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Abstract

Tolman proposed that complex animal behavior is mediated by the cognitive map, an integrative 

learning system that allows animals to reconfigure previous experience in order to compute 

predictions about the future. The discovery of place cells in the rodent hippocampus immediately 

suggested a plausible neural mechanism to fulfill the “map” component of Tolman’s theory. 

Recent work examining hippocampal representations occurring at fast time scales suggests that 

these sequences might be important for supporting the inferential mental operations associated 

with cognitive map function. New findings that hippocampal sequences play an important causal 

role in mediating adaptive behavior on a moment-by-moment basis suggest specific neural 

processes that may underlie Tolman’s cognitive map framework.

Introduction

A long-standing conjecture in the study of animal learning, memory, and decision making is 

that adaptive behavior is supported by a cognitive map, a flexible, generative learning 

system that allows animals to reconfigure previous experience to make inferences about the 

future and plan forthcoming behavior [1–3]. While the spatially-tuned firing patterns of 

hippocampal pyramidal neurons (place cells) provide an intuitive neural substrate for the 

mapping component of the cognitive map [4–6], understanding how hippocampal 

computations relate to the more cognitive aspects of Tolman’s construct has proven 

challenging. Work in human and non-human species suggests that the hippocampus 

underlies both retrospective, mnemonic processes as well as prospective, future-oriented 

mental abilities [7–11], raising an interesting question: how can place cell representations, 
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which undoubtedly form a reliable representation of the animal’s actual location in an 

environment (e.g. [12]), also support the more complicated cognitive processes associated 

with the cognitive map? Recent work suggests that the answer lies in the sequential 

activation patterns of hippocampal pyramidal neurons.

Hippocampal network states

The information represented within hippocampal sequences differs as a function of the 

hippocampal network state. The computations performed by hippocampus change in the 

presence and absence of neuromodulators [13–15] and state-input processes [4]. These 

network states are reflected in patterns of local field potential (LFP) oscillations, which are 

often divided into theta and non-theta states [4, 16–19]. The theta state accompanies active 

behavior or attentive processes, during which the LFP exhibits prominent oscillations in the 

theta frequency band (6–12 Hz). Theta oscillations organize the spiking of place cells. 

Within each theta cycle, place cells fire in a sequential order: cells with place fields behind 

the animal fire first and cells with place fields farther ahead of the animal fire later. 

Consequently, over the course of the theta cycle, place cells trace out an ensemble 

representation of spatial trajectories near the animal. During slow wave sleep and awake 

quiescence (e.g. grooming, food consumption), the hippocampal LFP is less orderly; instead 

of regular oscillations, broad band voltage fluctuations typify the large, irregular activity 

(LIA) state. In LIA, place cells activate in fast sequences during sharp-wave ripple (SWR) 

complexes, so named for the characteristic high-frequency ripple waveforms that punctuate 

the otherwise irregular LFP. Place cell spiking during SWRs does not necessarily represent 

the animal’s current location in space. Instead, ensemble firing sequences trace out 

trajectories that may traverse regions of space the animal does not currently occupy [20, 21].

Ensemble sequence representations

Hippocampal sequences were first identified through changes in the firing of place cells 

relative to the theta rhythm (fig. 1a). When running through a place field, place cells were 

observed to precess through phases of theta, so that on entry, spikes occurred late in the 

cycle, but, on exit, they occurred early in the cycle [22, 23]. It was immediately recognized 

that this phase precession implied a sequential firing representation along the path of the 

animal [23, 24]; it has since become clear that the phase precession is a consequence of 

sequences changing as an animal progresses through a task [25, 26]. Although hippocampal 

sequences were originally characterized by assessing pairwise correlations in spiking of 

place cells [27, 28] (fig. 1b), sequences are fundamentally an ensemble phenomenon, and 

the recent advances in our ability to observe, measure, and detect sequences derive from the 

ability to record many place cells simultaneously and look for higher-order structure in their 

firing patterns (fig. 1, c&d). The ensemble approach has several advantages over analyses 

predicated on single cells or pairs of neurons.

First, ensemble analyses offer the ability to interpret neural activity on single trials. Instead 

of recording the activity of one neuron over many instances of the same behavior and 

averaging its response, ensemble analyses allow for meaningful interpretation of neural 

activity on single trials and at fast time scales, both of which are advantageous for 
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understanding cognition, as mental operations are often transient, can unfold quickly, and 

are likely to vary on a trial-by-trial basis [29]. Single trial analyses avoid uncertainty over 

how multiple events should be averaged or aligned, as cognitive processes are unlikely to 

unfold consistently over a fixed duration and may not be reliably timed relative to either 

behavior or external features of the environment.

Ensemble approaches also offer a means of explicitly testing models of how representations 

are encoded by neural systems [30, 31]. With a defined tuning model, it is possible to test 

how well representations like hippocampal sequences conform to the expected patterns of 

activity predicted from those observed tuning functions. Thus, ensemble approaches have 

allowed researchers to assess how hippocampal representations of space mentally simulate 

trajectories that represent previous behaviors [32–34], possible future actions [33, 35, 36**], 

and even imagined experiences, such as paths that animals have never actually traversed [37, 

38*] or within environments they do not currently occupy [39, 40].

LIA sequences for memory, planning, and inference

LIA sequences were first studied during sleep, and quickly rose to prominence as a potential 

mechanism of memory consolidation [41–43]. Consistent with a role for LIA sequences 

occurring during sleep in memory consolidation, disrupting SWR-associated sequences with 

electrical stimulation following performance of memory-guided behaviors impairs task 

learning [44–46]. Recent work examining LIA sequences during awake states, however, 

hints at a broader functional role for these representations.

Gupta and colleagues [47] recorded LIA sequences as rats performed a multiple-T decision 

making task, and observed that the content of representations did not necessarily favor paths 

leading to reward. In fact, in some cases the authors observed an over-representation of 

paths traversing the non-rewarded arm of the T-maze, a finding that is difficult to reconcile 

with a consolidation function, as the represented trajectories did not match the animals’ 

cumulative behavioral experience. The authors further observed that in some cases, LIA 

sequences synthesized de novo paths never traversed by the animal. These constructed 

trajectories plotted “shortcut” paths between reward sites (fig. 2a). In a similar vein, recent 

reports of “pre-play”, LIA sequences representing regions of space that animals could view, 

but not directly experience, further suggest that LIA sequences actively synthesize spatial 

representations, rather than simply consolidating actual experience [37, 38*]. In light of 

neuropsychological and functional imaging evidence suggesting that the human 

hippocampus is involved in similar synthetic, generative processes [48–51], these data 

suggest that the rodent hippocampus might manipulate spatial representations during LIA 

sequences to underpin similar mental operations.

Two recent studies establish a tight correlation between awake LIA sequences and rats’ 

immediately forthcoming behavior. Singer and colleagues [52**] recorded awake LIA 

sequences from rats performing a memory-guided W-maze task. The authors found that the 

degree of ensemble coordination within sequence representations predicted the successful 

completion of the next task trial, suggesting that LIA sequences facilitate accurate task 

performance. Interestingly, the content of representations (i.e. which parts of the maze the 

Wikenheiser and Redish Page 3

Curr Opin Neurobiol. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sequences represented) did not differ between sequences that occurred before correct and 

incorrect trials. Instead, it appears that the quality of sequences, regardless of where they 

represented, was the principle determinant of successful choice. This finding favors a model 

in which sequences represent the space of potential actions available to the animal (fig. 2b), 

and are then evaluated by downstream reward processing structures [53, 54].

In work that offers an interesting contrast, Pfeiffer and Foster [36**] observed that awake 

LIA sequence content clearly reflected rats’ future behavior as they performed a goal 

directed decision making task. Prior to navigating to a goal location in a large, two-

dimensional environment, sequences represented paths that began near the animal and ended 

in the region of space the rat would next visit (fig. 2c). An interesting possibility is that the 

nature of sequence expression may depend on the precise demands of the behavioral task. In 

Pfeiffer and Foster’s [36**] task, representations of paths leading to non-rewarded locations 

would have less utility than in Singer et al.’s [52**] binary choice task, where knowing with 

certainty either the correct or incorrect choice would suffice for accurate decisions. Future 

work comparing SWR representations in animals trained to perform both binary and multi-

alternative decision making tasks could elucidate how awake LIA sequences vary to support 

different behavioral challenges.

In elegant work suggesting a causal role for LIA sequences in decision making, Jadhav and 

colleagues [55**] showed that electrical disruption of awake SWRs impaired rats’ decision 

making performance on a memory-guided behavioral task. This manipulation affected 

behavior during the initial acquisition of the hippocampus-dependent task, and also 

degraded choice accuracy in animals pre-trained to asymptotic performance, implicating 

awake LIA sequences in both decision making during early learning phases and the long-

term maintenance of stable behavioral performance.

The different effects of SWR disruption during awake states [55**] and during sleep states 

[44–46] suggests that there are functional differences between these SWR components. 

Differences have also been found in representations during wake and sleep states [56], with 

wake states showing flexible sequences [32, 34, 47] more likely to be involved in some sort 

of analytical processing than consolidation, but with sleep states being more consistent with 

a consolidation hypothesis.

Theta sequences and online planning

Theta sequences have historically been the focus of less research than LIA sequences, as it 

was originally thought that they arose passively from the independent phase precession of 

individual place cells. Recent findings, however, challenge that notion [25, 26]. For 

example, spike time correlations between place cells are more precise than the correlation 

between the animal’s position and the theta phase of spikes that results from phase 

precession [28], and theta sequences are patterned with greater precision than would be 

expected if phase precession alone structured place cell spiking [57]. Furthermore, phase 

precession depends on motion, while theta sequences do not [26].

These data suggest that sequences are the primary organizing structure of spikes within theta 

cycles, and that theta sequence representations are coordinated at an ensemble level and 
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imbued with richer structure than previously appreciated [25]. Gupta and colleagues [58**] 

examined theta sequences on a cycle-by-cycle basis, and found that sequences within theta 

cycles actively parsed the environment in a way that could not result from phase precession 

alone. This processing by theta sequences resulted in a cognitively “chunked” representation 

of space (fig. 3), effectively achieving a sort of information compression that might be 

useful behaviorally.

Work by Johnson and Redish [35*] showed that theta-state spiking might contribute to 

decision making. As rats paused at the choice point of a multiple-T decision making task, 

hippocampal ensembles traced out forward-directed paths corresponding to possible future 

actions, suggesting a mechanism for deliberation between concurrently-available choices. 

These forward-directed paths remained structured within theta cycles, suggesting that they 

were a similar form of theta sequences. Interestingly, much like the Singer and Frank [52**] 

LIA result reviewed above, Johnson and Redish [35*] were unable to find a relationship 

between the sequences and the actual decision made, suggesting that the hippocampus may 

be playing a similar constructive role, identifying the space of possibilities. Johnson and 

Redish [35*] did find that these extended theta sequences became stereotyped and then 

vanished as behavior became more automated. Like Singer and Frank’s [52**] W-task, 

Johnson and Redish’s [35*] T-task was also a binary choice. It remains unknown whether 

these results would change in the light of a more open task such as used by Pfeiffer and 

Foster [36**].

Do theta sequence representations play a causal role in decision making that extends beyond 

the more general tuning properties of place cells? Cannabinoid agonists offer an intriguing 

manipulation for dissociating the influence of ensemble spiking sequences and other place 

cell properties on decision making by abolishing ensemble coordination of place cell spiking 

while minimally affecting cells’ spatial tuning or firing rates. Robbe and colleagues [59, 60] 

found that administration of cannabinoid agonists disrupted accurate decision making in rats 

performing a memory-guided spatial task. Importantly, cannabinoid agonism caused task 

performance to fall to chance levels even in well trained animals, suggesting that temporal 

coordination within theta cycles likely plays a role in the moment-to-moment selection of 

behavior. Together, these data suggest that theta sequences might be an important brain 

mechanism for deliberative decision making.

Conclusions and future directions

It is increasingly apparent that sequences play a more active and complex role in 

information processing than encoding veridical experience. Their role in flexibly 

manipulating and permuting representations of space to generate novel paths that might aid 

action selection meshes well with the cognitive map envisioned by Tolman [2, 3]; however, 

important questions about the function of hippocampal sequences remain unanswered.

Foremost, the interaction between LIA representations and sequences during the theta 

network state remains largely untested. Although there is good evidence that both are 

causally involved in planning and decision making [55**, 59, 60], it is unclear precisely 

which cognitive functions each are responsible for, whether they are interdependent, or 
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whether the absence of one type of sequence might induce compensatory changes in the 

expression of the other. Future work that manipulates theta and LIA sequences 

independently could help reveal the relationship between hippocampal sequential 

representations that occur during different network states.

We know little of how hippocampal sequence representations affect other brain regions, 

although several lines of evidence hint at interplay between the hippocampus and extra-

hippocampal structures during both theta [61–66] and non-theta [67–72] states. 

Simultaneously measuring neural activity in multiple brain regions as animals are engaged 

in complex behaviors will further our understanding of how the hippocampus and other 

brain regions interact to support cognition.

Finally, it is unclear whether the mnemonic and planning functions of LIA sequences are 

separable. Interestingly, causal manipulations clearly implicate sleep [44, 45] and awake 

[55**] LIA representations in both memory consolidation and decision making, 

respectively. One possibility is that the animal’s behavioral state (asleep vs. awake) 

determines which function prevails. The reduced sensory input associated with sleep states 

might allow internal hippocampal dynamics to dominate information processing, favoring 

memory consolidation processes, while waking states and their accompanying stream of 

information about the external world might shift hippocampal processing to memory recall 

or planning functions [73]. This arrangement would suggest, however, that consolidation of 

learning could not take place online, in waking states, as experience occurs. If awake 

consolidation is indeed possible, sequences dedicated to mnemonic and planning processes 

might be distinguishable, either by the content of representations or by some other neural 

signal, such as the LFP, components of which have been shown to vary with the quality of 

sequence representations [74], or even by the activity of other brain structures (such as pre-

limbic cortex, [75]). Selective interruption of different functional classes of LIA sequences 

could lead to more precise understanding of how hippocampal sequences contribute to 

cognitive processes.
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Highlights

Sequences of spiking are the dominant organization principle of hippocampal 

activity.

New ensemble techniques allow observation and detection of hippocampal 

sequences.

Sharp-wave sequences are involved in both consolidation and choosing future 

behavior.

Theta sequences support online planning to guide behavior in real time.
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Figure 1. Methods of sequence extraction
A variety of analytical approaches have been developed to identify and quantify temporally-

structured spiking in hippocampal ensembles, ranging from techniques that examine one or a 

few neurons (a&b) to approaches that leverage ensemble activity (c&d). (a) Early work [22, 

23] identified that hippocampal place cell spiking phase precesses against the theta cycle. 

This phase precession implies the existence of orderly, temporal patterns within theta cycles; 

however, certain types of sequences might not result in phase precession [26]. (b) Other 

early work (e.g. [27]) noted that correlations that were established between place cell 

spiking during exploration persisted during subsequent sleep, suggesting that place cell 

firing patterns recurred during offline states. (c) Sequence scoring methods like the one 

developed by Lee and Wilson [76] or Gupta and colleagues [47, 58] quantify the temporal 

structure of neural activity in a given time window. Pairs of spikes with an order of 

activation matching the order in which the animal passes through their fields during 

behavior are scored +1, while pairs of spikes whose activation order is opposite their 

ordering in space are scored -1. Summing across all spike pairs results in a metric of both 

the direction of the sequence (sign of the sequence score) and the temporal precision of the 

sequence (magnitude of the sequence score). The activity in the right panel exhibits 

temporal structure characteristic of theta sequences; the ordering of many spike pairs is 

consistent with a forward-directed representation. Unpatterned ensemble spiking (right 

panel) is consistent with both forward- and backward-ordered representations equally often, 

resulting in a net sequence score near zero. (d) Bayesian decoding methods [77] use the 

tuning curves of hippocampal neurons measured during active behavior (i.e. place fields) to 

estimate which positions in space are most likely being represented by ensemble spiking 
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activity. Decoding hippocampal sequence representations reveals the spatial trajectories that 

sequence events encode.
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Figure 2. Diverse functional roles for LIA sequences
(a) Gupta and colleagues [47] showed that sequence representations of paths actually 

traversed by rats (e.g. left and right loops on the T-shaped decision maze) were recombined 

in a novel fashion to represent shortcut paths between potential food delivery sites. (b) LIA 

sequences expressed prior to initiation of a new behavior could represent the set of possible 

actions available to the animal in a given situation. Sequence representations simulating 

potential future actions (in this case left or right turns at the choice point) could be evaluated 

by other neural structures to guide behavior. Figure constructed after Singer and colleagues 

[52]. (c) Pfeiffer and Foster [36] found that as rats performed a goal-directed navigation task 

in a large, open area, LIA sequences depicted paths between the rat’s current location and its 

eventual spatial goal.
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Figure 3. Spatial chunking by theta sequences
Gupta and colleagues [58] found that the content of theta sequences varies around salient 

landmarks in the environment in a manner that gives rise to a partitioned representation of 

space. On rounding the first maze corner, sequences are forward-shifted, preferentially 

representing space in front of the animal. Between the two turns, sequences tend to be 

centered around the animal’s actual location. As the rat draws near to the second maze 

corner, sequences lag behind the animal, extending asymmetrically backward. Once past the 

final corner, representations are again forward-shifted.
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