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Abstract

Environmental context can have a profound influence on the efficacy of intervention protocols 

designed to eliminate undesirable behaviors. This is clearly seen in drug rehabilitation clinics 

where patients often relapse soon after leaving the context of the treatment facility. A similar 

pattern is commonly observed in controlled laboratory studies of context-dependent savings in 

instrumental conditioning, where simply placing an animal back into the original conditioning 

chamber can renew an extinguished instrumental response. Surprisingly, context-dependent 

savings in human procedural learning has not been carefully examined in the laboratory. Here, we 

provide the first known empirical demonstration of context-dependent savings in a perceptual 

categorization task known to recruit procedural learning. We also present a computational account 

of these savings using a biologically detailed model in which a key role is played by cholinergic 

interneurons in the striatum.

Introduction

Environmental context plays an essential role in the efficacy of rehabilitation treatments for 

a variety of behavioral afflictions. For example, relapse of drug addiction is often triggered 

when the patient leaves the rehabilitation clinic and returns to the original context of their 

drug use (Higgins, Budney & Bichel, 1995). Thus, a clear understanding and ability to 

manipulate the mechanisms underlying context dependence in relapse is of paramount 

importance to the development of efficacious intervention protocols.

The propensity for relapse is often estimated experimentally by measuring savings in 

relearning following an intervention protocol that causes some trained behavior to disappear 

(e.g., a lever press in simple instrumental conditioning paradigms; Bouton, Winterbauer, & 

Todd, 2012; Marchant, Li, & Shaham, 2013). Savings of the original learning is often 

inferred by observing that relearning occurs more quickly than original learning (e.g., rapid 

reacquisition), or that return to the training environmental context can temporarily renew 

responding (e.g., renewal).
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Ashby and Crossley (2011) proposed the first neurobiologically constrained model of 

savings in instrumental conditioning, and Crossley, Ashby and Maddox (2012) extended this 

model into the domain of human procedural learning. These models assumed that learning is 

instantiated via plasticity at cortical-striatal synapses and that this plasticity is gated by 

striatal cholinergic interneurons (called TANs for tonically active neurons). As their name 

implies, the TANs tonically fire in their default state, inhibiting striatal projection neurons 

(called MSNs for medium spiny neurons), and thereby preventing synaptic plasticity at 

cortico-striatal synapses. However, the TANs exhibit a pause in firing that is temporally 

aligned with the midbrain dopamine response (Morris et al., 2004), temporarily releasing 

MSNs from inhibition and facilitating cortical-striatal plasticity, when they receive strong 

input from the centremedian and parafascicular (CM-Pf) nuclei of the thalamus. Thus, the 

efficacy of the CM-Pf—TAN synapse controls whether or not the TANs pause, and whether 

learning at cortical-striatal synapses is possible.

These models successfully accounted for a broad array of savings-based phenomena, while 

simultaneously respecting a range of neurobiological constraints. Applied to savings-based 

paradigms, the models predict that extinction does not entail complete unlearning of the 

original behavior (presumably implemented at cortical-striatal synapses) because the TANs 

learn to quit pausing during the extinction treatment, which protects cortical-striatal 

synapses from alteration. They are also grounded in known basal ganglia anatomy, and they 

correctly account for single-cell recordings from striatal projection neurons as well as 

striatal interneurons (TANs) under a range of experimental conditions.

Neither of these previous models, however, was explicitly equipped to account for context-

dependent savings. Nevertheless, there is preliminary evidence that the gating mechanism in 

the striatum (i.e., the TANs) could be sensitive to environmental context. Specifically, the 

input to the TANs (i.e., from the centremedian and parafascicular nuclei of the thalamus) are 

known to display context-specific firing (i.e., they fire only when specific features of the 

environment are present; Matsumoto et al., 2001). When endowed with this feature, the 

Crossley et al. (2013) model predicts context-dependent savings in human procedural 

learning. Surprisingly, to our knowledge, this prediction has never been previously tested. 

This article therefore makes two main contributions: we provide the first known empirical 

demonstration of context-dependent savings in human procedural learning, and we extend 

the Crossley et al. (2013) model to account for our behavioral results.

Materials and Methods

We examined savings in relearning in an information-integration (II) category-learning task. 

In II categorization tasks, stimuli are assigned to categories in such a way that accuracy is 

maximized only if information from two or more non-commensurable stimulus dimensions 

is integrated at some pre-decisional stage (Ashby & Gott, 1988). Typically, the optimal 

strategy in II tasks is difficult or impossible to describe verbally (which makes it difficult to 

discover via logical reasoning). An example of an II task is shown in Figure 1. In this case 

the four categories are each composed of single black lines that vary in length and 

orientation. The diagonal lines denote the category boundaries. Note that no simple verbal 

rule correctly separates the lines into the four categories. Nevertheless, many studies have 
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shown that with enough practice, people reliably learn such categories, and the evidence is 

good that II category learning uses procedural memory and requires dopamine-dependent 

reinforcement learning in the striatum (e.g., Ashby & Maddox, 2005).

The II task used here included acquisition, intervention, and reacquisition phases of 300 

trials each. These three phases were all identical except in the nature of the feedback 

provided after each response. During acquisition and reacquisition, feedback indicated 

whether each response was correct or incorrect. During the intervention phase, the feedback 

was random – that is, participants were informed that their response was correct with 

probability ¼ and incorrect with probability ¾, regardless of what response they actually 

made. The same protocol was used in Experiment 1 of Crossley et al. (2013).

The present experiment diverges from Crossley et al. (2013) in that the acquisition, 

intervention, and reacquisition phases could occur in different environmental contexts, 

where the context was defined by the background color displayed on the computer screen 

during presentation of the categorization stimulus. We examined savings in four different 

experimental conditions - AAA, ABA, AAB, and ABC. The three letters in each condition 

name indicate the context used during acquisition, intervention, and reacquisition, 

respectively. Context A always occurred with a green background, context B with a blue 

background, and context C with a red background.

Every stimulus in all three phases of Experiment 1 was a black line (as in Figure 1) that 

varied across trials in length and orientation. Identical II category structures were used in all 

three phases. These are represented abstractly in Figure 1. Also note that the categories 

overlap slightly such that the best possible accuracy with these categories is 95%.

The transition from the acquisition to the intervention phase occurred without the 

participant’s knowledge or any additional cue in the AAA and AAB conditions, but in the 

ABA and ABC conditions the transition coincided with a change in the background color. 

No participants in any condition were told that this transition indicated that feedback would 

be random. Similarly, the transition from the intervention phase to the reacquisition phase 

occurred without the participant’s knowledge in the AAA condition, but coincided with a 

background color change in the AAB, ABA, and ABC conditions.

Participants

There were 26 participants in the AAA condition, 18 participants in the ABA condition, 25 

participants in the AAB condition, and 23 participants in the ABC condition. All participants 

completed the study and received course credit for their participation. All participants had 

normal or corrected to normal vision. To ensure that only participants who performed well 

above chance were included in the post-acquisition phase, a learning criterion of 40% 

correct (25% is chance) during the final acquisition block of 100 trials was applied. Using 

this criterion, no participant in any condition was excluded.

Stimuli and Procedure

All stimuli and procedures were identical to those used in Crossley et al. (2013), with the 

exception of the different background colors in the different experimental phases. Example 

Crossley et al. Page 3

Brain Cogn. Author manuscript; available in PMC 2016 April 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



stimuli, as well as the complete category distributions are shown in Figure 1 and specified in 

Table 1. Example trials for each context are shown in Figure 2.

Theoretical Modeling

We previously proposed a neurobiologically detailed computational model that describes a 

mechanism in the striatum that causes the extinction of observed procedural behavior but 

simultaneously protects the initial procedural learning from unlearning when rewards are no 

longer available or when rewards are no longer contingent on behavior (Crossley et al., 

2013). The empirical results reported here imply that this mechanism is sensitive to 

environmental context. This section proposes an augmentation of our earlier model that 

specifies how this context sensitivity may be implemented.

The model proposed by Crossley et al. (2013) is characterized by a number of key features. 

First, it assumes that categories are learned by gradually associating regions of perceptual 

space represented in visual cortex with categorization responses represented in premotor 

cortex via synaptic plasticity at cortical-striatal synapses. This plasticity is derived from a 

DA-mediated reinforcement learning signal from the substantia nigra pars compacta. The 

striatum then drives response selection in motor regions of cortex via classic direct pathway 

network dynamics. Crossley et al. (2013) assumed that the key region of the striatum is the 

putamen and the key region of cortex is the premotor cortex (e.g., SMA and/or dorsal 

premotor cortex; Ashby et al., 2003; Maddox et al., 2004; Waldschmidt & Ashby, 2011). 

Second, the Crossley et al. (2013) model assumes that the TANs tonically inhibit cortical 

input to striatal projection neurons (as in Ashby & Crossley, 2011). The TANs are driven by 

neurons in the centremedian and parafascicular (CM-Pf) nuclei of the thalamus, which in 

turn are broadly tuned to features of the environment (). In rewarding environments the 

TANs learn to pause to stimuli that predict reward, which releases the cortical input to the 

striatum from inhibition. This allows striatal output neurons to respond to excitatory cortical 

input, thereby facilitating cortical-striatal plasticity. In this way, TAN pauses facilitate the 

learning and expression of striatal-dependent behaviors. When rewards are no longer 

available, the TANs cease to pause, which prevents striatal-dependent responding and 

protects striatal learning from decay. Thus, in effect, the TANs serve as a gate between 

cortex and the striatum. The default state of the gate is closed, but it opens when cues in the 

environment predict rewards. Third, DA-dependent reinforcement learning occurs at all 

cortical-striatal and CM-Pf –TAN synapses. Fourth, DA release is modeled discretely on a 

trial-by-trial basis and is a function of reward prediction error (RPE, which equals obtained 

reward minus predicted reward). In this capacity, the Crossley et al. (2013) model is 

qualitatively identical to our previous accounts of procedural categorization and instrumental 

conditioning (Ashby et al., 1998; Ashby & Waldron, 1999; Ashby & Crossley, 2011). 

However, Crossley et al. (2013) found that classic models of DA release that depend on RPE 

(Schultz, Dayan, & Montague, 1997; Tobler, Dickinson, & Schultz, 2003) were unable to 

account for fast reacquisition after random feedback. Thus, they proposed that the 

contingency between feedback and response confidence modulated DA release in two ways. 

First, it acts as a gain on the RPE signal, and second, low levels of contingency tend to 

reduce baseline DA levels (i.e., the amount of DA released to zero RPE). Using this more 
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general DA model, Crossley et al. (2013) successfully accounted for fast reacquisition after 

random feedback as well as a number of other experimental manipulations.

Here, we generalize the Crossley et al. (2013) model to make its behavior sensitive to 

environmental context. Specifically, we assumed that units in the CM-Pf layer are context-

specific. This assumption is consistent with single-unit recordings showing that neurons in 

the CM-Pf are broadly tuned to features of the environment (e.g., Matsumoto et al., 2001). 

The model and simulation details are identical to those of Crossley et al. (2013) with two 

important exceptions. First, we simplified the basal ganglia network by removing relay 

nuclei in the direct pathway basal ganglia circuit (e.g., the globus pallidus and thalamus). 

This simplification was done simply to decrease simulation time, and does not change the 

qualitative properties of the model’s predictions in any way. Second, we added many 

context-specific units in the CM-Pf layer, giving the model the ability to display context-

sensitive behavior. There were two types of context units: context-specific units that fire only 

when in their designated context (A, B, or C), and overlap units that fire in all contexts. 

There were 4 context-specific units per context for a total of 12, and a total of 3 overlap 

units. These numbers were chosen arbitrarily in an effort to capture intuitive notions about 

similarities between contexts with different colors. The architecture of the augmented model 

is shown in Figure 3.

All conditions were simulated with 300 acquisition trials, 300 intervention trials, and 300 

reacquisition trials. The model was given valid feedback at the end of every acquisition- and 

reacquisition-phase trial, and random feedback at the end of every intervention-phase trial. 

Each simulation was replicated 100 times, the results were averaged, and the average results 

were then further split into blocks of 25 trials each. The within- and between-trial dynamics 

of the model were driven by the same simulation methods as described in Crossley et al. 

(2013). Full simulation details are provided in Appendix 2.

Results

Accuracy-based results

Figure 4 shows the mean accuracy for every 25-trial block of each condition including the 

original Crossley et al. (2013) data (henceforth called the CAM condition, for the last name 

initials of the authors). During intervention, a response was coded as correct if it agreed with 

the category membership shown in Figure 1 (feedback during intervention was fixed at 

25%). Category structure and feedback contingencies were identical across all conditions. 

Participants from all conditions were able to learn the categories, and their accuracy fell 

nearly to chance during intervention. Note that all ANOVA results described below were 

done in R using the ‘lme4’ package with type 3 sums of squares and Satterthwaite 

approximation for degrees of freedom.

To test these observations formally we performed a 5 conditions (CAM, AAA, ABA, AAB, 

ABC) × 3 phase (Acquisition, Intervention, Reacquisition) mixed design repeated measures 

ANOVA. All effects in the ANOVA (Condition, Phase, and Interaction) were significant 

[Condition: F(4,4350) = 8.55, P < .001; Phase: F(2,4347) = 1387.30, P < .001; Interaction: 

F(8,4347) = 8.85, P < .001]. We then tested for differences within each phase via three 5 
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conditions (CAM, AAA, ABA, AAB, ABC) × 12 block mixed design repeated measures 

ANOVA (one per phase). The acquisition ANOVA revealed a significant effects of block [F 
(4,1396) = 36.03, P < .001], but not of condition [F(11,1377) = 2.25, P = .06], or interaction 

interaction [F(44,1377) = .59, P = .99]. The intervention ANOVA revealed a significant 

effect of block [F(4,1395) = 9.69, P < .001] and condition [F(11,1375) = 16.94, P < .001], 

but not the interaction [F(44,1375) = .83, P = .78]. The reacquisition ANOVA revealed a 

significant effect of condition [F(4,1391) = 13.20, P < .001], and block [F(11,1375) = 3.69, 

P < .001] but the interaction was not significant [F(44,1375) = .50, P = .99]. Table 2 shows 

statistics for post-hoc pairwise comparisons underlying the above ANOVA results. The AAA 

condition displayed a significantly higher intervention accuracy than the CAM, ABA, and 

AAB conditions. ABA displayed significantly greater accuracy than any other condition. 

The CAM condition also displayed significantly greater accuracy during the reacquisition 

phase than the AAB and ABC conditions.

Finally, we estimated savings within each condition by subtracting mean accuracy during 

each block of Acquisition from mean accuracy during each block Reacquisition, and 

computing an repeated measures mixed design ANOVA on these difference scores. This 

ANOVA revealed a significant effect of condition [F(4,1396) = 10.64, P < .001] and block 

[F(11,1374) = 13.41, P < .001], but no significant interaction [F(44,1374) = .60, P = .98]. 

Post-hoc pairwise comparisons shown in Table 2 revealed that savings in the ABA condition 

was significantly greater than savings in every other condition except for the original 

Crossley et al. (2013) data (CAM). However, the savings in the CAM condition was only 

significantly greater than savings in the AAB condition. Savings in each condition is 

illustrated in Figure 5.

Overall, we found the most savings in the ABA condition, the least savings in the AAB 

condition, and intermediate savings in the AAA and ABC condition. Even so, strong claims 

regarding the AAA condition are difficult since performance during the intervention phase in 

this condition was better than in all other conditions. Moreover, there were several 

differences between the AAA and CAM conditions, potentially reflecting the effect of 

background color on task performance.

Decision Bound Modeling

Human behavior is replete with explicit cognitive strategies, often defying explanations 

based in the simple stimulus-response associations thought to underlie procedural learning. 

Since our goal is to assess the context-dependence of savings in procedural category 

learning, we must be careful to control for the effect of rules or other explicit strategies in 

our observations. Our first line of defense is the use of II category structures, which require a 

procedural strategy to achieve optimal performance (95% for the categories used here). 

However, since participants do not perform optimally, it remains possible that their behavior 

was derived from rule use. Our second line of defense is to estimate participant's strategies 

by fitting decision bound models to the responses emitted by single participants (Maddox & 

Ashby, 1993; Ashby, Waldron, Lee, & Berkman, 2001). One type of decision bound model 

assumed a rule-based decision strategy, one type assumed an II (i.e., procedural) strategy, 

and one type assumed random guessing (See Appendix 1 for details). Figure 6 shows the 
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number of best-fitting models of each type when applied to blocks of 100 trials, and Figure 

S2 shows the mean percent responses accounted for by each model per block. This figure 

shows that the vast majority of participants turn to random guessing when faced with 

random feedback in the intervention phase. It also shows that rule use during the 

reacquisition phase was slightly increased, relative to the acquisition phase, for all 

conditions except ABA. However, there were almost no significant changes between the last 

acquisition block and the first reacquisition block in any of the conditions except for 

significantly more participants best fit by a rule-based model during the first reacquisition 

block than during the last acquisition block in the ABC condition [t(44) = −2.10, p < 0.05].

This raises an important question about how to estimate savings: If a participant shows 

savings (i.e., fast reacquisition relative to acquisition), but is best fit by an RB strategy 

during either of these phases, are their data reflective of procedural learning? To clarify this 

question we note that we can estimate different aspects of savings via two different 

dependent variables. The first is the classic accuracy difference between acquisition and 

reacquisition. The second is how many participants adopted a procedural strategy during 

these phases. With this in mind, we defined three exclusion criteria based on decision-bound 

model fits.

Exclusion 1 included all participants that met basic accuracy requirements by the end of 

acquisition (40% correct), and is therefore contaminated by explicit strategies. This makes 

this exclusion group a poor estimate of savings in procedural learning. However, remember 

that our main research question is not strictly about savings, but rather about context-

dependence in savings (between condition comparisons of savings magnitude). Since once a 

rule has been learned, it can be abandoned and recalled quickly, rule-based strategies will 

tend to boost estimates of savings. Thus, including participants who adopted rule-based 

strategies, will tend to decrease differences in savings estimates between conditions. 

Therefore, exclusion 1 is the most conservative estimate of between-condition differences in 

savings. This is the exclusion we have focused on throughout the manuscript.

Exclusion 2 included only participants that were best fit by an II model during the last block 

of acquisition. Savings in procedural learning requires 1) procedural learning during 

acquisition, 2) protection of initial learning during intervention, and 3) fast access to this 

initial learning during reacquisition. This exclusion ensures that only participants that 

showed the best evidence for satisfying requirement 1 were included in the analysis. Some 

of these participant’s, however, switched to suboptimal rule-based strategies during 

reacquisition. Since rule-based strategies yield lower accuracy than procedural strategies, 

this exclusion criterion also yields conservative estimates of savings.

Exclusion 3 included only participants that were best fit by an II model during the last block 

of acquisition and the first block of reacquisition. This eliminates explicit strategies from our 

savings estimate, but suffers from somewhat circular reasoning. That is, savings is defined 

by differences between acquisition and reacquisition (either in accuracy or strategy), and this 

exclusion criteria excludes anybody who differed in strategy use between these phases, 

thereby presupposing the existence of savings.
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Figure S1 summarizes our results across all three exclusion criteria. Differences between 

conditions are most pronounced by exclusion 1. The strongest trend in our data, appearing at 

all three exclusion criteria, is that ABA shows the most savings and AAB shows the least.

Theoretical Modeling

The bottom panel of Figure 7 shows the mean results from 100 simulations of the Figure 3 

model applied to each of our experimental manipulations. Note that the model correctly 

captures the gross qualitative properties of our behavioral data. That is, the model correctly 

learns the categories, drops to near-chance performance during intervention, and then 

quickly recovers during reacquisition. Furthermore, the model exhibits the most savings in 

the ABA condition, the least savings in the AAB condition, and intermediate savings in the 

AAA, and ABC condition.

There are two main discrepancies between the simulation results and the empirical data. 

First, the simulated ABA and ABC conditions extinguished considerably faster than the 

AAA and AAB conditions. The human data show only weak evidence for this qualitative 

pattern in that performance in the AAA condition was significantly better than in all other 

conditions during the Intervention phase. In the model, the primary factor that determines 

how quickly accuracy drops during the intervention phase is the rate at which the TANs stop 

pausing. This happens quickly in the ABA and ABC conditions because the context-B 

sensitive Pf units were not strengthened during the acquisition phase, and so simply 

switching to context B causes the TANs to immediately stop pausing, with accuracy 

following in lockstep. Thus, one possibility is that the neural representation of context in 

humans is considerably less distinct between contexts than in the current version of the 

model (e.g., humans might have more CM-Pf overlap units relative to the number of context-

specific units). Another possibility is that humans are better at detecting random feedback 

than the model, and so extinguished too quickly – regardless of context – for us to observe a 

difference between the AAA and AAB conditions and the ABA and ABC conditions.

The second major discrepancy is that human accuracy asymptotes during the Reacquisition 

phase, but the model continues to improve. Crossley et al. (2013) suggested two possible 

reasons for this discrepancy. The first is general fatigue. Our human participants completed 

700–800 total trials before their performance asymptote. The model, of course, never gets 

tired. The second is synaptic fatigue. For example, there is evidence that the threshold on 

post-synaptic activation that separates LTD from LTP increases after periods of high activity 

(Kirkwood, Rioult, & Bear, 1996; Bienenstock, Cooper, & Munro 1982). In our model, this 

threshold is determined by the parameter θNMDA. Since increasing this parameter decreases 

learning, it seems likely that allowing θNMDA to increase during the experimental session 

(e.g., as in the BCM model of Bienenstock et al., 1982) would improve the quality of the 

fits. However, adding this feature was not necessary to accomplish our principle goal: to test 

the qualitative sensitivity of savings in human procedural learning.

Discussion

Crossley et al. (2013) demonstrated savings in relearning (i.e., fast reacquisition) after 

accuracy was reduced to chance by an intervention phase composed of random feedback. 
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The present article presents the first known empirical evidence of context-sensitive savings 

during human procedural learning. Our results further show that the degree of savings is 

modulated by environmental context in a theoretically predictable fashion. We observed the 

most savings in the ABA condition, the least savings in the AAB condition, and intermediate 

savings in the AAA and ABC condition. Savings in the AAA condition replicates the 

findings from Experiment 1 of Crossley et al. (2013). These results fall naturally out of our 

previous theoretical interpretation (Crossley et al., 2013) by adding the assumption that CM-

Pf units fire in a context-specific fashion, as they seem to do in real CM-Pf neurons 

(Matsumoto, 2001).

Colors were not assigned to contexts in a randomized fashion, and we cannot rule out that 

this played some role in our results. The color red, for example, has been linked to avoidance 

motivation as well as physiological measures such as cortical activation (Elliot et al., 2007), 

and can also potentiate motor force and velocity output (Elliot & Aarts, 2011). We don’t 

know of any result more directly demonstrating the effect of color in a procedural learning 

task similar to the one used here, but the possibility remains viable. For instance, color may 

be responsible for the relative impairment in the AAA condition relative to the original 

Crossley et al. (2013) data.

Our experimental design was motivated by renewal experiments in appetitive instrumental 

conditioning, where the typical experiment includes three phases – acquisition, extinction, 

and renewal – which occur in different environmental contexts (e.g., cages with different 

flooring, lights, scents, etc.). During the acquisition phase, the animal learns to perform a 

simple instrumental response (e.g., a lever press) to obtain reward. Responding is severely 

reduced (i.e., extinguished) during the extinction phase by removing reward. Rewards 

remain unavailable during the renewal phase, yet instrumental responding can briefly but 

robustly return depending on the environmental context of the three phases. The amount of 

learning saved during the extinction phase is estimated by the magnitude of responding 

during the renewal phase. Robust savings are found in ABA designs and considerably 

smaller savings are observed in AAB and ABC designs1 (Nakajima et al., 2000, 2002; 

Bouton et al., 2011). Therefore, the pattern of results obtained in our category-learning study 

is qualitatively identical to the results of the more traditional renewal studies within the 

appetitive instrumental conditioning literature.

The similarity of our results to those reported in instrumental conditioning paradigms comes 

despite significant differences in experimental methods. Instrumental conditioning is free 

response, with learning characterized by increases in response rate. Category learning, on 

the other hand, is forced choice, with learning characterized by increases in response 

accuracy. Thus, the definition of extinction in instrumental conditioning (i.e., a response rate 

of zero), cannot be applied to category learning. Nevertheless, we have previously proposed 

that similar neurobiological mechanisms mediate learning in each task (Ashby & Crossley, 

2011; Crossley et al., 2013), and empirical and theoretical work on instrumental 

1Note that the magnitude of the renewal effect in AAB and ABC conditions in instrumental conditioning preparations is not 
abundantly clear. Our main claim here is that ABA renewal is by far the most salient feature of our data and of the available appetitive 
instrumental conditioning data.
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conditioning has made similar suggestions regarding psychological processes (Bouton et al., 

2011). The similarity of the present results to those from instrumental conditioning supports 

this hypothesis, and our theoretical modeling suggests that a common neurobiological 

mechanism may drive context-dependent savings across species and behavioral paradigms.

Crossley et al. (2013) showed that savings in relearning after random feedback is 

problematic for all prior models of category learning and most straightforward adaptations 

of reinforcement learning models. However, a variety of cognitive models exist that could 

theoretically be modified to account for savings after random feedback. Included in this list 

are models that can quickly reallocate attention (Kruschke, 2011), models that depend on 

knowledge partitioning (Lewandowsky & Kirsner, 2000; Yang & Lewandowsky, 2004), 

generalizations of the rational model (Sanborn, Griffiths, & Navarro, 2010), and statistical 

inference models (Redish, Jensen, Johnson, & Kurth-Nelson, 2007; Gershman, Niv, & Blei, 

2010) that allow different strategies to be employed in different contexts. The common 

thread among all of these models is that they postulate the existence of a gate that protects 

the learning acquired during training from being modified during the intervention phase. But 

in all of these models the gate is an abstract, hypothetical construct with unknown 

neurobiological origins. The model proposed here specifies a neurobiological gate (i.e., the 

TANs) and it is constrained by neurobiologically plausible learning mechanisms. In 

addition, our empirical results suggest that not only can this gate be closed during random 

feedback, but that its function may also be modulated by environmental context.

One obvious curiosity about our model is that we added context-sensitive units to the CM-Pf 

layer rather than adding additional cortical units or adding a layer corresponding to 

hippocampus and other medial temporal lobe structures. At first, both of these alternatives 

seem like natural options given that sensory cortex obviously has the ability to represent 

environmental cues and neurons in the hippocampus have been shown to display context-

specific firing properties (Smith & Mizumori, 2006). Moreover, both send strong projections 

to the striatum. Even so, most afferents from cortex synapse primarily on MSNs. Since 

MSNs are narrowly tuned (i.e., they fire to a narrow set of cues) it is unlikely that the set of 

MSNs responsible for the categorization response will overlap with the set of MSNs that 

respond to environmental cues (Caan, Perrett, & Rolls, 1984; Nagy, Eördegh, Norita, & 

Benedek, 2003). The primary striatal projections from the hippocampus are to patch 

compartments, which are part of the limbic circuit and do not project via thalamus to cortex. 

These neuroanatomical details pose a serious challenge for the idea that context in our task 

is coded by either the cortex or the hippocampus. The TANs on the other hand receive their 

main input from the CM-Pf, which is broadly tuned to features of the environment, and 

therefore circumvents this potential difficulty.

In summary, we have demonstrated context-dependent savings in procedural category 

learning. We have also presented a computational account of these results using a 

biologically detailed model in which cholinergic interneurons in the striatum act as a 

context-sensitive gate on procedural learning and expression. However, since no single 

experiment is infallible, we are currently pursuing several future directions to further test our 

hypothesis. For instance, the same experiment could be repeated with rule-based categories 

to further control for explicit strategies in determining savings between groups, a concurrent 

Crossley et al. Page 10

Brain Cogn. Author manuscript; available in PMC 2016 April 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



explicit dual task could be included during various phases of the task to selectively impair 

explicit rule use, and the experiment could be done in non-human primates (which prior 

work shows learn II and RB categories in a fashion similar to humans; Smith et al., 2012) 

and pigeons (which prior work shows learn both RB and II categories procedurally; Smith et 

al., 2012).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix 1: Decision Bound Models

Rule-Based Models

The General Conjunctive Classifier (GCC)

Three versions of the GCC (Ashby, 1992) were fit to the data. One version assumed that the 

rule used by participants is a conjunction of the type: “Respond A if the length is short and 

the orientation is shallow (e.g., less than 45 degrees), respond B if the length is short and the 

orientation is steep (e.g., greater than 45 degrees), respond C if the length is long and the 

orientation is shallow, or respond D if the length is long and the orientation is steep.” This 

version has 3 parameters: one for the single decision criterion placed along each stimulus 

dimension (one for orientation and one for bar width), and a perceptual noise variance. A 

second version assumed that the participant sets two criteria along the length dimension 

partitioning the lengths into short, medium, and long, and one criterion along the orientation 

dimension partitioning the orientations into shallow and steep. The following rule is then 

applied: “Respond A if the length is short, respond B if the length is short and the 

orientation is steep, respond C if the length is short and the orientation is shallow, or respond 

D if the length is long.” A third version assumed that the participant sets two criteria along 

the orientation dimension partitioning the orientations into shallow (e.g., less than 30 

degrees), intermediate (e.g., between 30 and 60 degrees), and steep (e.g., greater than 60 

degrees), and one criterion along the length dimension partitioning the lengths into long and 

short. The latter two models each have four parameters: three decision criteria, and a 

perceptual noise variance. The assignments of category labels to response regions were 

modified in the appropriate manner when being applied to the label switch condition.

Information-Integration Models

Striatal Pattern Classifier (SPC)

The SPC (Ashby & Waldron, 1999) has provided good fits to II categorization data in a 

variety of previous studies (e.g., Ashby et al., 2001; Maddox, Molis, & Diehl, 2002). The 
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model assumes there are decision points that cover the perceptual space, each of which is 

associated with a response. In the present applications we assumed 4 decision points, one for 

each category. The SPC assumes that on each trial the participant gives the response 

associated with the decision point that is nearest to the percept. Because the location of one 

unit can be set arbitrarily, the model has 6 free response-unit parameters. One additional 

noise variance parameter is also included for a total of 7 parameters. The optimal model is a 

special case of the SPC in which the striatal units are placed in such a way that the optimal 

decision bounds are used. The optimal model contains only one parameter (i.e., noise 

variance).

Random Guessing Models

Fixed Random Responder Model

This model assumes that the participant guesses randomly and that all responses were 

equally likely. Thus, the predicted probability of responding “A”, “B”, “C”, or “D” is .25. 

This model has no free parameters.

General Random Responder Model

This model assumes random guessing, but that some responses are more likely than others. 

Thus, the predicted probabilities of responding “A”, “B”, “C”, and “D” are parameters that 

are constrained to sum to 1 (i.e., so this model has three free parameters).
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Figure 1. 
Left) A few examples of stimuli that might be used in an information-integration (II) 

category-learning experiment. Right) The category distributions used here.

Crossley et al. Page 15

Brain Cogn. Author manuscript; available in PMC 2016 April 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Example individual trials from each context.
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Figure 3. 
The model architecture used to simulate our experimental results. MSN – medium spiny 

neuron of the striatum. PM – premotor cortex. SNpc – substantia nigra pars compacta. CM-

Pf – centremedian and parafascicular nuclei of the thalamus.
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Figure 4. 
Experiment 1 accuracy. A) AAA accuracy vs data from data from Crossley et al. (2013). B) 

AAA accuracy vs ABA accuracy. C) AAA accuracy vs AAB accuracy. D) AAA accuracy vs 

ABC accuracy. Accuracy during the intervention phase was computed relative to the true 

category labels, not the obtained feedback (which was fixed at 25%). Each block includes 25 

trials, and bands represent SEM. Blocks 1–12 were in the acquisition phase, blocks 13–24 

were in the intervention phase, and blocks 25–36 were in the reacquisition phase. Dashed 

vertical lines indicate transitions between phases.
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Figure 5. 
Savings estimates. Top) Savings (Reacquisition - Acquisition) across blocks, smoothed with 

a 10 trial moving rectangular window. Each block includes 25 trials, and bands represent 

SEM. Bottom) Savings pooled across the first 6 blocks of acquisition and reacquisition. 

Error bars represent 95% confidence intervals.
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Figure 6. 
Decision-bound model fits. Number of participants in the four conditions of the Experiment 

whose responses were best accounted for by a model that assumed an information-

integration (II) decision strategy, a rule-based strategy, or random guessing, A) condition 

AAA, B) condition ABA, C) condition AAB, D) condition ABC.
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Figure 7. 
Model compared to humans. Each block includes 25 trials, and bands represent SEM. Top) 

Accuracy in every condition throughout the entire experiment. Bottom) Simulated results 

obtained from the model shown in Figure 5. Accuracy during the intervention phase was 

computed relative to the true category labels, not the obtained feedback (which was fixed at 

25%). Blocks 1–12 were in the acquisition phase, blocks 13–24 were in the intervention 
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phase, and blocks 25–36 were in the reacquisition phase. Dashed vertical lines indicate 

transitions between phases.
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