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Abstract

Nowadays, the study of environmental samples has been developing rapidly. Characteriza-
tion of the environment composition broadens the knowledge about the relationship be-
tween species composition and environmental conditions. An important element of
extracting the knowledge of the sample composition is to compare the extracted fragments
of DNA with sequences derived from known organisms. In the presented paper, we intro-
duce an algorithm called CoMeta (Classification of metagenomes), which assigns a query
read (a DNA fragment) into one of the groups previously prepared by the user. Typically,
this is one of the taxonomic rank (e.g., phylum, genus), however prepared groups may con-
tain sequences having various functions. In CoMeta, we used the exact method for read
classification using short subsequences (k-mers) and fast program for indexing large set of
k-mers. In contrast to the most popular methods based on BLAST, where the query is com-
pared with each reference sequence, we begin the classification from the top of the taxono-
my tree to reduce the number of comparisons. The presented experimental study confirms
that CoMeta outperforms other programs used in this context. CoMeta is available at https://
github.com/jkawulok/cometa under a free GNU GPL 2 license.

Introduction

Comprehensive and complete analysis of the microbes’ genomes, performed in their original
environment, usually called metagenomics [1] or environmental and community genomics,
became a popular field of research in recent years. Its origins can be found in the work of Pace
et al.[2], in which the first proposal for cloning the environmental DNA by Polymerase Chain
Reaction (PCR) to explore the diversity of ribosomal RNA sequences was formulated. In meta-
genomics, the isolation and culture of organisms is unnecessary. Therefore, it is possible to in-
vestigate the species that previously have been usually neglected due to the lack of laboratory-
grown cultures. Moreover, a large number of unknown enzymes and metabolic capabilities are
encoded in the genomes of uncultured species. Ultimately, metagenomics allows for discover-
ing thousands of new microorganisms and their potentially useful functions [3, 4].
Metagenomic analyzes can help in solving numerous practical challenges in medicine, engi-
neering, agriculture, and ecology [5]. Currently, many projects are carried out which are aimed
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at understanding biocenosis coming from various environments, such as soil [6, 7], water (i.e.,
groundwater [8], seawater [9, 10], rivers [11]), or places with extreme conditions, like hot
springs and mud holes in solfataric fields [12], glacier ice [13], or Antarctic desert soil [14]. The
probes are also collected from other organisms, for example from rumens of buffalo [15] or
cow [16].

The fact that human organism carries a hundred times more bacterial genes than our inher-
ited human genome was the main reason for growing interests in the microorganisms living in
the human body [17-19]. The main aim of the Human Microbiome Project [20], started in
2009, lies in characterizing the human microbiome communities found at several different
sites in the human body, including nasal passages, oral cavities, skin, gastrointestinal, and uro-
genital tracts. Furthermore, the project is aimed at analyzing the role of these microbes in
human health and disease.

Metagenomic processing

The metagenomic analysis is a multi-stage process [4, 21, 22]. First, the genetic material is iso-
lated from the environmental sample containing a mixture of various types of microorganisms.
Subsequently, the DNA material is extracted and sequenced. Finally, the reads (short fragments
of genomes obtained in sequencing) are binned and annotated.

In the recent decade, the DNA sequencing methods were becoming cheaper and faster. The
first method for sequencing was invented by Sanger [23] in 1977, and it dominated for almost
two subsequent decades. In spite of many improvements proposed to this technique, it is inferi-
or to the recent methods, referred to as Next Generation Sequencing (NGS) [24]. The most
popular among them are the 454/Roche and Illumina/Solexa systems, and nowadays they are
extensively applied to the analysis of metagenomic samples [21]. For example, the 454 sequenc-
ing has been used to study the metagenomes contained in kefir grains [25], waste water [26],
whereas the sequences of infant gut [27] or Cystic Fibrosis Lungs [28] metagenomes have been
sequenced with Illumina. In a single experiment, the 454/Roche sequencers produce millions
of long reads (600-900 bp), while the Illumina/Solexa sequencers deliver hundreds of millions
of shorter reads (36-200 bp).

Classification of metagenomic data

The sequencing results in obtaining a huge set of reads coming from the genomes of organisms
living in the investigated environment. As it was mentioned earlier, an important aim of the
metagenomic study is to determine qualitative and quantitative composition of the environ-
mental sample, which is achieved by solving two important tasks, namely binning and annota-
tion. The latter requires classification of the reads to a set of known sequences. The reads may
be compared with annotated sequences stored in a number of databases (e.g., GenBank [29]),
and associated with a species or a gene function. In general, the questions raised are: “who is
there?”, “how much of each?”, and “what are they doing?”. The answers to the first two ques-
tions may be obtained relying on taxonomic classification, while the third one can be answered
using functional classification.

During the study of the environmental community, the obtained reads derived from a set of
various organisms are assigned to taxa. The assignment may be either independent or depen-
dent on the taxonomy. In the latter case, the reads are directly assigned to taxa on the basis of
the reference sequences, where the taxon can range from the superkingdom to the species rank.
During the taxonomy independent analysis, the reads are grouped into operational taxonomic
units (OTUs) based on their similarity to each other in the sample. OTU is usually delineated
with a 3% sequence dissimilarity, which corresponds to the taxonomical rank of species [30,
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31]. Obviously, the acceptance threshold may be set to a different value [32]. Using the taxono-
my dependent analysis, OTUs can be assigned to taxonomic names. In a single habitat, the or-
ganisms belonging to various groups appear together. Even though a microbial probe contains
microbial eukaryotes, bacteria, archaea, and also viruses, the metagenomic study is primarily
focused on the prokaryotic species. Moreover, sequencing of eukaryotic DNA is unprofitable
due to the large genome size and low gene coding densities. Therefore, in some studies, the eu-
karyotic cells are eliminated by filtering the samples [10].

There are several computer programs for read-to-taxa classification. They can be separated
into two main groups, namely composition-based and similarity search methods. Using the
former, reference sequence features are first extracted and subsequently compared, whilst
using the latter, the reads are compared to some reference sequences. The hybrids of these two
approaches may also include elements of phylogenetic analysis.

The composition-based methods follow the three-stage strategy [33-38]: 1) machine learn-
ing-based modeling of features extracted from reference sequences (e.g., distribution of short
nucleotide subsequences, k-mers); 2) modeling of the unknown set of reads (performed in the
same way as for the set of reference sequences); 3) comparison of the reads and reference se-
quences models to assign taxonomic ranks for each read. Among the machine learning meth-
ods, it is worth to mention the interpolated Markov models [34], support vector machines
(SVMs) [37, 38], k-nearest neighbors [35] or naive Bayesian classifier [36]. For SVMs, training
from large datasets may be problematic, however the training set can be effectively selected
using various techniques [39-41].

The similarity search methods rely on the sequence homology. They use a database, con-
taining nucleotide or protein reference sequences. For detecting remote homologies, it is better
to use the protein sequences, as they are more well-conserved across greater evolutionary dis-
tances. However, in order to use the protein database, the reads have to be translated into
amino acid sequences. Taking into account all three possible start sites of encoding amino
acids on the both strands (the main sequence and its reverse-complement counterpart), each
read has to be translated in all six reading frames, which negatively influences the computation
time. In addition, the reads with non-coding DNA cannot be processed by such translation-to-
protein method.

In most cases, the similarity search methods employ BLAST to obtain alignments of reads
to a reference sequences set. Subsequently, these alignments are used for taxonomic classifica-
tion. Some programs, like MEGAN [42], MTR [43], SOrt-ITEMS [44], CARMA3 [45], use the
lowest common ancestor (LCA) algorithm for assigning the taxonomic labels. After perform-
ing the BLAST search for each read, the BLAST hits, whose bit scores are above the threshold,
are selected for further analysis. LCA is computed for all species that were reported by best
BLAST hits for a read. If BLAST hits are ambiguous (the hits are similar for reference se-
quences derived from different species), then the read is assigned to a higher taxonomic level.

Furthermore, the marker genes can also be used to facilitate reads classification. These genes
help to identify a particular species, e.g., 16S rRNA occurs in the prokaryote genomes.
MG-RAST [46] relies on the chloroplast, mitochondrial, and ACLAME (including mobile ge-
netic elements) databases. MetaPhyler [47] uses 31 phylogenetic marker genes as the taxonom-
ic references. One of CARMA3 variants [45] and Treephyler [48] use hidden Markov models
(instead of BLAST) to search for the homologies against the Pfam database—protein domains
contained in the Pfam are here used as the markers.

As discussed earlier, the composition-based classification methods compare the k-mer dis-
tribution of a read with those which come from different taxa. In the FACS [49] program, in-
stead of determining the full distribution of k-mers, their appearance in a reference sequence is
taken into account (1 if a k-mer from a read appears in a reference sequence, 0 otherwise).
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FACS can be regarded as a similar search method, because it aligns the reads to the reference
sequences, represented by k-mers indexed using the Bloom filters. The original FACS algo-
rithm was implemented in the Perl language, but the latest version has been reimplemented in
C (available at https://github.com/SciLifeLab/facs). Actually, the new version is not intended
for metagenomic data classification, but it checks how many reads might be contaminated in a
particular sample.

The Livermore Metagenomics Analysis Toolkit (LMAT) also maps k-mers without using in-
formation about their positions and quantity [50]. When constructing a k-mer database, each
canonical k-mer (i.e., the k-mer or its reverse complement, if the latter is lexicographically
smaller), derived from the reference sequence, is assigned to a group of reference sequences
which contain that k-mer. Hence, the k-mers are grouped together in such a way that each
group contains those k-mers which occur in every reference sequence in the group and does
not occur in any sequence outside the group. LMAT, like the programs discussed earlier, also
computes the LCA—the created groups are linked together in a taxonomic tree. During classifi-
cation, the canonical k-mers of each read are compared to the k-mers located in every group.
The similarity score is increased for each matching k-mer, and cumulated for the whole taxon.
Similarly to other LCA-employing methods, in case of conflicts (i.e., situations, in which the
scores for several taxa are high and identical) the read is classified to the level above. This helps
in selecting the most specific taxonomic label, whose lineage has no conflicts with another
taxonomic label.

Very recently, the Kraken algorithm [51] using the k-mer indexing scheme similar to
LMAT, has been proposed. These methods differ, however, in classification and database con-
struction strategy. In the algorithm used in Kraken, each k-mer from a reference sequence
stores the taxonomic ID number of the k-mers’ LCA values. Like in LMAT, the Kraken data-
base contains the k-mers in the canonical representation. However, these k-mers are first sorted
according to the minimizer, a very popular idea in recent years in bioinformatics [52-54], (i.e.,
the lexicographically smallest M-mer in each k-mer), and the k-mers containing the same min-
imizer are sorted in the lexicographical order in the database. This strategy substantially accel-
erates the queries. A taxonomic node cumulates points for every match of a k-mer extracted
from the given read. The read is classified to the node, which has obtained the largest number
of points cumulated along the path leading from the root to that node.

Both LMAT and Kraken do not use the cumulative distribution of k-mers and also they do
not exploit the alignment searching. Thus, they can be regarded as the hybrid methods, com-
bining two different strategies—the composition-based and similarity search approach.

Contribution

In this paper, we present CoMeta—a new fast and accurate algorithm for classification o meta-
genomes (metagenomic reads). We determine the similarity (termed the match score) between
the query read and a group of the reference sequences by counting the number of nucleotides
in those k-mers, which occur both in the read and in the group. The read is classified to that
group, for which the match score is the largest. The group is defined as a set of sequences of
specific attribution. Typically, this is one of the taxonomic ranks (e.g., phylum, genus). CoMeta
employs an efficient k-mer counting and indexing algorithm [55]. Its low memory require-
ments allows us to create the indexes even at high taxonomy tree levels that embrace large
groups of sequences. In this way, after having built the indexes, we can quickly search the tree
from the root to the leaves, and find the closest match for a given query read. This classification
scheme (i.e., analysis of the taxonomy tree from the top) is in contrast to the existing BLAST-
based methods, which require the query read be compared with every reference sequence.
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The main idea of the proposed method is similar to the one used in FACS. However,
CoMeta does not impose any restrictions on the size of the data. We are able to classify se-
quences derived from both bacteria and big eukaryotes. The details of our algorithm are given
in Section Methods. Extensive experimental study, whose results are reported in Section Re-
sults and Discussion, confirms that our algorithm is competitive, offering high speed and accu-
racy, compared with the state-of-the-art methods.

Methods
Introduction

In the following description of our algorithm, several symbols will be used. For clarity, we gath-
ered them in Table 1.

The proposed method consists of two major stages outlined in Figs 1 and 2. Firstly (in the
database construction stage), the indexed k-mer databases of clustered reference sequences are
constructed. Subsequently (in the classification stage), the reads are classified to various groups
with the use of the databases. The second stage is composed of two steps. In the comparison
step, the input reads are scored according to a number of databases ({D;}). In the assignment
step, the reads are assigned to the best group. What is important, the classification stage is per-
formed iteratively (for taxonomic classification) to search the taxonomy tree downwards.

The files with the input reads and reference sequences must be given in the FASTA format.
The reference sequences and reads contain sometimes the unknown nucleotides (Ns). The k-
mers with such symbols are skipped.

Database construction

Before classification, the reference sequences have to be grouped into n categories, with whom
we want to compare the metagenomic data. For example, the sequences can be grouped ac-
cording to a phylum, so that a single group contains all the reference sequences belonging to
Actinobacteria, Proteobacteria, Thermotogae, etc.

Table 1. Dictionary of symbols and acronyms used in the description of the classification.

13 — match score, similarity between query read and the set of the reference sequences

= — match rate score, percentage ratio of the match score to the read length

D, - k-mer database for an i-th group

f — number of various groups to which the reads were classified

F — output files after assignment to the best group

FP  — number of incorrectly classified reads

G®° - setof all reference sequences

G - setof reference sequences for the i-th group at the j-th level

k — subsequence (k-mer) length

M - dataset of reads

MC - match cut-off value of sequence identity

n — number of various sets (groups) of reference sequences, with whom the query read is compared
at the j-th taxonomic rank

NC - number of reads not classified to any group

R — query read

S — reference sequence

TP — number of correctly classified reads

doi:10.1371/journal.pone.0121453.t001
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Fig 1. The processing pipeline for metagenomic reads classification for a single rank. In order to avoiding obfuscating the schema, the upper indexj is
not added to the symbols, indicating the j-th level of taxonomic classifications.

doi:10.1371/journal.pone.0121453.g001

In order to classify the reads into a taxon, the nucleotide sequence database (nt data with en-
tries from all traditional divisions of GenBank, EMBL, and DDBJ) has to be downloaded from
the NCBI website. After that, the tax number (Taxonomic Identification ID) should be added
to each reference sequence using the gi number (Sequence Identification ID). The tax number

is necessary to categorize the sequences into groups. Hence, gi_taxid_nucl.dmp file, which con-
tains the links between the gi and tax number, should also be downloaded from the NCBI web-
site. This file is of a huge size, therefore we created an auxiliary program to avoid loading the
entire file into RAM. This program splits the input file into smaller ones, then each of them is
read sequentially, and finally the program extracts information about the tax number. Detailed

support on how to prepare the data is given in readme.txt file in the CoMeta package.
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. phylum

class

. @ order

family

. genus
@ species

Fig 2. Taxonomy tree-based classification. lterative execution of stage Il (Classification) in Fig 1.

doi:10.1371/journal.pone.0121453.g002

The k-mer database D; for each group G; is created using a parallel disk-based algorithm,
which we derived from our earlier k-mer counting software [55]. First, every reference se-
quence from the group is scanned symbol by symbol to extract all k-mers. Subsequently, the k-
mers are collected and sorted lexicographically. This makes it possible to create the set of all k-
mers, occurring at least once in the reference sequences (after sorting, the repeating k-mers are
at adjacent positions, so we can store only a single copy of each one).

The database is stored to the disk in a compact way (compact database). Each nucleotide is
encoded using 2 bits. Instead of writing whole k-mers to the file, the k-mers sharing a common
prefix are broken down into two parts, i.e., a four-nucleotide prefix and a suffix, thus, each suf-
fix is saved on 2(k—4) bits. The prefix is written once, and it is followed by a list of the suffixes
with the number of each occurrences.

For classification purposes, CoMeta uses mainly two lists: 1) a buffer that contains sorted
suffixes (stored on 1 byte) after cutting off eight-nucleotide prefix; 2) a list of 65,536 (= 4°) ele-
ments of information, where the list of suffix for each prefix begins. These lists are built at the
beginning of the classification process. However, in order to accelerate the loading of the data-
base during the classification (which is crucial if the same database is used many times), com-
pact database can be converted into a bit larger file (non-compact database), which contains
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among others the two lists. This file is loaded into the program once, and the size of this file is
equal to the size of the memory that the k-mer database occupies during the classification.

Classification

As it was mentioned earlier, the classification of the reads at a single level j (e.g., the order) con-
sists of two steps: comparison and assignment. In the following subsections on the taxonomic
classification, these steps are described for the j-th taxonomic rank. In order to avoid obfuscat-
ing the notation, the upper index j is omitted.

Comparison step. In the comparison step, the set of reads M is compared with all n k-mer
databases that have been created beforehand. Each database D; is loaded into RAM. When
comparing each read from M against G; group (1 < i < n), the match score () is obtained by
cumulating the similarity between the k-mers extracted from the read and from the reference
sequences in G;. For a given read R, the successive k-mers are obtained using the 1-base sliding
window. All possible subsequent k-mers from R are checked for occurrence in D;. For each j-th
k-mer of R found in D;, the match score  is increased by &, which is the number of bases in the
k-mer that have not yet contributed to the match score (i.e., {; = k — oy, where o, is the num-
ber of overlapping bases between the j-th k-mer and the previous k-mer found in D;). Due to
the 1-base sliding window, two subsequent read k-mers have k-1 overlapping bases, and our
intention is to prevent from increasing the match score too much, if both exist in D;. The num-
ber of the overlapping bases between the p-th and g-th k-mers (p < q) is
0, = max(k — g+ p,0). An example on how the match score is calculated is presented in Fig 3
for k = 5. For simplicity, we assume that G; group contains only one reference sequence, S. In
the “k-mers” column, the k-mers that occur in the query read are sequentially listed. Those k-
mers, which are found in D; database, are marked in bold (a sorted list of the k-mers from G;
group is shown in the left part of the figure). The final match score for the sample read is 12,
and the match rate score (E), which is percentage ratio of the match score to the read length, is
85.7% (2 = 12/14-100%). For better illustration, the sequence matching is also shown at the top
of the figure.

In order to quickly decide whether a read can obtain a significant score for each group G;,
we perform simple filtering. We use the k’-base offset sliding window to scan the query read (1
< k' <k, for k' =1 this step is skipped). If none of such k-mers exist in D; we resign from scor-
ing it according to D;. R is pre-assigned to the G; group, if it (or its reverse complement) accu-
mulates a match rate score exceeding a chosen match cut-off value (MC). After the
comparisons, for each group, we obtain two output files with the preliminary assignments,
namely: 1) the match file that contains the reads, which accumulated a sufficient match rate
score (2 > MC), and 2) the mismatch file which contains the remaining reads. Thus, 2# output
intermediary assignment files are obtained after the first step of the classification. These files
do not contain the nucleotide sequences, but only the single-line description of each read in the
FASTA format, along with the obtained match scores. The corresponding nucleotide sequences
are added after completing the classification stage.

The idea of this step is similar as used in the FACS algorithm. However, in FACS, the
Bloom filters, which are of a limited capacity, are used to store the k-mers. For each reference
sequence, a separate Bloom filter is created. In addition, long sequences (Z 200 Mbp) have to
be split into a few subsequences, and then Bloom filters are created separately for each of them.
Furthermore, usage of the Bloom filters may result in obtaining false k-mer positives. In FACS
(the Perl implementation), the reads which have been classified as belonging to some reference
sequence, are withdrawn from further querying (the sequences are analyzed in some arbitrary
order). This approach may result in classifying the read to an incorrect reference, if its match
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Fig 3. An example of comparing the query read with the reference sequence.

doi:10.1371/journal.pone.0121453.9g003

score is over the cut-off value for more than a single reference sequence, but the correct one
does not appear as the first one.

Assignment to the best group. The second step of the classification stage consists in the
analysis of the intermediary assignment files, and the query read is classified to that group, for
which the match score () is the highest. When multiple groups obtain the same highest match
score, the read could be assigned to: 1) all of these groups; 2) any group; 3) random group.

To increase the sensitiveness of our method, in this step not only match but also mismatch
files can be used. Using the latter, larger percentage of reads are classified, but in some cases
this is achieved at the expense of precision. When taking into the account the mismatch file,
the read is classified to a group with the highest match, even if it is below MC. However, this
matching must contain at least one matching k-mer (§ > k).

After this step, the classification is completed for a single taxonomic rank, and f+1 output
files (F) are obtained. Apart from the classified reads, those reads which have not been assigned
to any group, are stored in the additional F,,, file. The number fis equal to the number of
groups, to which the reads from M were classified. For the groups without any reads preas-
signed, the files are not generated at all (hence, f < n).

For classification to a lower rank, classification stage has to be repeated, which is described
in the following subsection.
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Taxonomy tree-based classification

Our taxonomic classification method starts from some high taxonomic rank, and then, if nec-
essary, classifies reads to the lower levels. The search may be started from the superkingdom
rank, however, due to very large collections of sequences which contain various groups, we sug-
gest to begin from the phylum.

For the j-th taxonomic rank, each read is compared to # groups and it is classified to that
group (G}), for which the match score is the highest. Next, the read is compared with those
groups at a lower rank (j+1), which are subgroups of GJ,', (G],:+1 - GJZ',, 1<i<wth. Fig 2 shows
the taxonomy tree-based classification scheme with an example of the classification path (solid
lines). The gray shade indicates a set of the reference sequences, where a query read was classi-
fied (G}). In the tree, there are only six basic taxonomic ranks presented, however the process
may include other ranks such as subphylum, superclass, etc.

During the classification of the M set of reads (at the j-th taxonomic rank), the files {F}

(i = 1,2,.. .,f%) are obtained, each of which contains the reads assigned to a particular i-th
group. In the classification at the next level (j+1), the output file from the previous step (F;) is
used as the input file, i.e, M'*' = F,.

Results and Discussion
Implementation and test setup

The algorithms proposed in this paper are implemented in C++ language. The only exception
is the tool grouping the reference sequences according to the taxonomic rank, which is imple-
mented in Perl based on Perl module Bio::LITE::Taxonomy::NCBI from the Comprehensive
Perl Archive Network. CoMeta package contains programs for the following tasks:

1. Adding the tax number to the single-line description of each reference sequence.
2. Building k-mer databases.
3. Two steps of the classification.

The package and documentation are freely available at https://github.com/jkawulok/cometa,
all the data used in this paper are available at http://dx.doi.org/10.7910/DVN/29265.

The experiments were conducted on a computer equipped with 12-core Intel Xeon clocked
at 2.67 GHz and 96 GB RAM.

CoMeta is a similarity search method, thus we compare it with four other programs from
this category. We also examine LMAT and Kraken, which are hybrids of composition-based
and similarity search methods also using k-mers.

The experiments are divided into two major parts. In the first one, our program was com-
pared to FACS and each read was classified directly to a single reference sequence. This means
that each group (c.f. Fig 1) contained only one reference sequence (e.g., group = ‘Escherichia
coli str. K-12 substr. DH10B’) and there was only one level. In the second part of our experi-
ments, the reads were classified to the taxonomic ranks, thus the level was taxonomic rank and
the group was one of the groups at the taxonomic rank, e.g, level = ‘phylum’ and group="proteo-
bacteria’. The classification results for CARMA (command line version 3.0), MEGAN (4.61.5),
MG-RAST (3.0), and MetaPhyler (1.13) were taken from Bazinet-Cummings’ paper [56] due
to long computation time (in total approximately 34,000 CPU hours). The experiments for
LMAT (1.2.1), Kraken (0.10.4b) were made by us.
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We assessed the quality of the read classification taking into account the following criteria:
o Time: CPU classification time.
« Memory: the maximal memory usage during the classification.

« Classified: the overall percentage of reads that were classified (£24), where TP and FP are

numbers of correctly and incorrectly classified reads, respectively.
« Sensitivity: the fraction of the correctly classified reads ().

« Precision: the percentage of correctly classified reads among all classified reads (%).

Datasets

The experiments were made for the following datasets:

1. FACS 269 bp—simulated 454 metagenomic dataset containing 100,000 reads of an average
length 269 bp. This dataset was proposed by Stranneheim et al. [49] and we downloaded it
from FACS website. The reads are from 17 bacterial genomes (four various phyla rank),
three archaeal genomes (two various phyla rank), three viral genomes, and two human
chromosomes. After removing reads containing more than 50% of unknown nucleotides,
dataset of 93,653 reads was obtained, which we called reduced FACS 269 bp.

2. MetaPhyler 300 bp—simulated metagenomic dataset containing 73,086 reads of length 300
bp. This dataset, proposed by Liu et al. [47], was obtained from 31 phylogenetic marker. Un-
fortunately, some reads had no information about their origin and it would be impossible to
verify whether they were correctly classified or not, so we filtered them out. Finally, 66,841
reads were left and used for our experiments. The reads have been derived from the organ-
isms belonging to 17 various phyla. The majority originate from Proteobacteria (51%) and
Firmicutes (21%).

3. CARMA 265 bp—simulated 454 metagenomic dataset containing 25,000 reads of an average
length 265 bp. This dataset was proposed by Gerlach and Stoye [45]. We downloaded it
from WebCARMA website. The distribution of the reads in the bacterial phyla is: Proteo-
bacteria—73.02%; Firmicutes—12.92%; Cyanobacteria—7.83%; Actinobacteria—5.22%;
Chlamydiae—1.01%.

4. PhyloPythia 961 bp—dataset containing 124,941 random reads of an average length 961 bp
from 113 isolate microbial genomes, proposed by Patil et al. [37]. Some reads are repeated
in this dataset and only 114,457 reads are unique. The majority of them (81%) come from
Proteobacteria. These reads were classified to the genus rank (Rhodopseudomonas—
21.00%; Bradyrhizobium—20.06%; Xylella—9.16%; the rest—each one below 6%).

5. HiSeq 92 bp—dataset containing 10,000 reads of an average length 92 bp, proposed by
Wood and Salzberg [51]. It was built using 20 sets of bacterial whole-genome shotgun reads
and generated by Illumina HiSeq sequencing platform.

6. MiSeq 156 bp—dataset containing 10,000 reads of an average length 156 bp, proposed by
Wood and Salzberg [51]. It was built using 20 sets of bacterial whole-genome shotgun reads
and generated by Illumina MiSeq sequencing platform.

The 2nd-6th datasets contain reads from bacterial genomes only. Both FACS 269 bp and re-
duced FACS 269 bp datasets contain also reads from human, viral, and archaeal species.
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Experiment One

In the first experiment, we compared CoMeta with FACS 2.1 algorithm implemented in Perl
[49], and with FACS implemented in C. We tried to reproduce the results reported by Stranne-
heim et al. [49] (FACS in Perl). Unfortunately, we obtained different scores, despite using their
scripts, the same set of parameters, and the same set of 25 reference sequences.

Stranneheim et al. verified false positives using MEGABLAST for k-mer length equal to 17,
21, 25, and 35. To speed up this process we constructed a homologous map for comparing
reads to the reference sequences. Assuming the same criteria as in FACS, if a read obtains 500
hits with E-values < 107°° using MegaBLAST, then it is considered as a homologue. In this
way, the classification results can be quickly checked for large sets of false positives, such as
those created for short k-mers. The resulting map contained 17 homologous.

As discussed in the previous section, FACS 269 bp dataset includes many reads, which con-
sist mostly of unknown nucleotides. Therefore, in order to provide a fair comparison, we re-
moved them and used reduced FACS 269 bp dataset. The comparison was performed using the
following variants of FACS and CoMeta:

1. FACS-P: FACS 2.1 algorithm in Perl. The probability of false positive parameter (py) in
Bloom filter (used by FACS) was set to 0.0005.

2. FACS-C: FACS algorithm in C, whose sources were downloaded on 5th February 2014,
from https://github.com/SciLifeLab/facs. The reads are classified to each reference sequence
to which similarity is highest than MC. The probability of false positive parameter in Bloom
filter was set to the same value as for FACS-P.

3. pre-CoMeta: The only comparison step of CoMeta algorithm (without assignment). This is
a similar strategy as implemented in FACS-C.

4. CoMeta: The complete proposed classification algorithm of a read (to all reference se-
quences) using the best solution (presented in Fig 1).

FACS-P, FACS-C, and pre-CoMeta were ran using various values of k and MC. In CoMeta,
we used MC = 30% in the “comparison” step, and then the reads were classified to the reference
sequence according to the highest score. When FACS-P classifies a read to some G;-th reference
sequence it does not compare the read with any further reference sequence (G;,;, j > 0). Since
in FACS-C and pre-CoMeta the reads are compared with each reference sequence, their FP val-
ues can be larger than for FACS-P.

In Table 2, we report the best classification results obtained using the four aforementioned
methods. The results for CoMeta are when taking into account the mismatch files. When we
stopped the algorithm after the “comparison” step (pre-CoMeta), the sensitivity was the high-
est, unfortunately, at the expense of a large number of false positives. pre-CoMeta gave slightly
better precision score than FACS-C. The precision is high for FACS-P, however the sensitivity
is the lowest here. In general, the best results was obtained by CoMeta which was able to classify
almost every read and the number of false positives was small.

The precisions and sensitivities for CoMeta, depending on k, are shown in Fig 4. The results
are presented with and without taking into account the mismatch files (MM). It may be noticed
that for growing k up to k = 25 both precision and sensitivity grows, then sensitivity falls down.
The reason is that with the increase of k, the number of unclassified sequences also increases.

The sensitivity and precision for FACS-P, FACS-C, and pre-CoMeta for various k are pre-
sented in Fig 5A-5C. Each series shows the results for 11 different threshold values, in sequence
starting from the left part of each figure: MC = 30,35,40,. . .,80 [%]. It can be seen from the plot
A that only for a small value of k in FACS-P, the sensitivity does not drop with the increasing
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Table 2. Comparison of FACS algorithms with CoMeta.

k MC Sensitivity Precision Classified t

[%] [%] [%] [%] [hh:mm:ss]
FACS-P
18 80 97.62 97.86 99.76 00:03:14
21 65 97.86 98.08 99.78 00:02:49
21 70 97.82 98.27 99.55 00:02:49
24 55 97.77 98.12 99.64 00:02:36
27 45 97.65 98.07 99.58 00:02:27
FACS-C
17 30 99.92 90.20 99.93 00:01:08
17 40 98.78 93.25 98.78 00:01:12
19 30 99.48 92.65 99.48 00:00:49
21 30 98.26 94.27 98.27 00:00:43
pre-CoMeta
15 55 99.30 93.56 99.31 00:01:52
18 45 99.42 93.36 99.43 00:01:21
21 45 99.05 93.93 99.06 00:01:08
25 30 99.56 92.05 99.57 00:01:09
27 35 99.36 93.07 99.37 00:01:16
CoMeta
18 - 97.91 97.91 100.00 00:01:37
21 - 98.40 98.41 99.99 00:01:36
24 - 98.69 98.75 99.93 00:01:37
27 - 98.71 99.08 99.63 00:01:30

Comparison of the best classification results obtained using four methods (bold values indicate the best score for each column):

FACS-P: the FACS 2.1 program in Perl [49]. When read is classified to some Gj-th reference sequence, it does not be compared with any further
reference sequence;

FACS-C: the FACS program in C, which was downloaded from https://github.com/ScilLifeLab/facs. The reads are classified to each reference sequence to
which similarity is highest than MC;

pre-CoMeta: the only comparison step of CoMeta algorithm (without assignment). This is a similar strategy as implemented in FACS-C.

CoMeta: the full proposed algorithm, the reads are classified to the reference sequence according to the highest score.

doi:10.1371/journal.pone.0121453.t002

threshold values, while in other cases, the sensitivity for a large MC declines. The detailed anal-
ysis of the impact of the parameters k, MC and py (for building the Bloom filters) on the accura-
cy of FACS-P was presented in our earlier study [57].

The processing times of the examined methods are given in Table 2. It can be seen that
FACS-C is usually the fastest, however, CoMeta is slower only by a factor two.

Experiment Two

The second experiment consisted in classifying reads to the taxonomic groups. We compared
our method with all the examined programs except for FACS.

The programs were evaluated for the 1st-4th metagenomic datasets (from the 454 sequenc-
ing). As was said the results for CARMA, MEGA, MG-RAST, and MetaPhyler were taken di-
rectly from Bazinet-Cummings’ paper [56]. Bazinet and Cummings classified PhyloPythia 961
bp at the genus rank, FACS 269 bp at the superkingdom rank, and the other two datasets at the
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Fig 4. Classification accuracy for CoMeta in Experiment One. Accuracy of classification is shown when
taking into account only the match files (dotted line with square mark) and when considering additionally the
mismatch files (solid line with a circle mark). The performance curve reflects various k-mer lengths.

doi:10.1371/journal.pone.0121453.g004
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Fig 5. Classification accuracy for the Experiment One using various k parameter. The plot A represents scores after classification using FACS-P, the
plot B—using FACS-C, and the plot C—using pre-CoMeta. Each series shows the results for 11 different threshold values, in sequence starting from the left
part of each figure: MC = 30,35,40,. . .,80 [%].
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phylum rank. When running CoMeta, Kraken, and LMAT we also conducted PhyloPythia 961
bp classification into the genus but the three other datasets into the phyla rank.

For the Tluimina datasets (HiSeq 92 bp and MiSeq 156 bp) we examined Kraken, LMAT, and
CoMeta. The classification level was set to the genus rank here.

LMAT was tested for two databases downloaded from the LMAT website: “full” k-mer/tax-
onomy database (kFull) and smaller database built from “marker library” (kML). These data-
bases were constructed from the complete and partial microbial genome sequences from the
NCBI genome database from 2011. The kFull database contains 20-mers, while kML —
18-mers.

Kraken was evaluated using MiniKraken database (the only available) downloaded from the
Kraken website. Unfortunately, Kraken failed to construct the database from our set of refer-
ence sequences (probably due to huge memory requirements of Jellyfish tool used to collect k-
mer statistics). We were also not able to obtain the larger databases from the authors.

For CoMeta, we built k-mer databases using all reference sequences from the NCBI genome
database from 2012. We divided the sequences into several groups, so during classification we
could easily select the groups we wanted to classify to. Therefore, in some experiments we used
all sequences (allDb database), while in the rest only those from bacteria, viruses, and archaea
(micDb database). The databases were constructed using various k-mer lengths (15, 18, 21, 24,
27, and 30).

We conducted a large number of preliminary experiments for different parameters. Some of
them are described in S1 Supporting Information. The most important results of our experi-
ments are summarized in Tables 3 and 4. LMAT results are for “minimum score” (ms) set to 0
(optimal value according to the preliminary experiments). The results for CoMeta allDb were
calculated in such a way that if a read was classified to several groups, then it was assigned to all
of them. Hence, in some cases, the sum of TP, FP, and NC was higher than the number of all
reads in the dataset. For better comparison of CoMeta and Kraken, the results for CoMeta
micDb were computed using the same strategy as in Kraken, so if a read was classified to multi-
ple groups we did not assign it to any group.

In both variants of CoMeta (allDb and micDb), the mismatch files were taken into account,
when the reads were being assigned to the best groups. Depending on the dataset and database,
the best classification results were obtained for different values of k. Using micDb, the best ac-
curacy for the Illumina reads (which are short) was obtained using shorter k-mers (i.e., k ~
24). For long reads (after the 454 sequencing) the most accurate classification scores were ob-
tained for k ~ 30. However, using allDb, where reads were assigned to many groups, the best
classification results were obtained for k = 24.

The difference in the number of reads between the reduced FACS 269 bp and the original
dataset is 6,347 (these are the reads containing more than 50% of unknown nucleotides). Dif-
ferences in the classification results for the original and reduced FACS 269 bp datasets using
CoMeta and LMAT were in the number of unclassified reads and equal 6,346 and 6,347 reads,
respectively. Obviously, real reads may contain unknown nucleotides, however in our opinion
during the validation of the classifiers, ambiguous reads should not be treated equally, as the
reads of all known nucleotides. Therefore, the classification results in Table 3 (using CoMeta
and LMAT) are given both for the FACS 269 bp and the reduced FACS 269 bp datasets.

The greatest differences in the classification results between the tested programs were ob-
served for the FACS 269 bp dataset, which includes 72,951 reads derived from a human chro-
mosome. CoMeta allDb and LMAT kML classified the majority of reads, significantly
outperforming other programs. The databases used by MetaPhyler, MG-RAST, LMAT kML, as
well as CoMeta micDb do not contain human sequences, or contain only specific marker genes,
so it is understandable that the results are rather poor. Although the databases in CARMA and
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Table 3. Comparison of programs using 454 reads.

Program

Percentage of classified reads

CARMA?
MEGAN?
MetaPhyler®
MG-RAST?
LMAT kML
LMAT kFull
MiniKraken
CoMeta allDb
CoMeta micDb
Sensitivity (percentage)
CARMA?
MEGAN?
MetaPhyler®
MG-RAST?
LMAT kML
LMAT kFull
MiniKraken
CoMeta allDb
CoMeta micDb
Precision (percentage)
CARMA?
MEGAN?
MetaPhyler®
MG-RAST?
LMAT kML
LMAT kFull
MiniKraken
CoMeta allDb
CoMeta micDb

FACS 269bp

29.0
48.4

0.2

27.1
24.7(26.4°)
92.5(98.8°)

93.6(100.0°)

26.7
425

0.1

25.0
24.7(26.3°)
92.5(98.7°)

93.4(99.7°)

92.0
78.1

84.0

92.4
99.9(99.9°)
100.0(100.0°)

99.8(99.8)

MetaPhyler 300bp

93.6
88.2
80.9
29.8
96.5
99.3
100.0
100.0
100.0

93.4
87.9
80.7
29.7
95.7
98.5
99.9
99.6
99.8

99.7
99.7
99.7
99.8
97.8
97.8
99.9
99.6
99.8

& _The results of the program are taken from the Bazinet-Cummings’ paper [56].
®_The results for FACS 269bp dataset, where reads with more than 50% of unknown nucleotides (Ns) are filtered out. The values outside the brackets

are for the whole dataset.

CoMeta allDb parameters: MC = 30%, k = 24.
CoMeta micDb parameters: MC = 5%, k = 30.
LMAT kML and kFull parameter: ms = 0.

doi:10.1371/journal.pone.0121453.1003

CARMA 265bp

68.7
90.5

0.5
80.2
80.4
86.0
96.7
99.9
98.9

68.5
90.3

0.5
80.1
80.4
86.0
96.7
99.1
98.9

99.7
99.8
100.0
99.9
100.0
100.0
100.0
99.1
99.9

PhyloPythia 961bp

61.3
62.2

0.6
70.5
98.3
82.7
98.0
94.7
97.4

59.8
61.0

0.5
67.2
98.1
82.5
97.7
94.1
96.2

97.4
98.1
83.8
95.3
99.8
99.8
99.7
99.3
98.8

MEGAN contain human sequences, the results obtained on these metagenomic datasets were

also poor. To investigate this problem, we tried to align a few reads from this dataset using
BLASTX (both programs employ it), and BLASTX failed to classify some reads, which explains
weak results for CARMA and MEGAN. LMAT kML classified incorrectly fewer reads than
CoMeta micDb, but also fewer reads were classified correctly, hence the total number of classi-
fied reads was smaller for LMAT than for CoMeta.

For three other datasets, the results of MetaPhyler, MG-RAST, CARMA, and MEGAN were
better than those achieved for FACS 269 bp, however, LMAT, CoMeta, and Kraken were able
to classify more reads. MetaPhyler is very fast since it uses only the “marker genes”, however
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Table 4. Comparison of programs for various level classification using lllumina reads.

Programs

PHYLUM
LMAT kFull
MiniKraken®
CoMeta micDb
CLASS

LMAT kFull
MiniKraken®
CoMeta micDb
ORDER

LMAT kFull
MiniKraken®
CoMeta micDb
FAMILY

LMAT kFull
MiniKraken®
CoMeta micDb
GENUS

LMAT kFull
MiniKraken®
MiniKraken®
Kraken®
Kraken-GBP
CoMeta micDb

Sensitivity

89.89
65.34
81.64

88.06
65.16
80.87

86.48
64.89
80.34

84.96
64.75
80.13

84.74
64.54
66.12
77.15
93.75
79.82

HiSeq 92 bp MiSeq 156 bp

Precision Classified Sensitivity Precision Classified
99.74 90.12 88.23 99.47 88.70
99.79 65.48 75.88 99.93 75.93
98.97 82.49 86.71 99.11 87.49
99.66 88.36 85.79 99.65 86.09
99.65 65.39 75.73 99.91 75.80
98.14 82.40 86.34 98.83 87.36
99.80 86.65 81.00 99.63 81.30
99.51 65.21 75.52 99.87 75.62
97.73 82.21 85.39 98.01 87.12
99.79 85.14 79.40 99.72 79.62
99.46 65.10 75.43 99.81 75.57
97.61 82.09 85.05 97.76 87.00
99.80 84.91 73.75 99.53 74.10
99.45 64.90 71.95 98.04 73.39
99.44 — 67.95 97.41 —
99.20 — 73.46 94.71 —
99.51 — 86.23 98.48 —
97.44 81.92 77.50 90.83 85.32

8_The results of the program are counted by ourselves.
®_The results of the program are taken from the Wood—Salzberg’ paper [51].
CoMeta micDb parameters: MC = 5%, k=24. LMAT kFull parameter: ms = 0.

doi:10.1371/journal.pone.0121453.t004

only reads having them are correctly classified. Thus, this algorithm performs well only for the
dataset created by the program’s authors. During DNA sequencing, only a certain percentage
of reads have the marker genes, therefore in many cases MetaPhyler does not recognize cor-
rectly the origin of the reads. The best results for the MetaPhyler 300 bp dataset were obtained
by Kraken and CoMeta, which outperformed LMAT. For the CARMA 265 bp dataset the win-
ner was CoMeta. Kraken returned slightly worse scores, and LMAT—much worse. However,
for the PhyloPythia 961 bp dataset, it was LMAT kML, which achieved the best score. Neverthe-
less, it is worth noting that the results of LMAT kFull was significantly worse (comparing only
those three programs), whereas for the remaining datasets the classification results were better
using kFull than using kML database.

Table 4 summarizes the evaluation of CoMeta, LMAT, and Kraken for the Illumina reads.
Here we showed results for five classification levels: phylum, class, order, family, and genus. As
mentioned earlier, we run Kraken using only the MiniKraken database downloaded from the
Kraken website, because we have not managed to build the larger database nor to obtain it Kra-
ken’s authors. Therefore, in addition to the results obtained in our experiment, we present also
the results quoted from Wood-Salzberg’ paper [51] (that work reports the results only for the
genus level). Although we carefully followed the instructions when running Kraken, we
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Table 5. Comparison of RAM memory usage

Program FACS
269bp
CPU Runtime (minutes)
CARMA? 290880
MEGAN? 288020
MetaPhyler® 10
MG-RAST? 60
LMAT kML 36(60°)
LMAT kFull 54(93°)
MiniKraken —
CoMeta allDb 41(76°)

CoMeta micDb (ph) —
CoMeta micDb (ge) —
Memory Usage (Megabytes of RAM)

CARMA? 100

MEGAN? 1024
MetaPhyler? 5734
MG-RAST? —

LMAT kML 17000(17284°)
LMAT kFull 9295(9481°)
MiniKraken —

CoMeta allDb 71260(71903°)
CoMeta micDb —

obtained different results for two datasets using MiniKraken database, compared with those re-
ported in [51]. The precision values were similar, but the difference in sensitivity was greater.
For the HiSeq 92 bp dataset, we obtained the sensitivity 1.58% smaller than reported in [51],
and for the MiSeq 156 bp dataset it was 4% higher. The differences in precision could be due to
the fact that Kraken’s authors took into account the reads incorrectly classified to the levels
above the analyzed rank, whereas we consider such reads unclassified. However, we cannot ex-
plain the cause of the difference in the sensitivity values. The best classification results for both
datasets at the genus level were obtained using Kraken-GB. This database, according to its au-
thors, contains GenBanks draft and completed genomes for bacteria and archaea. Taking into
account the results obtained in our experiments, the HiSeq 92 bp dataset was classified the best
by LMAT and by CoMeta. For the MiSeq 156 bp dataset, LMAT was better than CoMeta only
at the phylum level, while CoMeta correctly classified much more reads at lower levels.

In Table 5 we present the classification times and memory usage. It may be seen that the
programs which use k-mers databases use a lot of memory. Using all available reference se-
quences (allDb), CoMeta consumed about 70 GB of RAM. This was reduced to 20 GB, when
taking into account only bacteria, viruses, and archaea (micDb). CoMeta allDb is by 1.5-2

and CPU times.

MetaPhyler CARMA PhyloPythia HiSeq MiSeq
300bp 265bp 961bp 92bp 156bp
77340 74950 360107 = =
72060 72010 351060 = =

20 2 28 = =
10080 20160 12960 — —

58 43 348 — —
213 38 772 15 33
1.22 1.07 2.95 1.3 1.2
14 28 144 — —

9 14 35 8 9

— — 79 42 68
100 100 120 — —
1024 1024 1410 — —
5734 5734 5734 = =
17019 2128 13311 = =
13247 13286 15092 5807 12392
4098 3210 4100 1317 1449
70743 71313 69508 — =
19552 19320 19552 10297 17689

8—The results of the program are taken from the Bazinet-Cummings’ paper [56].

®_The results for FACS 269bp dataset, where
are for the whole dataset.

reads with more than 50% of unknown nucleotides (Ns) are filtered out. The values outside the brackets

FACS 269 bp, MetaPhyler 300 bp, and CARMA 265 bp datasets were classified to phylum level, whilst PhyloPythia 961 bp, HiSeq 92 bp, and MiSeq 156
bp datasets to genus level. In the table besides the times of classification to the genus level for CoMeta micDb (ge), the times of classification to earlier

levels are shown—the phylum levels (ph).

doi:10.1371/journal.pone.0121453.t005
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times slower than CoMeta micDb. MiniKraken database contains only a fraction of k-mers of
the reference sequence complete genomes for bacteria, viruses, and archaea; it consumed be-
tween 1.5 GB and 4 GB of RAM. When using the complete database without eukaryotes Kra-
ken needs 74 GB (according to the authors).

The running time of CoMeta micDb when classifying to the genus level for the PhyloPythia
961 bp dataset, compared with the HiSeq 92 bp dataset, was only twice longer, although both
the number of reads and their lengths are about ten times larger (hence, the file size is over 100
times larger). This results from the fact that loading the k-mer database takes much more time
than classification of the reads. Kraken is the fastest among the examined programs. Compared
to LMAT, CoMeta was faster when classifying to the phylum level. For classification to the
genus level, CoMeta was faster only for a big dataset (PhyloPythia 961 bp), while the small data-
sets with short reads (HiSeq 92 bp and MiSeq 156 bp) were classified faster by LMAT.

Databases building

The k-mer/taxonomy databases consist of all reference sequences downloaded from the NCBI
website. As it has been discussed earlier, we suggest the read classification be started from the
phylum rank. The “raw” genome database used in this study was downloaded on July 2012.
The 13 nt files included: 261,295 sequences from Archaea, 4,036,205 from Bacteria, 10,205,401
from Eukaryota, 3,127 from Viroids, and 1,175,053 from Viruses. Apart from 15,681,081 se-
quences of a known origin and defined superkingdom, 509,677 sequences were undefined (for
example plasmids, artificial sequences, or environmental samples).

Each sequence had Sequence Identification ID (gi), which was used to set Taxonomic Iden-
tification ID (tax). The sequences were divided into groups according to the rank of phylum,
plus for group Viruses and Viroids. Overall, 99 groups were established (c.f. Table 6, row “num
groups”).

In the reported experiments, we divided the sequences into overlapping k-mers of different
lengths, k = 15,18,21,24,27,30, hence, we obtained six different database setups. In order to ac-
celerate loading of the database during classification, we used non-compact databases. The
overall sizes of the databases for classification at the phylum rank are presented in Table 6,
with the number of groups belonging to the superkingdom. Sizes for all non-compact databases
that are loaded into RAM during the “Comparison” step (c.f. Fig 1), are provided in S1 Sup-
porting Information. The largest k-mer database is for the “Chordata” phylum (up to 73 GB

Table 6. Compact k-mer database, where the reads are classified into the phylum rank.

num groups
num seq
k=15
k=18
k=21
k=24
k=27
k=30

Archaea

6
261,295
1.9GB
22GB
2.3GB
23GB
24 GB
2.4 GB

Bacteria Eukaryota Viroids Viruses Total

36 55 1 1 99
4,036,205 10,205,401 3,127 1,175,053 15,681,081
17.0 GB 29.9 GB 1.1 MB 1.1 GB 49.9 GB
34.4 GB 93.7 GB 1.1 MB 1.4 GB 131.7 GB
37.6 GB 111.9 GB 1.2 MB 1.5 GB 153.3 GB
39.0 GB 117.4 GB 1.3 MB 1.6 GB 160.4 GB
39.3GB 120.9 GB 1.4 MB 1.7 GB 164.2 GB
39.6 GB 123.3 GB 1.4 MB 1.8 GB 167.0 GB

The total size of the compact k-mer databases for groups of the phylum rank at various lengths of k-mer. The number of groups belonging to the

superkingdom is given in the first row, and the number of the sequences is in the second one. The sizes of each dataset are provided in S1 Supporting

Information.

doi:10.1371/journal.pone.0121453.t006
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for k = 30), however in many metagenomic studies, the eukaryotes are not investigated at all.
For bacteria, the Proteobacteria k-mer database is the largest one (almost 20 GB of RAM is
necessary).

The dependence of the database size on the number of unique k-mers (which appeared at
least once in the G; group) is shown in S1 Supporting Information. Approximately, the rela-
tionship between k and the database size is linear. The size of the non-compact database is ap-
proximately equal to the compact one for k = 30.

Conclusions and future work

In this paper, we proposed a new method for classification of reads to the taxonomic rank.
First, the groups of reference sequences (each derived from a single taxon) are divided into
overlapping k-mers (short substrings), from which the databases are built. Each database is
subsequently used for checking the similarity between the query read and the group, which this
database represents. We proceed the read classification from the root towards the leaves of the
taxonomical tree, which accelerates the program execution, since the read does not have to be
compared with each reference sequence. The presented experimental results proved our ap-
proach to be competitive and outperforming many alternative popular programs. The results
also indicate how important it is to properly select the length of k-mers. For too small ks, too
many reads are misclassified, while too large k’s increase the number of unclassified reads. The
downside of our method is that it needs a lot of RAM, when large k-mer databases are used.
For classification at the phylum level, using the largest set of k-mers for Proteobacteria, about
20 GB are required. CoMeta is slower than the very recently published Kraken program. How-
ever, CoMeta returns information about all the groups to which the query read was classified if
it was classified to several ones, (when the conflict occurred), and not like Kraken and LCAT
which cut off the branch and classify the read to a higher level.

Our ongoing research includes examining the influence of the length of the reference se-
quences (derived from one group) on the best value of the k parameter, so that it can be select-
ed automatically. Furthermore, we intend to take into consideration not only the number of
matched nucleotides (match scores), but also the number of deletions and insertions.

Supporting Information

S1 Supporting Information. Additional tables and figures of the experiments results.
(PDF)
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