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Abstract
The NADPH oxidase of neutrophils, essential for innate immunity, passes electrons across

the phagocytic membrane to form superoxide in the phagocytic vacuole. Activity of the oxi-

dase requires that charge movements across the vacuolar membrane are balanced. Using

the pH indicator SNARF, we measured changes in pH in the phagocytic vacuole and cyto-

sol of neutrophils. In human cells, the vacuolar pH rose to ~9, and the cytosol acidified

slightly. By contrast, in Hvcn1 knock out mouse neutrophils, the vacuolar pH rose above 11,

vacuoles swelled, and the cytosol acidified excessively, demonstrating that ordinarily this

channel plays an important role in charge compensation. Proton extrusion was not dimin-

ished in Hvcn1-/- mouse neutrophils arguing against its role in maintaining pH homeostasis

across the plasma membrane. Conditions in the vacuole are optimal for bacterial killing by

the neutral proteases, cathepsin G and elastase, and not by myeloperoxidase, activity of

which was unphysiologically low at alkaline pH.

Introduction
Neutrophils that encounter a bacterium or fungus engulf it into a phagocytic vacuole of invagi-
nated plasma membrane, into which cytoplasmic granules release their contents of potentially
lethal enzymes (Fig 1). These processes are associated with a burst of non-mitochondrial respi-
ration in which electrons are passed across the membrane of the vacuole by an NADPH oxi-
dase, NOX2, that generates superoxide [1]. This electron transport is essential for efficient
killing of the microbes as evidenced by the severe immunodeficiency syndrome of Chronic
Granulomatous Disease (CGD) in which the function of NOX2 is absent or compromised [2].

The transport of electrons into the phagocytic vacuole is electrogenic, causing a large, rapid,
membrane depolarisation which will itself curtail further electron transport unless there is
compensatory ion movement [3] by the passage of cations into the vacuole and/or anions in
the opposite direction (Fig 1). The nature of the ions that compensate the charge may have a
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direct effect on the pH within the vacuole and the cytosol. Attempts to characterise mecha-
nisms of charge compensation have concentrated on the role of proton channels [4], character-
ised using divalent cations such as Zn2+ and Cd2+ as inhibitors [3,5,6]. These ions are
reasonably selective for proton channels in the low micromolar range [4,7], but have multiple
other targets when used at millimolar concentrations [8–12]. Cloning of the gene for the pro-
ton channel Hvcn1 [13,14], and the subsequent generation ofHvcn1 knockout mice [15] has al-
lowed a more precise definition of its role in neutrophil biology. Contrary to predictions from
previous studies using high concentrations of Zn2+ [8], complete eradication of the HVCN1
channel only reduced oxidase activity by about 50% [15,16], and had a surprisingly small effect
on microbial killing [15]. Inhibition or deletion of the HVCN1 channel has been shown to re-
sult in exaggerated acidification of the cytosol after phagocytosis of zymosan [17] or stimula-
tion of the oxidase with phorbol myristate acetate (PMA) [18] which led to the suggestion that
this channel might be important for the expulsion of protons from the neutrophil cytosol
[17,18] although this was not measured directly in either of these studies. Those observations
raise the possibility that the depressant effect of the loss of the HVCN1 channel on the
NADPH oxidase might be due to the development of an excessively acidic cytosol, which in-
hibits the oxidase [19], rather than as a consequence of impaired charge compensation.

Fig 1. Schematic representation of the neutrophil phagocytic vacuole showing the consequences of electron transport by NOX2 onto oxygen. The
proposed ion fluxes that might be required to compensate the movement of charge across the phagocytic membrane together with modulators of ion fluxes
are shown.

doi:10.1371/journal.pone.0125906.g001
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In a subsequent study ofHvcn1-/- neutrophils phagocytosing zymosan particles [20], averag-
ing the pH of the entire population of neutrophil phagosomes did not yield a significant differ-
ence between wild type and Hvcn1-deficient cells. However, the pH of Hvcn1-/- phagosomes
were found to be heterogeneous, with a third being alkaline and 14% acidic.

In order to define the role of the HVCN1 channel in neutrophil biology, we have used the
ratiometric fluorescent pH indicator, SNARF, to measure the pH directly in individual phago-
cytic vacuoles and in the cytosol of human, and wild type (WT) andHvcn1-/- mouse neutro-
phils during phagocytosis. The data confirm that the HVCN1 channel plays a major role in
charge compensation across the phagocytic vacuole membrane, and in its absence non-proton
fluxes predominate in charge compensation.

There are two opposing views as to the mechanisms by which the oxidase contributes to mi-
crobial killing. On the one hand it is believed that myeloperoxidase (MPO) promotes killing
through the peroxidatic generation of hypochlorous acid from H2O2 produced by the oxidase
[21]. An alternative view is that killing is mediated through the digestive action of neutral pro-
teases that are activated by the elevated pH [22] and influx of K+ [23] generated by the oxidase.
To determine which of these mechanisms is the more feasible within the environment of the
phagocytic vacuole, we measured the pH dependence of the activity of MPO and that of the
two major neutral proteases, cathepsin G and elastase, and related these to the observed phago-
cytic vacuolar pH in normal neutrophils.

Results

The respiratory burst is impaired in Hvcn1-/- neutrophils whilst
extracellular acid release is normal
In WT neutrophils, oxygen consumption was increased tenfold by PMA and to a similar level
by the addition of opsonised Candida. PMA stimulated oxygen consumption was reduced to
73% of normal in cells isolated fromHvcn1-/- mice (p = 0.035), consistent with previous obser-
vations [15,16,18] was abolished by the oxidase inhibitor DPI (p<0.001), and was absent in
neutrophils lacking gp91phox (p<0.001) (Fig 2A). Oxygen consumption byHvcn1-/- cells
phagocytosing opsonised Candida was 50% of that by WTmouse neutrophils (p<0.001), and
significantly lower than in the same cells after PMA stimulation (p<0.001) but higher than the
20% measured by others [20]. Using Amplex Red to measure H2O2 generated by PMA stimu-
lated cells, oxidase activity was decreased to similar levels in Hvcn1-/- at 58.4% ± 18.1 (SD)
(n = 5) of that by WT cells.

Activation of the oxidase using PMA or Candida increased the extracellular acidification
rate (ECAR), to similar levels in Hvcn1-/- and WT mouse neutrophils and levels achieved were
equivalent with PMA or with Candida (p = ns for all comparisons). The rate was significantly
reduced in the presence of DPI (p = 0.035) and remained at baseline levels in neutrophils lack-
ing gp91phox (p<0.01) (Fig 2B). The relatively high extracellular acidification observed when
oxygen consumption by PMA stimulated cells is blocked by DPI can be explained by the inhib-
itory effect of DPI on mitochondrial electron transport [24] as well as that of the neutrophil ox-
idase. Inhibition of mitochondrial electron transport leads to anaerobic glycolysis with the
production of lactate and the release of more acid [25]. No difference was observed between
the extracellular acidification between WT and Hvcn1-/- cells in the presence of PMA and DPI
(data not shown).

Oxygen consumption by human neutrophils phagocytosing Candida, as measured with a
Clark oxygen electrode, was determined as 5.8 fmols ± 0.4 (SD) (n = 5) per Candida phagocy-
tosed and the respiratory burst was brief, with a peak rate lasting about two minutes [26]. In
neutrophils from the Hvcn1-/- mice the equivalent measurement was 3.2 fmols corresponding
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to the ~50% reduction observed (Fig 2A). Given the 4:1 ratio of electrons passing across the
vacuolar membrane to oxygen consumed (Fig 1), the consumption of ~6 fmols of oxygen per
Candida would require ~24 fmols of compensating charge in normal neutrophils and ~12
fmols in Hvcn1-/- cells.

The phagocytic vacuole of human andWTmouse neutrophils reaches
pH 8.5–9 whilst in Hvcn1-/- cells it exceeds 11
The fluorescence ratio of SNARF coupled to heat killed Candida showed a sigmoidal relation-
ship with pH and was approximately linear with pH 7–10 (Fig 3D). We tracked changes in pH
in the phagocytic vacuoles of individual neutrophils from the time that labelled Candida were
engulfed. Shortly following engulfment, the vacuole underwent a significant alkalinisation
(Fig 3). In human neutrophils, this started almost immediately (Fig 3E and S1 Video). The
mean maximum pH reached post-phagocytosis was 9.0 (SD 8.3–10.2) (Fig 3E) and this elevat-
ed pH was maintained for 20–30 minutes. When the NADPH oxidase was inhibited by DPI,
the vacuole acidified to about 6.3 (SD 6.1–6.56) (Fig 3B and 3E), although SNARF determina-
tions are not very accurate at this pH, these results are similar to previous findings [27] and
when added following phagocytosis, DPI rapidly reduced the vacuolar pH (Fig 4C and S2
Video) [20]. These elevations in vacuolar pH occurred despite the buffering capacity of the
heat-killed Candida (S1 Fig). The maximum difference in the vacuolar pH in human neutro-
phils in the presence or absence of DPI (~6.5 and ~9, respectively (Fig 3E)) required 1.9 fmols
of OH- per Candida. Assuming this pH rise was entirely due to non-proton charge

Fig 2. Oxygen consumption and extracellular acidification rate by neutrophils. (A) Oxygen consumption rate (OCR) and (B) extracellular acidification
rate (ECAR) by neutrophils fromWT, Hvcn1-/- and gp91phox-/- mice in response to stimulation with PMA (with and without DPI) or opsonisedCandida. The
numbers of independent experiments is shown over the total number of measurements. Statistical significance: *** p<0.001, ** p<0.01 and * p<0.05.
Differences between PMA stimulatedWT and gp91phox-/- were p<0.001 in (A) and p<0.05 in (B). There were no significant differences in (B) between PMA
andCandida or betweenWT andHvcn1-/- cells. Median, quartiles and 95% centiles are shown.

doi:10.1371/journal.pone.0125906.g002
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compensation, it would amount to ~8% of the total ~24 fmol compensating charge, close to
the ~5% previously estimated [23].

WT mouse neutrophils showed a similar, although less extreme, alkalinisation of the vacu-
ole reaching a mean maximum pH of ~8.5 (SD 8.0–9.1) post-phagocytosis (Fig 3F). The initial
rise was very rapid and was followed by a brief fall, possibly as a result of degranulation of acid
granule contents, before resuming its upward course after a delay of about one minute. By con-
trast, the pH in the vacuoles of Hvcn1-/- neutrophils was rapidly and grossly elevated to a mean
value of ~11.1 (SD 9.7–12.5) (Fig 3G and S3 Video). These changes were observed in almost all
vacuoles. The difference between the areas under the curves of the WT and Hvcn1-/- cells was
highly significant (p<0.001). Given the strong buffering capacity of Candida in the alkaline
range, a rise in pH from ~6.5 in DPI treated cells to ~11.1 in Hvcn1-/- required ~9.2 fmols of

Fig 3. Time courses of changes in pH in the vacuole and cytoplasm of phagocytosing neutrophils. Representative images of Candida phagocytosed
by human neutrophils (A), with DPI (B), and by Hvcn1-/- neutrophils (C). Standard curves for the relationship between SNARF ratio and pH of organisms and
cytoplasm are shown in (D). Candida alone were added to two different buffer systems, labelled Tris or Barbital, and intracellular organisms were exposed to
the Barbital buffers after permeabilisation of neutrophils with saponin. Panels E-L show time courses of the pH changes of phagocytosedCandida and
cytoplasm of human (E, I), mouseWT (F, J) andHvcn1-/- (G, K) neutrophils synchronised to the time of particle uptake (0 minutes). In E-G and I-K, each
individual black line represents serial measurements of the SNARF ratio of a single phagocytosedCandida or neutrophil cytoplasm, respectively. Mean ± SD
(shaded areas) are shown. In the composite panels H and L the mean data have been smoothed. Data are plotted according to SNARF ratio with the
approximate corresponding pH shown on the right y-axis. The number of independent experiments over the total number of individual cells examined is
shown. The effect of DPI on vacuolar pH in human neutrophils is shown in E (pink and dashed lines, 12 cells).

doi:10.1371/journal.pone.0125906.g003
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Fig 4. The effect of DPI, azide, 4ABH, KCN, zinc, and CCCP on vacuolar pH. (A) The effect of 300 μM Zn2+, DPI and 60 μMCCCP on vacuolar pH in WT
andHvcn1-/- neutrophils at ~30 minutes following the addition of Candidawithout synchronisation to particle uptake. (B) The effect of 5 μMDPI, 5 mM sodium
azide, 50 μM 4ABH and 1mM KCN, on vacuolar pH in human neutrophils at ~30 minutes following the addition of Candida without synchronisation to particle
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OH- per organism (S1 Fig), similar to the ~12 fmols of total compensating charge. In a small
number ofHvcn1-/- cells (3.3 ± 3.8 SD of 8 experiments and 810 cells) the vacuoles collapsed
(e.g. S3 Video and S4 Video), which coincided with sudden alkalinisation of the cytoplasm.
These extreme conditions could impair the oxidase in phagocytosing neutrophils.

The alkalinisation inHvcn1-/- vacuoles was almost completely prevented by the addition of
the protonophore carbonyl cyanide-m-chlorophenylhydrazone (CCCP), which will produce a
proton shunt, whereas Zn2+, increased alkalinisation of vacuoles in WT mouse neutrophils at a
concentration of 100 μM (Fig 4A). Sodium azide has been used [20,28] to inhibit the action of
MPO which was thought to quench the fluorescence of fluorescein, the flurophore previously
utilised to determine vacuolar pH. We therefore determined the effect of the addition of azide
on SNARF fluorescence. In endpoint assays, azide significantly reduced the pH in the vacuoles
at ~30 minutes in human neutrophils (p<0.001, Fig 4B) or almost immediately when added
during a time course (Fig 4D). This effect of azide was not due to its inhibitory effect on MPO
because neither 4-aminobenzoic acid hydrazide (4ABH), a selective inhibitor of MPO, at
50 μM, more than three times the IC50 [29] (Fig 4B), nor 1mM KCN, depressed vacuolar pH.
KCN showed complete saturation of binding to MPO in intact neutrophils at this concentra-
tion (S2 Fig) at which it inhibits its peroxidatic activity [30]. When SNARF-labelled Candida
were added to buffers at varying pH in the absence or presence of azide, no effect of azide was
seen on the SNARF ratio (S3 Fig) of the Candida themselves.

Cytoplasmic pH falls after phagocytosis, and this is exaggerated in
Hvcn1-/- cells
In human or WT mouse neutrophils the respiratory burst was associated with a modest acidifi-
cation of the cytoplasm, from a pH of 7.56 (SD 7.49–7.62) (S4D Fig) to a mean nadir pH of
7.30 (SD 7.09–7.49) (Fig 3I and S1 Video), with homeostasis being achieved over the ensuing
20–30 minutes as described previously [31–33]. Neutrophils fromWTmice behaved similarly
(Fig 3J). InHvcn1-/- neutrophils the acidification was much more pronounced (p<0.001, Fig
3K and S3 Video), reaching a minimummean pH of ~6.72 (SD 6.08–7.12) at 2.0 minutes after
phagocytosis, before returning to normal after about 20–30 minutes. The rate of recovery of cy-
toplasmic pH after acidification with 20 mMNH4Cl for five and 20 minutes was no different
between WT and Hvcn1-/- neutrophils (S4A and S4B Fig, respectively).

The buffering capacity of the neutrophil cytosol has previously been determined at between
28 [34] and 50 [32] mM unit-1. Given an approximate neutrophil volume of ~300 μm3 [35]
and the 0.2 unit fall in cytoplasmic pH in human neutrophils (from 7.5 to 7.3) this equates to
the accumulation of ~2.3 fmols (39 mM unit-1 × 0.2 unit × 300 μm3) of protons left in the cyto-
sol when the charge is compensated by alternative ions (9.6% of ~24 fmol). InHvcn1-/- cells the
fall in cytoplasmic pH to 6.6 equates to ~10.5 fmol of protons (calculated as above).

Hvcn1-/- vacuoles are larger than normal
The vacuoles of Hvcn1-/- neutrophils containing Candida underwent a profound swelling,
which was much more obvious than in WT mouse or human cells (S1 Video and S3 Video). To
determine the extent of this swelling and to distinguish it from that induced by the osmotic ef-
fects of the products of digestion of the Candida, we measured the cross-sectional areas of

uptake. The effect of the addition of azide (C) or DPI (D) on vacuolar pH in human neutrophils synchronised to time of addition (red arrows). The numbers of
independent experiments is shown over the total number of measurements. Median, quartiles and 95% centiles are shown. Statistical significance: ***
p<0.001.

doi:10.1371/journal.pone.0125906.g004
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vacuoles containing a single indigestible latex particle with a diameter of 3 μm (a cross-section-
al area of 7.1 μm2), similar to that of Candida. In neutrophils fromHvcn1-/- mice, the vacuoles
swelled to a median cross-sectional area of 11.2 μm2 (quartiles 8.5–16.6) compared with
7.9 μm2 (6.8–9.1) in neutrophils fromWTmice (p<0.001) or Hvcn1-/- treated with 5 μMDPI
(7.9 μm2) (6.8–8.8) or CCCP (7.9 μm2) (6.9–9.0) (Fig 5C) after 30 minutes. These results indi-
cate that osmotically active ions are driven into the vacuole by the oxidase in the absence of the
proton channel. This swelling was reduced significantly (p<0.001) by 3 μM valinomycin to a
median area of 9.9 μm2 (7.1–12.8). The estimated volumes utilising the radius calculated from
the median cross-sectional area and assuming spherical vacuoles were: latex particles
(14.2 μm3); WT vacuoles (16.7 μm3) and Hvcn1-/- (28.2 μm3) without and (23.4 μm3) with
valinomycin, respectively.

If the charge compensation in Hvcn1-/- cells (~12 fmols) were purely accomplished by the
influx of cations, e.g. K+, to a concentration that balanced the cytosolic osmotic pressure of
~300 mOsm, taken as close to that of extracellular fluid [36], it would produce a vacuolar vol-
ume of ~40 μm3 (12 fmols / 300 mM) greater than that of the latex particles alone, considerably
larger than that observed. This suggests that non-osmotically active cations, such as protons,
pass into the vacuole, or that anions such as Cl-, pass out, or a combination of these two events.

Fig 5. Vacuolar size in WT andHvcn1-/- neutrophils containing a single latex particle. The cross-sectional area of a latex particle is ~7 μm2.
Representative images of a WT (A) andHvcn1-/- neutrophil containing a single latex particle are shown in (A) and (B), respectively. (C) Quantitation of
vacuolar swelling in Hvcn1-/- neutrophils compared with WT, and the effects of 5 μMDPI, 60 μMCCCP and 3 μM valinomycin. The numbers of independent
experiments is shown over the total number of measurements. Median, quartiles and 95% centiles are shown. Statistical significance: *** p < 0.001 and **
p<0.01.

doi:10.1371/journal.pone.0125906.g005
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Physiological pH in human neutrophil vacuoles is optimal for activity of
granule enzymes cathepsin G and neutrophil elastase but incompatible
with effective peroxidatic and chlorinating function of MPO
The influence of pH on the peroxidatic and chlorinating activities of MPO and on the protease
activities of cathepsin G and elastase are shown in Fig 6. Peroxidase and chlorinating activities
of MPO were maximal at acid pH, with kcat for TMB oxidation and MCD chlorination s-1 at
pH 5.0 being 36 and 19, respectively. Both activities fell off substantially with elevated pH until
virtually nothing of either could be detected at pH 9 or 10. By contrast, activity of both cathep-
sin G and elastase was low at pH 5, and that for cathepsin G peaked at between 7 and 9 whereas
elastase was most active between 8 and 10.

The SOD activity of MPO showed a similar relationship to pH as did its peroxidase activity
whereas the catalatic activity was lowest at neutral pH and increased at pH 5 and 6, and 10 at
which kcat = 3 O2 generated s

-1 (S5 Fig).

Discussion
The original description [22] of an alkalinisation of the neutrophil phagocytic vacuole by the
NADPH oxidase to a pH of ~7.5–8 has been replicated a number of times [27,37,38]. In those
studies, fluorescein was employed as pH indicator. Fluorescein saturates at a pH of ~8 and
above, was not generally used in a ratiometric manner. In addition, it has been thought by
some to become bleached by the action of MPO in the phagocytic vacuole [39,40].

SNARF is much better suited to the determination of the vacuolar pH. It has a dynamic
range of between pH 6 and 11 with approximate linearity between 7 and 10 (Fig 3D), is ratio-
metric, and can also be used to simultaneously measure the pH in the vacuole and cytoplasm.

Fig 6. Effects of pH on enzymatic activity. The effect of variations in pH on peroxidatic and chlorinating activities of MPO and on the protease activities of
cathepsin G and of elastase are shown. Results shown are the mean + SD of at least three separate assays and are expressed as a percentage of the
maximal observed activity.

doi:10.1371/journal.pone.0125906.g006
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Outside of pH interval, SNARF-inferred pH measurements are less precise. We have shown in
several ways that its fluorescent properties are not altered by the conditions in the phagocytic
vacuole. The extent and duration of alkalinisation we observed in the human neutrophils was
much greater than that previously described by us [22] and others, in part because SNARF is
more suited to measurements in the alkaline range. In addition, we only measured the pH of
Candida inside vacuoles, so that the fluorescence signal was not influenced by that of the non-
phagocytosed organisms that are buffered by the extracellular medium. Synchronising the
changes in fluorescence to the time of particle uptake, gave a more accurate indication of the
changes in pH over time.

Both studies that were unable to detect an elevation of neutrophil vacuolar pH above neutral
[20,28] included sodium azide in all the solutions to counteract bleaching of the fluorescein by
MPO [28]. We found here that azide significantly reduced the vacuolar pH (Fig 4B and 4D) by
a mechanism that did not involve the inhibition of MPO; 4ABH, which is a more specific MPO
inhibitor, had no such effect at a concentration of over three times the IC50 [29] and the addi-
tion of azide produced a rapid drop in the pH of previously alkaline vacuoles (Fig 4D). KCN,
which inhibits MPO [41], also had no effect on vacuolar pH at concentrations at which we
demonstrated it to bind to MPO to saturation in intact neutrophils. El Chemaly and colleagues
[20] observed three different populations of phagocytic vacuole in Hvcn1-/- neutrophils, a third
reaching a pH of over 8.3, surprisingly high when using fluorescein as indicator [27], and 14%
were acidic. They correctly concluded that the alkaline vacuoles indicated that the HVCN1
channel transported protons into the vacuole. They suggested that the oxidase repelled
V-ATPases from association with the vacuoles, and that the acidic vacuoles were caused by
weak oxidase repulsion of these V-ATPases which then pumped protons into the vacuole. We
did not observe the same heterogeneity with our cells which were purified from peripheral
blood (Fig 3E). We also observed a very alkaline and a more acidic population of vacuoles
when we performed experiments on bone marrow (data not shown). It is possible that some
immature neutrophils in the bone marrow have an abnormally low respiratory burst.

The accurate measurement of vacuolar pH in normal human neutrophils is absolutely cen-
tral to understanding the mechanisms by which these cells kill bacteria and fungi. A strong
body of opinion supports the concept that MPO is “a front line defender against phagocytosed
microorganisms” [21] and that it kills microbes within this compartment through the genera-
tion of HOCl. The virtual absence of peroxidase and chlorinating activity of MPO at pH of be-
tween 8.5 and 9.5 pertaining in the vacuole, and the demonstration that the antimicrobial
activity of MPO is only observed under acid conditions [41], argues strongly against this possi-
bility. However, as shown here, these pH provide an optimal milieu for the microbicidal and di-
gestive functions of the major granule proteases, elastase and cathepsin G which are activated
by this elevated pH and the influx of K+ into the vacuole [23,42]. These results support the
finding that knock-out mice lacking cathepsin G and elastase, whilst retaining normal oxidase
and MPO activities, are rendered unduly susceptible to infection by Staphylococcus aureus,
Candida albicans and Aspergillus fumigatus [23,43,44]. It is possible that MPO has two differ-
ent functions in vivo, depending upon the local environment. The pH of ~9 in the vacuole fa-
vours catalase activity rather that of a peroxidase, whereas, when the neutrophil encounters an
organism that it is unable to fully engulf, such as a fungal mycelium, the situation is different
[45]. The concentration of MPO and H2O2 will be much lower, the pH, which is low in inflam-
matory foci at ~6 [46] is optimal for peroxidatic activity, and the supply of chloride is limitless.

The gross difference in the vacuolar pH between Hvcn1-/- neutrophils and those fromWT
mice and humans must indicate that fewer protons pass into the vacuole in the Hvcn1-/- cells,
providing firm evidence that under physiological conditions the HVCN1 channel compensates
the oxidase induced charge by conducting protons across the vacuolar membrane. The
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excessive acidity that develops in the cytoplasm in Hvcn1-/- neutrophils, despite a normal pro-
ton extrusion rate out of the cell, is further evidence that the protons generated by activity of
the oxidase on the cytosolic side of the vacuolar membrane accumulate because they do not
pass into the vacuole. There was no difference in proton extrusion fromHvcn1-/- and WT neu-
trophils despite approximately half the oxygen consumption by the former which can be ex-
plained as follows. The transfer of one electron across the vacuolar membrane by the NADPH
oxidase produces two protons in the cytoplasm, one by the production of NADP from
NADPH, and the other when the NADPH is regenerated by the hexose monophosphate shunt
[47]. In WT cells, approximately one half of these protons pass into the vacuole through the
HVCN1 channel to compensate the charge and the remainder are expelled to the exterior
whereas in theHvcn1-/- cells the protons that would normally pass into the vacuole and those
that would normally be released into the extracellular medium are both expelled. Additional
proof that it is the failure of the movement of protons into the vacuole that causes the extreme
alkalinisation in theHvcn1-/-phagocytic vacuoles is provided by the effect of the addition of the
protonophore, CCCP, which overcomes the barrier to proton flux and largely reverses the alka-
linisation. These results provide direct evidence for compensation by the HVCN1 channel of
the NADPH oxidase induced charge across the vacuolar membrane.

Two studies have concluded that the HVCN1 channel plays an important role in controlling
the cytoplasmic pH by extruding protons into the extracellular medium. The first [18] used
2,7-bis-(carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) as indicator in Hvcn1-/- cells
which had been suspended in a sodium free medium to prevent the activity of Na+/H+ ex-
changers [48,49] which are known to regulate cytoplasmic pH. The cells were stimulated with
PMA, which leads to activation of the oxidase at the plasma membrane, where both charge
compensation and restitution of the pH should occur. The second study [17] measured cytosol-
ic pH with SNARF in human neutrophils phagocytosing zymosan in the presence of 100 μM
Zn2+. In these experiments it was uncertain what effect the Zn2+, and/or the 10% ethanol in
which the cells were bathed for 15 minutes, might be having on cellular processes other than
proton transport through the HVCN1 channel.Hvcn1-/- cells recovered from frozen bone mar-
row were also studied, but the recovered ‘phagocytes’ would have been predominantly macro-
phages as neutrophils are very vulnerable to freezing [50].

In neither of those studies was the rate of excretion of protons into the extracellular medium
measured. In the present study we have shown that proton extrusion rates byHvcn1-/- cells are
not detectably different from those of wild type cells. The rate of proton extrusion is limited in
normal cells as shown by the initial fall and relatively slow recovery of cytoplasmic pH in
phagocytosing cells. With this as a rate limiting step the fall in cytoplasmic pH, will be directly
dependent upon the rate at which protons are generated. Consequently, with rates of proton
extrusion equal to those of normal cells, the excessive acidification of the cytoplasm observed
inHvcn1-/- cells can be explained by the failure of the majority of protons generated by the oxi-
dase to move into the vacuole.

There was surprisingly good agreement between the observed oxygen consumption and pH
changes and the calculations of the stoichiometry of the required compensating charges and
the proportions of these contributed to by protons, 5–10% in normal cells and>90% in
Hvcn1-/-. However, the vacuolar swelling observed was less than would be expected were all the
non-proton mediated charge compensation to be due to the influx of K+, indicating that part of
the charge compensation in these cells may be due to the efflux of anions, e.g. Cl-, from the vac-
uole. A role for K+ influx [23] is supported by our observations of the reduction in vacuole
swelling by valinomycin and previous data on Rb+ efflux from PMA stimulated neutrophils
[51,52].
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Cytoplasmic granule acidification requires the vacuolar-type H+-ATPase to pump protons
into the lumen of the granules [53] and a counter-ion flux would be required to neutralize the
membrane potential created by proton accumulation. Cl- is the likely counter ion [54], which
could enter the granules through CLIC1 [55]. Granule fusion might deliver chloride ions into
vacuoles and these ions could subsequently provide charge compensation by passing chloride
from the vacuolar lumen to the cytosol through vacuolar chloride channels. The Cl- in the
granules would not provide sufficient non-proton charge compensation by itself. A granule
volume of about 10% of that of the neutrophil, with a Cl- concentration of ~80 mM [56], and
the degranulation of a quarter of the granules into each vacuole, would only produce 1 fmol, or
10% of the required compensating charge inHvcn1-/- neutrophils, so some mechanism would
be required to regenerate Cl- in the vacuole. Chloride movement into phagocytic vacuoles has
been proposed to occur through CFTR [57] and CLCN3 [58], but this would require move-
ment against a strong electrical gradient. KCC3 has been shown to be required for normal oxi-
dase activity [51] and being an electroneutral co-transporter of K+ and Cl-, it could satisfy the
dual requirements of moving chloride into the vacuole to be cycled out through a chloride
channel whilst leaving K+ in the vacuole to activate the granule enzymes [23].

Materials and Methods

Materials
SNARF-1 was from Invitrogen. Other chemicals, and latex particles, were from Sigma.

Media
Balanced salt solution (BSS) contained 156 mMNaCl, 3.0 mM KCl, 1.25mM KH2PO

4, 2 mM
MgSO4, 2 mM CaCl2, 10 mM glucose, 10mMHepes at pH 7.4. The KH2PO

4 was replaced with
KCl in experiments employing Zn2+. Phosphate buffered saline (PBS) was from Gibco.

Ethical approval
All animal work was conducted with the licence and approval of the United Kingdom Home
Office. Human participation in this research was approved by the Joint UCL/UCLH Commit-
tees on the Ethics of Human Research. All participants provided informed consent.

Organisms
Candida albicans was a clinical isolate.

Labelling Candida with SNARF
Candida were washed twice, resuspended in PBS, heated to 60°C for 30 minutes and washed
and resuspended at 1×108/ml in 0.1 M NaHCO3 pH 8.5. 50 μg SNARF-1 succinimdyl ester in
100 μl dimethyl sulphoxide (DMSO) was added drop wise to 2 ml of a rapidly stirred suspen-
sion of these cells at room temperature. The heat killed Candida were permeabilised and the
SNARF labelled internal structures. Only a thin layer of label was seen on the surface of intact
Candida. After mixing for 30 minutes at room temperature, the labelled cells were washed
twice, and then resuspended in 2 ml of BSS.

Particle opsonisation
C57B6 mice were injected three times over 6 weeks with 1×107 heat killed (60°C, 30 minutes)
Candida. 1×107 SNARF labelled Candida, in 100μl PBS were incubated with 10% complement
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preserved serum (Patricell) and 50 μl immune serum for 60 minutes at 37°C. Latex particles
3 μm (Sigma) in 0.1 M NaHCO3 pH 8.5 were opsonised with an equal volume of normal
mouse IgG (Caltag) overnight at 4°C. For studies on human neutrophils, Candida were opso-
nised as above with 50% human IgG (160 mg/ml Vivaglobulin CSL Behring) plus 10% pooled
normal human serum. All particles were washed and resuspended in 1 ml BSS.

Isolation of neutrophils
Thioglycollate-elicited peritoneal neutrophils were collected from mice by peritoneal lavage 18
hours after intraperitoneal injection of 3% thioglycollate, and maintained in PBS with 5 U/ml
heparin. The cells were centrifuged through Lymphoprep (density 1.077, Axis-Shield) at 400 g
for 10 minutes and then washed and resuspended in BSS. Peripheral blood was obtained from
mice by cardiac puncture, taken into heparin (5 U/ml) and immediately diluted with an equal
volume of PBS with heparin (5 U/ml). This mixture was then diluted tenfold with PBS and one
tenth volume of 10% dextran was added. After sedimentation for one hour the supernatant was
removed, centrifuged through Lymphoprep (density 1.077) at 400 g for 10 minutes. The pellet
was subjected to hypotonic lysis and the neutrophils pelleted at 200 g for 10 minutes. Cells
were then resuspended in BSS. All experiments were performed on pooled blood from at least
two mice. Human neutrophils were purified from peripheral blood by the standard procedures
of dextran sedimentation, centrifugation through Lymphoprep and hypotonic lysis.

Oxygen consumption
For the Seahorse apparatus (Seahorse Bioscience), 4×105 peritoneal neutrophils (from 4–5
mice per experiment) in 100 μl BSS medium were added to the poly-L-lysine coated wells of 24
well microplates and incubated at room temperature for 30 minutes. 4×107 opsonised, heat-
killed Candida or 5 μM PMA were added to each well and oxygen consumption and extracellu-
lar pH were measured repeatedly using the Seahorse XFe96 Extracellular Flux Analyzer over 15
minutes. 5μMDPI was added to some wells immediately before the PMA.

The number of independent experiments and repeats are shown in Fig 2. For two of these
experiments (shown in S6 Fig) the approximate number of cells per well at the end of each ex-
periment (four separate measurements of PMA and Candida for WT andHvcn1-/- each) were
quantitated using the MTT assay [59] and normalised before averaging. These results were
consistent with the previously obtained results (uncorrected for cell number) and thus all data
were pooled.

Cell-Tak (BD Biosciences) 50ul of 22.4 ug/ml in PBS was added to each well of a 24 well
microplate and incubated at room temperature for 30 minutes. Wells were washed twice with
BSS and neutrophils, 5×105 in 100ul BSS were added to each well and plates were centrifuged
twice at 45g for 2 min. and incubated at 37°C for 30 min. Medium was changed for 600ul
Assay buffer, RPMI (Sigma R8755) containing 5mM glucose, 2mM L-glutamine and 1mM so-
dium pyruvate (Assay buffer), 4×106 heat killed Candida or PMA + DPI 5uM, were then added
and measurements made in Seahorse XFe96 Extracellular Flux Analyzer over 45 min.

For Clarke type oxygen electrode (Rank Brothers) experiments, 1×107 neutrophils were rap-
idly stirred in a at 37°C and1×108 opsonised Candida were added and phagocytosis assessed
microscopically.

H2O2 generation
H2O2 was assayed with the Amplex Red Hydrogen Peroxide/Peroxidase Assay Kit (Invitrogen)
in a 96 well plate with with 4×105 neutrophils in 200ul/ well and 5uM PMA as stimulus.
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Confocal microscopy
Neutrophils (1–5×105 from 2–3 mice per experiment in 300 μl BSS) were incubated for 30 min-
utes on 25 mm poly-L-lysine coated coverslips in Leiden dishes, or poly-L-lysine coated eight
well ibi treated μ-Slides (Ibidi, Germany). For labelling of cytosol with SNARF, 1% by volume
of 50 μg carboxy SNARF-1, AM ester, acetate in 100 μl DMSO was added for five minutes at
room temperature. The cells were washed and resuspended in 400 μl BSS for the coverslip
chamber and 200 μl for μ-Slides. For time course experiments, coverslips in Leiden chambers
were incubated at 37°C on a heated stage and 2×106 opsonised SNARF labelled organisms
added. Images were taken every minute for 30–60 minutes. For end-point measurements in
slide chambers the labelled cells were incubated for 15 minutes at 37°C and then 1×106 parti-
cles were added and images obtained after a further 15–30 minutes at room temperature. All
confocal experiments were performed on peripheral blood human or mouse neutrophils. Cells
were imaged with a Zeiss 700 confocal microscope using a 63× oil immersion. SNARF-1 fluo-
rescence was excited at 555 nm and the emission was split between two detectors measuring
fluorescence emission simultaneously between 560–600 nm and>610 nm. Only cells contain-
ing a single Candida or latex particle were analysed.

SNARF calibration
Although the pKa of SNARF in solution is ~7.5 at room temperature and 7.3–7.4 at 37°C, it
has previously been described that the properties of the indicator change dramatically when ex-
posed to cellular components such as proteins, carbohydrates and lipids. Soluble SNARF dye
freely diffuses within a defined buffer system; bound SNARF may not be fully exposed to the
surrounding solvent system and the response is thus modulated by the local environment.
Also, the fluorescence response from some bound dye molecules may be polarised light (rota-
tion of the dye is limited) and quenched (dye molecules bound near aromatic amino acids)
[60,61] (and personal communication Thermo Fisher Scientific). Cytosolic pH standard curves
were constructed by the nigericin/high K+ technique [17]. Cells were labelled with SNARF as
described above and then washed and incubated in high K+ solutions (100 mM K+) containing
10 μM nigericin and 50 mM buffers at pH 3 (glycine), 4–6 (acetate), 7–9 (Tris), 10 (glycine)
and 11–13 (PO4) in 100 mM KCl. Standard curves were also constructed with 100 mM KCl
and a 50 mMmixture of barbital, citric acid, boric acid and PO4 adjusted to a pH of between 3
and 13. The standard curve in S4D Fig was buffered with Hepes. The cytoplasmic pH was al-
lowed to equilibrate with each external solution until the ratio of SNARF no longer changed
with time. In some experiments the cytoplasm was acidified by incubating the cells in 20mM
NH4Cl (13% 150mM NH4Cl to 87% BSS) for 5 or 20 minutes. The medium was then replaced
by BSS and the ratio of SNARF determined every minute for 15 minutes.

SNARF labelled Candida were equilibrated in the same buffers without nigericin. In addi-
tion, human neutrophils that had phagocytosed SNARF-labelled Candida were suspended in
the buffers in the presence of 0.3% saponin before imaging the Candida.

SNARF-labelled Candida provide a suitable pH indicator system for measuring vacuolar
pH

Standard curves in the two buffering systems demonstrated that the dynamic range of
SNARF ranged between a pH of 6 and 11 (Fig 3D). The standard curve on intracellular organ-
isms in permeabilised human neutrophils (Fig 3D) was not significantly different. There was
considerable variation of the fluorescence ratio of the individual Candida organisms, particu-
larly at higher pH. The fluorescent properties of the Candida were not permanently altered by
the conditions in the vacuole. In some cases inHvcn1-/- neutrophils (S3 Video and S4 Video)
the vacuoles ruptured, releasing the organisms, the fluorescence of which reverted to levels
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comparable to those of other extracellular labelled organisms. Finally, there was no decrease in
fluorescence intensity at the two emission wavelengths measured over the time course of the
experiments (S7 Fig).

Quantitation and statistical analyses
SNARF ratio (>610 nm / 560–600 nm) and vacuolar cross-sectional areas were determined by
manual quantitation under blinded conditions using custom macro scripts in ImageJ (National
Institutes of Health, USA, version>1.46r). Data were analysed using the R statistical package.
For time courses, data were synchronised to the time of particle uptake and were normalised to
the mean baseline pre-phagocytic ratio. Linear interpolation was performed between measure-
ments. All statistical comparisons were undertaken by analysis of covariance (using the lm
function) with experiment identifier as a covariate to correct for inter-experiment variation.

pH dependence of myeloperoxidase peroxidatic, chlorinating catalatic
and superoxide dismutase activities, and activities of leukocyte elastase
and cathepsin G
MPO was purified from human neutrophils exactly as described previously [62]. Peroxidase
and chlorination assays were conducted in 150mMNaCl containing 10 mM CHES, MES and
HEPES at pH of 5–9 and 10, and also in MES (pH 5 and 6), potassium phosphate (pH 7 and 8)
or Tris (pH 9 and 10), all at 50mM which were also used for catalatic and SOD measurements.
Peroxidase activity was measured with 3,30,5,50-Tetramethylbenzidine (TMB) [63] in reactions
containing 0.75 mM TMB, 300μMH2O2 and 4nMMPO with absorbance read at 655nm, and
with 0-dianisidine (200 μM), 50mMH2O2 and 8nMMPO with absorbance read at 460nm.
Chlorination was measured with monochlorodimedone (MCD, 20μM) [64], 100μM ethylene-
diaminetetraacetic acid, 8nMMPO, 100mM KCl and 50μMH2O2 and read at 290nm. Catalatic
activity of MPO was determined using a Hansatech Oxygraph oxygen electrode to measure the
initial rate of oxygen release after addition of hydrogen peroxide. 1 mL of buffer was partially
deoxygenated with nitrogen gas before addition of 1.5 μMMPO and assembly of the chamber
top. The reaction was initiated by addition of 12.5–500μMH2O2. Relative activities of the SOD
capability of MPO were assessed from the rate of nitroblue tetrazolium (NBT) reduction by
xanthine oxidase-generated superoxide and its inhibition by MPO, using a method adapted
from Kettle and Winterbourn [65]. Buffer containing 100μMmethionine, 100μMNBT and
50μM hypoxanthine was placed in a cuvette and NBT reduction rate after addition of xanthine
oxidase (XO) was monitored at 560 nm. An absorption coefficient of 15 mM−1 cm−1 was used
for the formazan product at 560 nm [66]. The amount of XO (3.3 μg/mL at pH 8) was varied at
different pH values so that the rate of NBT reduction was the same at all pH values. The inhibi-
tory effect of 40–100 nMMPO was measured to assess its relative superoxide dismutase activity
at different pH values.

Elastase (5mU/ml) was incubated with 10μMN-Methoxysuccinyl-Ala-Ala-Pro-Val-
7-amido-4-methylcoumarin at 37°C Excitation 355nm Emission 460nm. Substrate for cathep-
sin G (25mU/ml) was 2mMN-Succinyl-Ala-Ala-Pro-Phe p-nitroanilide at 37°C with absor-
bance measured at 410nm.

Mice
The knock-out mouse strains used in this study were:Hvcn1-/-[17], and X-CGD mice
B6.129S6-Cybbtm1Din/J deficient in gp91phox (The Jackson Laboratory). Mice were genotyped
according to previously described protocols.
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Supporting Information
S1 Fig. Titration of the buffering capacity of Candida on pH changes in response to the ad-
dition of KOH. Two independent experiments (red and black) are shown.
(PDF)

S2 Fig. Spectral changes induced by the binding of different concentrations of cyanide to
myeloperoxidase in intact human neutrophils. Intact neutrophils (1.5×107 in BSS) in a 1 cm
pathlength cuvette were placed in an in-house built scanning spectrometer equipped for analy-
ses of turbid materials and a baseline was recorded. Cyanide was added at the concentrations
shown and the resulting difference spectra were recorded after the optical change had stabilised
(within a few minutes). The resulting difference spectra exhibit features at 419(-), 461(+), 575
(-) and 639(+) nm that are typical of the formation of the ferric MPO-cyanide complex. Using
an extinction coefficient for cyanide binding at 461–419 nm of 68 mM-1cm-1 (estimated from
data in [67]) the concentration of MPO in the cell suspension was 0.45μM.
(PDF)

S3 Fig. The lack of an effect of 5mM sodium azide of pH dependence of SNARF ratio.
SNARF labelled Candida were incubated in the Barbital buffer at pH of 7, 9, 10 and 11 for 30
min. and the fluorescence measured. The numbers of measurements are given at the bottom of
each bar. Mean ± SD are shown.
(PDF)

S4 Fig. Rates of recovery of cytoplasmic pH inHvcn1-/- and wild type mouse neutrophils
after incubation for five (A) or 20 minutes (B) with 20mMNH4Cl followed by its replace-
ment by BSS. The SNARF ratios in each cell were measured every minute and are expressed as
the mean ± SD, the numbers of cells studied are shown. The standard curve of SNARF ratio
against pH is shown in (C) and the cytosolic ratios and corresponding pH of 470 and 480 cells
from eight experiments on WT and Hvcn1-/- cells respectively are shown in (D).
(PDF)

S5 Fig. pH dependence of superoxide dismutase and catalatic activities of myeloperoxidase.
Results are shown as a percentage of maximal activity.
(PDF)

S6 Fig. Oxygen consumption (OCR, A) and extracellular acidification rate (ECAR, B) for
two experiments normalised for cell number using the MTT assay. Data are shown in arbi-
trary units post MTT correction. For PMA and Candida in both WT and Hvcn1-/-, four sepa-
rate measurements were taken in each of the two independent experiments.
(PDF)

S7 Fig. Demonstration of the time course of changes in intensity of the two emission wave-
lengths from the experiment shown in Fig 4B showing that there is no loss of intensity over
time.
(PDF)

S1 Video. Time lapse video of human neutrophils phagocytosing Candida.
(WMV)

S2 Video. Time lapse video of human neutrophils phagocytosing Candida with the addi-
tion of 5 μMDPI during the time course.
(WMV)

Neutrophil Phagocytic Vacuolar pH

PLOSONE | DOI:10.1371/journal.pone.0125906 April 17, 2015 16 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0125906.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0125906.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0125906.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0125906.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0125906.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0125906.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0125906.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0125906.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0125906.s009


S3 Video. Time lapse video ofHvcn1-/- neutrophils phagocytosing Candida. Following up-
take the Candida particles turn red indicating extreme alkalinisation and the vacuoles can
be seen to swell. In a small number of cells the cytoplasm suddenly becomes alkaline.
(WMV)

S4 Video. Time lapse video of anHvcn1-/- neutrophil phagocytosing and releasing a Candi-
da particle which is subsequently phagocytosed by an adjacent neutrophil.
(WMV)
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