expression p, at ¢ from the ini-
tial level p;+p, (Eq 2; 8 is again defined in terms of t;).
0 log(0.1)/t,

y 21 +P2€51 <t (2)
y = p, +0.1p, +0.9p,(1 — &%) >t

In the decay model, expression starts at p;+p, and drops exponentially at rate & towards p;.
In this case § is calculated from the half-life #;, which is an explicit parameter of the decay
model (Eq 3).
0
y

log(2)/t,

s 3)
pi T+ poe

The fit between kinetic signatures and the time series CAGE data is assessed using the
nested sampling algorithm to calculate the log of Bayesian evidence (also known as the margin-
al likelihood), log Z [21] from the likelihood function and the prior. All priors are selected uni-
formly from a range bounded by maximum and minimum values derived from the time
course. A likelihood based on the 11-norm is defined by Eqs 4 and 5 [48]. Eq 4 defines the nor-
malising constant ¢, as the expected value of the moduli of the difference between the replicate
observations at time f (x,) and the value predicted by the kinetic model (y,). The product of the
probabilities of the median observation at time ¢ (x,) defines the likelihood function for a time
series x of m samples (Eq 5). Maximisation of this likelihood minimises the sum of the moduli
of the residuals (rather than their squares) on the basis that the testable information is restrict-
ed to the expected value of the modulus of the difference between theory and experiment.
Should we know both the mean and variance, maximum entropy considerations would lead in-
stead to the Gaussian distribution [48]. The inference of model parameters from CAGE data
for the early peak and linear models using nested sampling and the 11-based likelihood is illus-
trated in Fig 1C. Time points where the replicates are most dissimilar contribute least to the
likelihood as ¢, is larger—as is desirable.

& = (jx — ) = / %, — i lp(x)d"x (4)

plaltnee) = [T5 e () )

t=1 t et

Bayesian evidence values and model parameter estimates (and their standard deviations)
are computed using nested sampling for all signatures for each time series. CAGE clusters are
assigned to one of the exponential kinetic signatures if log Z for that signature is greater than
10 times log Z for the linear model and log Z minus its standard deviation (sd) is greater than
log Z plus the estimated sd for any other exponential signature (nested sampling computes log
Z for parameters mapped to 0..1 and we used the resulting log Z for the unit cube for model
comparison). Clusters are assigned to the linear signature if log Z is 10 times greater than log Z
for all exponential signatures. This decision making procedure is designed to minimise the in-
correct assignment of exponential signatures to essentially linear data, and has been validated
using synthetic data. The theoretical basis of nested sampling is summarised in S1 Text.
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Supporting Information

S1 Text. Methods.
(PDF)

S1 Fig. Assignment of CAGE clusters for protein-coding genes to kinetic signatures.
(PDF)

S2 Fig. Assignment of CAGE clusters for RNA genes to kinetic signatures.
(PDF)

$3 Fig. Examples of parameter inference by nested sampling for CAGE data from
MCF7-HRG clusters. CAGE TPM values are plotted as circles (median value is filled), predic-
tions of the kinetic signature models using parameter means are shown in blue and the vertical
green lines indicate the mean tg (or t, in the case of the decay signature) and one standard devi-
ation above and below.

(PDF)

$4 Fig. Venn diagrams showing the overlaps between Ensembl Ids for protein-coding clus-
ters assigned to kinetic signatures. (A) early peak; (B) late peak; (C) dip; (D) decay.
(PDF)

S5 Fig. CAGE time course data and kinetic signatures for clusters associated with IEGs
JUN, FOS, EGR1 and DUSP1 for all four data sets. CAGE TPM values are plotted as circles
(median value is filled), predictions of the kinetic signature models using parameter means are
shown in blue and the vertical green lines indicate the mean t5 and one standard deviation
above and below.

(PDF)

S6 Fig. GO term enrichment and clustering for genes assigned to the early peak signature
in MCF?7 cells treated with HRG. This analysis was performed with GOrilla [22] and REVIGO
[23].

(PDF)

S7 Fig. Histograms of t; and half-lives in the exponential kinetic signatures. The distribu-
tions of t, for early peak, late peak, dip signatures and the half-life of the decay signature are
shown in blue, the distributions of the subsets of known IEGs in each category are shown in
red. The apparent bimodal distibution of ¢, for peak models is an artefact of the different
choices of prior range. When a peak model is run without the early or late restriction the distri-
bution of switch times is not bimodal, however, fewer time courses are assigned to the

peak category.

(PDF)

S8 Fig. The timing of known IEGs and transcription factors and non-coding genes assigned
to the early peak signature. (A) The timing of known IEGs and transcription factors is shown
for IEGs (red) and TFs (blue) assigned to the early peak signature in each AoSMC data set. (B)
The timing of non-coding genes assigned to the early peak category is shown for IncRNA (red)
and all other ncRNA (blue) in MCF7 data and (C) in AoSMC data. Symbols indicate the t; (x
axis) and are labelled with the gene name associated with the CAGE cluster.

(PDF)

S9 Fig. Venn diagrams showing the overlaps between Ensembl Ids for non-coding CAGE
clusters. (A) early peak; (B) late peak; (C) dip; (D) decay.
(PDF)
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$10 Fig. CAGE data and kinetic signatures for clusters associated with NEAT1 in all four
data sets. CAGE TPM values are plotted as circles (median value is filled), predictions of the
kinetic signature models using parameter means are shown in blue and the vertical green lines
indicate the mean tg and one standard deviation above and below.

(PDF)

S11 Fig. Distribution of DNasel counts for 200bp windows centered on CAGE clusters.
(Top) Distributions of early peak DNasel counts (blue) and non-early peak counts (black) for
protein-coding CAGE clusters, and QQ plot. Early peak clusters have significantly higher
counts. (Middle) Distributions of early peak DNasel counts (blue) and non-early peak counts
(black) for non-coding CAGE clusters, and QQ plot. There is no significant difference between
the distributions. (Bottom) Distributions DNasel counts for early peak IncRNA (blue) and all
other counts (black) for non-coding CAGE clusters, and QQ plot. Early peak IncRNA clusters
have significantly higher counts.

(PDF)

$12 Fig. CAGE data and early peak model for clusters associated with the host IncRNA for
hsa-mir-155. Data is presented for the host IncRNA of hsa-mir-155 (MIR155HG
ENSG00000234883) in AoSMC-FGF2, AoSMC-Il1b and MCF7-HRG data sets (data for
MCEF7-EGF does not pass quality controls). CAGE TPM values are plotted as circles (median
value is filled), predictions of the kinetic signature models using parameter means are shown in
blue and the vertical green lines indicate the mean tg and one standard deviation above

and below.

(PDF)

$13 Fig. Mature miRNA expression in MCF?7 cells in response to HRG in the small RNA se-
quencing data. The data and kinetic signatures are presented for two mature miRNA assigned
to the decay signature and for two miRNA assigned to the dip signature. Expression values are
plotted as circles (median value is filled), predictions of the model using parameter means are
shown in blue and the vertical green lines indicate the mean ¢, (or t5) and one standard devia-
tion above and below.

(PDF)

$14 Fig. Mature ID-miR expression in MCF?7 cells in response to HRG. Eleven ID-miRs
were present in the small RNA sequencing data with expression above the minimum threshold.
Expression values are plotted as circles (median value is filled), and the dashed purple lines in-
dicate the best-fitting kinetic signature. None of the ID-miR assignments passed the standard
statistical criteria, hence these assignments are not significant (NS) and plotted for information
only. It is apparent that hsa-mir-155 increases linearly, and that hsa-mir-191 peaks early in the
time course. A number of ID-miRs show the expected immediate downregulation including
hsa-mir-212 and hsa-mir-320a.

(PDF)

S15 Fig. CAGE expression of precursor miRNA and mature miRNA expression. Median
CAGE expression (black circles) of precursor miRNA and median mature miRNA expression
(red triangles). Lines are are a spline fitted to the data.

(PDF)

S1 Table. Gene Ontology process term enrichment in MCF7-HRG cells.
(PDF)
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S1 File. Archive of tab-delimited files containing the kinetic signature assignments to
CAGE clusters and associated model parameters for all time courses.
(GZ)
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