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Abstract

Kinase mediated phosphorylation site detection is the key mechanism of post translational
mechanism that plays an important role in regulating various cellular processes and pheno-
types. Many diseases, like cancer are related with the signaling defects which are associat-
ed with protein phosphorylation. Characterizing the protein kinases and their substrates
enhances our ability to understand the mechanism of protein phosphorylation and extends
our knowledge of signaling network; thereby helping us to treat such diseases. Experimen-
tal methods for predicting phosphorylation sites are labour intensive and expensive. Also,
manifold increase of protein sequences in the databanks over the years necessitates the
improvement of high speed and accurate computational methods for predicting phosphory-
lation sites in protein sequences. Till date, a number of computational methods have been
proposed by various researchers in predicting phosphorylation sites, but there remains
much scope of improvement. In this communication, we present a simple and novel method
based on Grammatical Inference (Gl) approach to automate the prediction of kinase specific
phosphorylation sites. In this regard, we have used a popular Gl algorithm Alergia to infer
Deterministic Stochastic Finite State Automata (DSFA) which equally represents the regular
grammar corresponding to the phosphorylation sites. Extensive experiments on several
datasets generated by us reveal that, our inferred grammar successfully predicts phosphor-
ylation sites in a kinase specific manner. It performs significantly better when compared
with the other existing phosphorylation site prediction methods. We have also compared
our inferred DSFA with two other Gl inference algorithms. The DSFA generated by our
method performs superior which indicates that our method is robust and has a potential for
predicting the phosphorylation sites in a kinase specific manner.

Introduction

Protein phosphorylation is one of the most important ubiquitous post-translational modifica-
tions. Protein phosphorylation occurs due to the addition of covalently bound phosphate
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group to certain receptor residues i.e., Serine (S), Threonine (T), Tyrosine (Y) and Histidine
(H) in the substrate sequence. Protein phosphorylation plays a major role in various critical
cellular phenomenon such as metabolism [1], cell signaling [2,3], cellular proliferation [3] and
apoptosis [4] and found in almost all the organisms from prokaryotes to eukaryotes. About
30%-50% of all eukaryotic proteins are known to undergo protein phosphorylation [5].

Phosphorylation takes place through a set of enzymes called kinases, which constitutes one
of the largest known protein super families. About 1.7% of all the human genes encode as
many as 518 different types of kinases and they are classified into a hierarchical manner with
10 groups, 134 families and 201 subfamilies primarily based on the homology of their catalytic
domains [6]. Therefore, the identification of phosphorylation sites, especially in a kinase-
specific manner, is necessary for understanding the molecular mechanisms of phosphorylation
as well as elucidating the dynamic interactions between protein kinases (PKs) and their sub-
strates. Although mass spectrometric techniques has been widely used in detecting the phos-
phorylation sites in a high-throughput manner, but this method is rather cost and labor
intensive. Also, ever increasing number of protein sequences in the data banks necessitates the
development of computational methods for reliably predicting phosphorylation sites in the
protein sequences as fast as possible. Many in silico methods have been proposed to predict ki-
nase specific phosphorylation sites, such as Scansite [7], KinasePhos [8], NetPhosK [9], PPSP
[10], GPS [11,12], Postmod [13], BAE [14], AMS 4.0Server [15], Metapred [16] and a method
that we have developed earlier [17]. These methods predict the phosphorylation sites in a ki-
nase specific manner. The details of these methods are discussed in the review paper by Trost
et al. [18]. Most of these methods are based on machine learning techniques using a single clas-
sifier. In the recent years, researchers are concentrating upon using ensemble mechanism in-
stead of a single classifier for predicting protein phosphorylation sites [14-15, 17]. Another
method Musite is considered for large scale predictions of both non-kinase and kinase-specific
phosphorylation sites [19]. RegPhos and KinomeXplorer are two latest tools, aimed to explore
kinase signaling networks [20, 21]. Recently in 2014, Suo et al. have proposed a method PSEA
for predicting kinase specific phosphorylation sites as well as for analyzing the types of kinases
corresponding to all disease-related phosphorylation substrates [22]. But all of these methods
require a good data encoding scheme as it plays a crucial role in affecting the performance of
the classifiers. Moreover, a specific type of feature encoding scheme for precisely predicting
phosphorylation sites of a protein sequence is not fully exploited. Therefore, no single feature
encoding scheme can be expected to absolutely differentiate the phosphorylation from non-
phosphorylation sites for all the kinases. Also, these methods require an a priori knowledge
about the computational models of phosphorylation sites to permit automatic annotation.

In our study, we have proposed a new method to support the de novo discovery of kinase
specific phosphorylation sites based upon computational grammar. Various methods based on
Computational grammars have been proposed so far for modelling and predicting various
types of biological sequences such as promoter region of human [23], transcription binding
site [24], associating genes with their regulatory sequences [25], predicting RNA folding [26],
secondary structure of RNA molecule [27-29], genes and biological sequences [30,31], syntac-
tic model to design genetic constructs [32] and new antimicrobial peptides [33]. Nowadays,
Grammar Inference (GI) is becoming an active field of research in the area of computational
grammar [34]. GI is a specific type of inductive inference, which takes into account a set of
sample data to obtain a model consistent with the available data. The resulting model obtained
through GI method using a set of sample strings represents a formal grammar which contains
all common features of the strings. GI method is being used for predicting various biological se-
quences, such as larger than gene structure [35], functional motifs, such as coiled coil domains
in protein sequences [36], transmembrane domains [37], various protein sequences [38], etc.
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Fig 1. Block diagram of a general Grammar Inference methodology.

doi:10.1371/journal.pone.0122294.g001

The choice of GI as a method confers us with two distinct advantages over other methods hav-
ing a different flavor: (a) GI doesn’t require any pre-existing biological knowledge and (b) no
data encoding is required for a GI. A general framework of GI methodology is shown in Fig 1.
In our study, we have used GI method to infer the regular grammar corresponding to the phos-
phorylation sites of protein sequences. From previous studies we came to know that substrates
of a specific kinase show a particular sequences pattern around the phosphorylation sites [39,
40]. For example, PKA kinase has a preference to identify the substrate sites with basic amino
acids (Arginine, Lysine or Histidine) at -2 or -3 positions relative to the phosphorylation sites
considered as position 0 [40]. Many methods have been developed to infer the sequence motifs
near the phosphorylation sites [7, 39, 40, 41]. Our method is based on the idea of identifying re-
curring patterns hidden in the phosphorylation sites from a set of training samples and repre-
senting them as grammatical models. The generated grammar is then used for predicting
unknown phosphorylation sites. A grammar can equally be represented by means of an autom-
aton. Instead of inferring grammar rules, in our present study, we have inferred the Determin-
istic Stochastic Finite State Automata (DSFA) using Alergia algorithm for predicting the kinase
specific phosphorylation sites. The method we have presented here is an unsupervised learning
method based on Prefix Tree Automaton (PTA). At the very outset, our method first constructs
a PTA based on the training samples. In the next step, the similar states of the PTA are merged
in an iterative process to obtain a stochastic finite state automaton. The resulting automata will
allow processing of unknown protein sequences for deciding upon whether to accept or to re-
ject the sequences. The point to be noted here is that it can accept a wider range of input se-
quences than what may be present in the training set.

Materials and Methods
Materials

In order to evaluate the performance of our proposed method and to compare it with other ex-
isting methods, we have extracted the phosphorylation sites from Phospho.ELM database (ver-
sion 9.0) [42]. Experimentally validated phosphorylation sites of eukaryotic cells for 299 types
of different kinases are curated in Phospho.ELM database. Version 9.0 of this database contains
8718 proteins from different vertebrate species covering 31,754 serine, 7,449 threonine and
3,370 tyrosine instances. Each entry in the database provides information about the substrate
proteins along with the exact positions of the residues phosphorylated by a given kinase. In our
study, we have considered the kinase families having at least 100 known and experimentally
validated phosphorylation sites. We have chosen four serine/threonine (S/T) kinase families,
PKA, PKC, CK2 and MAPK for vertebrates only. 21mer sequences including 10bp upstream to
10bp downstream from the phosphorylation site with the phosphorylated residue at the central
position i.e., at the position 11 are extracted. In case the Phosphorylated residue (S/T) which
appears in the first or in the last 10 residue, that is, if the distances between the phosphorylated
residue and N or C terminal is less than 10-mer, an extra residue X (where X denotes any
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residue) is added before the first residue or after the last residue of the sequence in order to
keep the protein sequence size at 21mer and phosphorylated residue at the center i.e., at the po-
sition 11.

Negative dataset is prepared by taking the 21mer protein sequences centring all the non-
phosphorylated S, T residues of the substrate proteins corresponding to the nine kinase families
mentioned above. We have taken non-phosphorylated S/T residues as negative control for the
serine/threonine kinases that is, for PKA, PKC, CK2 and MAPK kinase families. In order to
avoid the overestimation during experimentation, highly homologous sequences (i.e., se-
quences having more than 60% identity) are discarded from positive and negative datasets by
using CD-HIT clustering program [43].

Moreover, in the context of the multiple kinase families, the number of known positive phos-
phorylation sites is much less than the negative sites i.e., non-phosphorylation sites, resulting in
an imbalanced dataset. As there are far more non-phosphorylated S/T residues than phosphory-
lated ones, it is not viable to take up the whole non-phosphorylated sites as negative instance.
Furthermore, in the real world, there are much more negative cases than positive cases. Hence it
would be more practical to take a significant disparity in positive to negative ratio for evaluating
the performance of our method in a more credible manner. So in our present study, the ratio of
positive instances to negative instances is kept at 1:10 to avoid any biased prediction.

Method

The main goal of our method is to construct the regular grammar corresponding to the phos-
phorylation sites. The problem of learning of a regular grammar can be reduced to that of the
inference of finite state automata. The inference of finite state automata is widely studied by
the GI community. Various GI methods have been proposed so far for the successful induction
of finite state automata. In our work, we have inferred the deterministic finite state automata
(DFA) that can recognize the phosphorylation sites of the protein sequences in a kinase specific
manner. To achieve this goal, a well known GI algorithm has been used to infer automata from
a set of training samples. In the test phase, when an unknown sequence is given as input, the
generated automata decide whether the sequence contains a phosphorylation site or not.

Notation and definition

Let Z be the set of alphabet and Z* be the set of words generated over the set of alphabet Z.
Then a language L can be any subset of X* i.e., the subset of the set of words and can be written
as L = {x | xeX* where x is any word}

If G is the grammar corresponding to the language L, grammar is denoted as G= (N, %, P, S)
where N is the set of nonterminal symbols, X is the set of terminal symbols or the set of alpha-
bets, P is the set of production rules and S is the start symbol. The language L can be generated
successively by rewriting the production rules starting from the start symbol S.

A regular grammar is a type of formal grammar that describes and generates a regular lan-
guage. Regular grammar is a 4-tuple (N, X, P, S) such that the production rules in P are of the
following forms:

1. B—a,whereBe NandaeX
2. B—aA|Aa,where B,AeNandaeX
3. B — ¢, where B € N and e denotes the empty string i.e., string of length 0.

Regular grammar can equally be represented by Deterministic finite state automata (DFA).
Most of the previous work in regular grammar inference has chosen DFA to represent the
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target regular grammar. A DFA is a virtual machine, formally represented by 5-tuple (Q, Z, 3,
qo» F) where Q is the set of states, X is the set of symbols or alphabets, qq € Q is the start state,

F €Q is the set of final accepting state, 8 is the transition function Q x Z—Q d(g,a) denotes the
state reached from the state q on reading the input symbol a of Q. The automata process an
input string and decide whether to or not to accept the string. For reading an input string, DFA
must reach to any final accepting state beginning from the start state. Therefore, a successful
path in an automata is a sequence of transitions (q0,41,41)(40-32:92) - - -(§n-1-Xnqn)> Where q,, cF,
geX*and1 <i<mqeQ

Grammar inference

We have addressed the prediction of kinase specific phosphorylation sites through a DFA. For
this, we have tried to construct DFA from a set of amino acid sequences that contain the phos-
phorylation sites. Now, given an unknown sequence, the constructed DFA would only accept
the sequences having phosphorylation sites. To infer a DFA, initially a Prefix Tree Automaton
(PTA) is constructed from a set of positive samples (S*) using the PTA algorithm.

PTA algorithm is an unsupervised relational learner that infers grammars from a set of
unlabelled samples. PTA algorithm works by constructing a PTA, which is also a DFA with
separate paths from the start state to the final accepting state for each string in S™. Each of the
DFA represents an input token (in our case, each amino acid). PTA accepts the strings from S*
only. In the next step, similar states of the PTA are merged in an iterative way until a minimum
similarity threshold is reached. In each iteration, the similarity between every two states is cal-
culated and the most similar pair of states is merged to obtain the final minimized DFA. Fig 2
shows the diagram of a PTA and Fig 3 represents the final DFA generated over five
sample sequences.

In this study, instead of inferring simple regular grammar, we have inferred stochastic regu-
lar grammar. Towards this endeavor, we have inducted the corresponding Deterministic sto-
chastic finite state automata (DSFA). A DSFA is a 4-tuple and is defined as A = (Q, X, q;, 1),
where Q is the finite set of N states, X is the finite set of symbols or alphabets, g, is the initial

Fig 2. A Prefix Tree Automaton (PTA) generated over Five protein sequences: i) RRKSACP, ii)
RRKSIPK, iiij) RRPSCAL, iv) RRTSCLI, v) RPKSPSK.

doi:10.1371/journal.pone.0122294.9002
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Fig 3. The Deterministic Finite State Automaton (DFA) constructed from the PTA by state merging
method.

doi:10.1371/journal.pone.0122294.9003

state and 7 is the set of probability matrices. Pj(a) is the probability of transition from state i to
state j on reading the symbol a in the alphabet. The final state probability P;is the probability
that the string will end at state g;, such that the following constraints applies:

Pyt pyla)=1 (1)

qJEQ acX

Eq 1 signifies the fact that the total probability of each transition out of the state g; together
with the probability that g; is an accepting state, must be 1.
The probability that the string w to be generated by A is defined as

pw) = py(wip,

9;€Q

S =) ) pu(b)p(a) where ba=w 2)

qeQ weX

The language generated by the automaton A is the stochastic regular language define as:
L={we X :p(w) #0} 3)

This means that the set of sequences that have a nonzero probability will be accepted by the
DSFA.

In the first step of constructing the DSFA corresponding to the phosphorylation sites, the
training and test data set is created which are mutually exclusive. Training set consists of only
positive samples, i.e., the sequences having phosphorylation sites of each kinase. Test set con-
tains both the positive and negative samples. In the next step, a PTA is created using the train-
ing dataset. A PTA is a tree-like DFA generated by extracting all the prefixes of the sample
sequences as states that accepts only the sample sequences from which the PTA is built. Given
a set of random sequence of symbols (e.g., w = a;a,d3a4...a,,), a prefix of the sequence w can be
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any subsequence w,, of w for which:

where w’ is a sequence of any length (i.e., containing any number of symbols, including 0). A
prefix tree, also known as trie, (the term is derived from the word retrieval, representing an or-
dered multi-way tree data structure conferring much advantage over a binary tree to store
strings over an alphabet) is an ordered tree data structure and it is expressed as a DFA to form
the PTA. If S be the sample from which we have built the PTA, a PTA = PTA(S) is a DFA that
contains a path from the initial state to a final accepting state for each strings in S.

PTA can be reduced in size by merging the equivalent states of PTA to form a final DSFA.
In the next step of our method, we have generated the deterministic stochastic finite state au-
tomata (DSFA) from the PTA using a well known GI algorithm, Alergia proposed by R.C. Car-
rasco and ] Oncina [44]. Alergia transforms a PTA into a DSFA by means of a systematic
merging of statistically equivalent states. Alergia takes PTA as an input and evaluates the rela-
tive frequencies of the outgoing edge of each state of the PTA and are calculated by estimating
the following parameters:

o n;, the number of strings arriving at state g;,
« fi(a), the number of strings following edge d;(a)

o fi(#), the number of strings ending at node g;,

ff,—',‘) and f(#) estimates the p;(a) from the state g; while reading the symbol a and the ending
probability respectively p;.

In the next step, the Alergia algorithm compares the pairs of states (g;,q;) with 1 <i <j-1
and 2 <j < t, where t is the total number of states in PTA. Two states are said to be equivalent
if they have equal outgoing transition probability for each symbol a € X and the same destina-
tion states. Therefore, the criterion for two states to be equivalent is given by the following
equation:

- pi(a) =p,(a)
qi:qj:>{‘ _5U,Va62 (4)

However, the determination of state equivalence is statistical in nature and is controlled by
a parameter o, called the confidence parameter that ranges between 0 and 1. Confidence pa-
rameter is introduced to overcome any possible statistical fluctuations in the experimental
data. Two states are merged when they are equivalent within some tolerance limits defined in
terms of confidence range. The state transition probabilities and final state probabilities are re-
computed after each state merging. The algorithm is guaranteed to converge to the target
DSFA in the limit when a complete sample is provided. The detail of the Alergia algorithm is
given in the original paper by Carrasco et al. [44]. In our method, we have assumed that there
exists at least some non-zero probability of transition from each state for each symbol in X.
Therefore if the transition probability and ending probability for some states is 0, we have re-
placed the corresponding probability by a small non-zero value, i.e., by 0.01.

Once the DSFA is constructed using the training set, the probability of a specific sequence is
generated by the DSFA using Eq 2. If the probability of a given sequence is above the user de-
fined threshold value, the sequences are predicted to be phosphorylation sites.
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Extraction of probabilities of specific pattern

Once the DSFA is constructed, useful information, such as probability of appearance of a par-
ticular symbol in a random sequence can be extracted from it. As the input protein sequence
does not provide any information regarding appearance of phosphorylated residues, it would
be troublesome to decide which one of the S/T residues will be the exact phosphorylated resi-
due if S/T appears more than once in a sequence. To overcome this problem, we have calculat-
ed the probability of occurrence of S/T residues to infer the exact position information of the
phosphorylated residue in a random sequence. The probability of a particular symbol to appear
in any given sequence can be calculated from the transition probability matrix Pj(a). A path
starting from S and containing any symbol x either begins with the symbol x or begins with
some other symbol and is followed by a path starting at the next state containing a symbol x.
Therefore, the probability of occurrence of the symbol x can be written as P(S,x) where S can
be a start state or any state following the start state which emits the symbol x.

Thus, for each state, the emission probability of each S/T symbol is calculated and the S/T
residue for which emission probability from a state is highest is considered to be a putative
phosphorylated residue and the position of that S/T residue in the sequence is predicted as
phosphorylation site specific to a given kinase.

Performance evaluation

The performance of our method is measured in terms of four generalized statistical parameters
i.e., precision, recall, accuracy (AC) and F-measure. The measures are given by the following
equations:

TP TP TP + TN

Recall = ————  Precision = —— . AC =
A =rp N O T p L Epe TP + FP + TN + EN

Precision * Recall

F — measure =2 % ——————————
Precision + Recall
where TP is the true positive i.e., positive instances predicted as positives, TN is the true nega-
tive i.e., negative instances predicted as negative, FP or false positive is the negative instances
predicted as positives and FN is false negative i.e., positive instances predicted as negative.

Receiver operating characteristic (ROC) curves are calculated and plotted based on Sensitiv-
ity(Sn) and Specificity (Sp)to evaluate the prediction performance of our method for various
threshold. S,, and S, are calculated by the following equations:

S TP qs TN
=———an =
" TP+FN P TN+ FP

S, and S, values depend on the threshold used for the prediction. A higher threshold im-
proves S, but reduce S, whereas lesser threshold increases the S, at the price of lower S,..

Results and Discussion
Performance evaluation of our method on various datasets

We consider the prediction of phosphorylation site to be an automata problem. For such a
problem, given an amino acid sequence as input to the automata, our system accepts the se-
quences having phosphorylation sites and rejects the sequences lacking the phosphorylation
sites. This is done by generating a probability corresponding to the input sequence. If the
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Fig 4. Change of accuracy with various size of training set (10%-80%) for the Alergia algorithm.

doi:10.1371/journal.pone.0122294.g004

probability is above the user defined threshold, the sequence is predicted to be a phosphoryla-
tion site.

Positive and negative sequences for each kinase family are downloaded from PHOSPHO.
ELM database and CDHIT program is run on these sequences to obtain the non-homologous
dataset. Next, the positive data is divided into training and test datasets. We varied the size of
the training set by taking 10% through 80% of the whole positive data. The accuracy of our
method with various training data sizes is shown in Fig 4. We found from the Fig 4, that a 60%
training size is sufficient to achieve the best accuracy. Hence, we have divided the dataset into
6:4 ratios, where 60% data are used as training dataset for constructing the DSFA for further
explanation and comparison purpose. Taking the remaining 40% data and the negative se-
quences, a test dataset is constructed. In test dataset, the ratio of positive and negative se-
quences is kept at 1:10 to avoid any biased prediction. We have named this dataset PHSDB.
The number of positive and negative samples in training and test dataset for four kinases are
summarized in Table 1. Furthermore, we have varied threshold value from 0.001 to 0.01 for all
the kinases. We have varied the window size from 5 to 21 and have found that for window size
7 our proposed method obtains best result. Hence we have fixed the window size of our method
at 7. In order to evaluate the performance of our method, we have generated Receiver Operat-
ing Curve (ROC) for each of the kinase specific phosphorylation site predictor. ROC curve
shows the trade-off between True Positive Rate (TPR) i.e., Sensitivity and False Positive Rate
(FPR) i.e., 1-Specificity. ROC curve is obtained by varying the threshold from 0.01 to 0.004.

Table 1. Number of positive and negative samples in training and test dataset for four protein kinases
after removing the redundant data obtained from Phospho.ELM database version 9.0.

Name of the kinase Training dataset Test dataset
Positive samples Positive samples Negative samples
PKA 168 117 1172
PKC 115 80 801
MAPK 144 102 1013
CK2 109 76 751

doi:10.1371/journal.pone.0122294.t1001
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Fig 5. ROC curve by varying threshold values for PHSDB dataset for the four kinases PKA, PKC,
MAPK and CK2.

doi:10.1371/journal.pone.0122294.g005

The ROC curve for PHSDB dataset is shown in Fig 5. The ROC curves for all the kinases almost
reach100% sensitivity with atleast 15% specificity. Moreover, from the Fig 5 we can see that for
all the kinases, at the threshold value nearer to 0.008, a balanced and higher sensitivity and
specificity is obtained. While decreasing the threshold, the corresponding specificity also de-
creases. Hence for the further experimentation we have used the threshold value 0.008 for our
method. We have also calculated the precision, recall, accuracy and F-measure for PHSDB
dataset for the threshold 0.008 as shown in Table 2. The table shows that our method can pre-
dict phosphorylation sites for PKA, PKC, MAPK and CK2 with 96.11%, 97.38%, 96.54% and
96.12% accuracy respectively and also quite high F-measure values of 0.7933, 0.8553, 0.8240
and 0.7999 respectively. It indicates that our method yields sufficiently high precision and re-
call values which in other term means that our proposed approach can predict positive and
negative instances quite accurately. To validate our result from ROC curve that at threshold

Table 2. Performance of the proposed method for prediction of phosphorylation site specific to the kinases PKA, PKC, MAPK, CK2 on the training

and test dataset.

Name of the kinases Precision
PHSDB

PKA 0.7680

PKC 0.8607

MAPK 0.7672

CK2 0.7529

Recall
PHSDB
0.8205
0.8500
0.8900
0.8533

F-measure
PHSDB
0.7933
0.8553
0.8240
0.7999

Accuracy(%)
PHSDB
96.11

97.38

96.54

96.12

Here 60% of the positive data is used for training and the remaining 40% Data along with negative data is used as test dataset. We renamed this test

dataset as PHSDB.

doi:10.1371/journal.pone.0122294.t1002
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value 0.008 yields the best result, we have also plotted change in accuracy with various thresh-
old values. The plot is shown in S1-54 Figs. demonstrates that at threshold value 0.008 our
method obtains best accuracy.

As we have very limited number of known phosphorylation sites corresponding to the spe-
cific kinases, we have adopted an asymmetric bootstrap resampling approach for the dataset
containing only the positive phosphorylation sites. This procedure generates more than one
numbers of positive datasets for better statistical validation. In bootstrap resampling, a set of
resampled subsets of the original dataset are generated by random sampling with replacement
(so that individual instances may appear more than once in a subset). The size of the resampled
subsets may or may not be equal to the size of the original dataset. In our case, we have kept the
size of the subsets equal to the original one. That is, from the original dataset D of size n, a set
of new datasets {Dj, D,, D3, .. ., D,,,} are generated each of size n” such that n = n”. We have var-
ied the number of resampled subsets which (i.e., B) from 10 to 50. The results of repeating each
experiment for 30 times with each of the resampled dataset for each kinase is reported in
Table 3. In order to obtain a statistically significant output for testing our proposed method,
we have done a 10-fold cross-validation on each of the resampled dataset. In 10-fold cross-
validation, the dataset is divided into 10 equal sized parts. 9 parts are used for training and the
remaining part is used as test dataset. The method is repeated for all the 10 parts. In each test
dataset, the ratio of positive samples to negative samples is kept at 1:10. Table 3 shows an im-
provement in the result for all the kinases in terms of both accuracy and F-measure. Here also,
our method performs quite satisfactory with accuracy in the range of 96%-98% and F-measure
in the range of 0.83-0.88 for all the resampled datasets and for all the kinases. Table 3 shows
that a very small variation in precision, recall, accuracy and F-measure is found in the kinases

Table 3. Performance of our method on different resampled data sets for the kinases PKA, PKC, MAPK, CK2.

Name of the Kinase Number of resampled dataset Precision Recall Accuracy(%) F-measure
PKA B=10 0.8012 0.8958 96.73 0.8459
B =20 0.7981 0.8784 96.56 0.8363
B =30 0.7969 0.8993 96.70 0.8450
B =40 0.8012 0.9097 96.83 0.8520
B =50 0.8018 0.8993 96.76 0.8477
PKC B=10 0.8483 0.8950 98.04 0.8710
B =20 0.8495 0.8750 97.93 0.8620
B =30 0.8599 0.8900 98.11 0.8746
B =40 0.8529 0.8700 97.93 0.8613
B =50 0.8599 0.8900 98.11 0.8746
MAPK B=10 0.7889 0.9230 96.77 0.8507
B =20 0.7800 0.9190 96.61 0.8438
B =30 0.7876 0.9311 96.81 0.8534
B =40 0.7857 0.9352 96.81 0.8539
B =50 0.7842 0.9271 96.73 0.8497
CK2 B=10 0.8076 0.8983 96.86 0.8506
B=20 0.8067 0.8930 96.80 0.8477
B =30 0.8019 0.8877 96.70 0.8426
B =40 0.8078 0.8770 96.70 0.8410
B =50 0.8086 0.9037 96.91 0.8535

Here we have varied the size of resampled data sets from 10 to 50. The performance is measured in terms of precision, recall, accuracy and F-measure.

doi:10.1371/journal.pone.0122294.1003
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PKA, PKC, MAPK and CK2 with the change of B. It might be possible that the presence of
some atypical samples in these families increases the difference between various re-sampled
datasets and causing the small variation in accuracy and F-measure with the different numbers
of re-sampled datasets; but none of these kinase families show any trend of increase or decrease
of accuracy with increase or decrease of re-sampled data size Hence, the performance of the
method does not get affected by the number of the re-sampled datasets. Table 3 shows a bal-
anced Precision and recall indicating that the number of true positives and true negatives is
higher relative to the number of false positives and false negatives. As a result, quite a high F-
measure has resulted for all the kinases using our method. ROC curves obtained by varying
threshold values for various resampled datasets corresponding to all the kinases are shown in
S5-S9 Figs.

Performance Comparison with other Gl methods

We have also considered two other popular grammar inference algorithms: RPNI based on or-
dered depth-first search named regular positive and negative inference (RPNI) [45, 46] and an-
other is based on genetic algorithm [47].

RPNI performs an ordered depth first search to identify a DFA in polynomial time using
dataset S consisting of both the positive and negative examples S = (§* U 7). RPNI algorithm
first constructs a PTA for S™. The states of the PTA are then numbered in standard order. The
set of string that would lead from start state to each individual state of the PTA is determined.
The strings are sorted in lexicographical order. Each state is numbered based on the position of
the corresponding string in the sorted list. Then the states of the PTA are systematically merged
using a quadratic loop i.e., in each step i, the state q; is merged with the states go,q;,42>- - -,gi.1 in
order. If the quotient automaton obtained by merging any two states does not accept any in-
stance belonging to S, the quotient automaton is treated as the current target and the search
for a more general solution is continued with the state g; ;.

Genetic algorithm provides an attractive framework and has been popularly used to infer
the DFA. A typical genetic algorithm based search involves evolving of randomly generated set
of individuals based on the survival of the fittest principle of Darwinian evolution. Here a PTA
is constructed from the positive sample set S*. In genetic algorithm, the initial population com-
prises of a random selection of elements from the set of partitions of the set of states of the
PTA. Each element of the initial population is a quotient automaton belonging to the lattice of
FSA constructed from PTA. The fitness of each quotient FSA is represented as the function of
two variables: the number of states of the FSA and the number of instances in S, which are
misclassified by the FSA. Highest fitness is assigned to the individuals having fewer states and
making fewer errors. After each generation, a subpopulation of individuals is randomly select-
ed for reproduction based upon their fitness values. Two genetic operators- mutation and
crossover- are applied to a subpopulation to produce an offspring. The numbers of offspring
produced by the genetic reproduction are valid partitions belonging to the lattice. These are
added to the original population. A fitness-proportionate selection scheme is used to randomly
select individuals for the next generation. After a pre-specified number of generations, the fit-
test individual from the population is selected and the algorithm returns the inferred FSA. Al-
though this approach does not necessarily guarantee for convergence to the target DFA,
experimental results have shown that this method is able to identify adequately small DFAs
that make reasonably small errors in differentiating positive and negative sequences.

The above two methods give rise to simple deterministic finite state automata (DFA) where-
as Alergia algorithm infers a deterministic stochastic finite state automata (DSFA). To compare
the performance of the three GI algorithm, we performed 10 independent choices of training
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Fig 6. Performance of the Alergia algorithm in comparison to the other two grammar inference

methods (RPNI and Genetic algorithm) in terms of precision, recall, accuracy and F-measure for
kinases: (a)PKA, (b)PKC, (c)MAPK and (d)CK2.

doi:10.1371/journal.pone.0122294.g006

and test set where the training set consists of 60% of the positive sequences and the test set the
remaining 40%. The three GI algorithms are then run on these generated datasets, so that for
each run the selection of training and testing sets are same for all the methods.

The comparison results of these three grammar inference methods in terms of precision,
recall, accuracy and F-measure for all the kinases are shown in Fig 6A-6D According to the
Fig 6, we obtain that the Alergia algorithm performs best in terms of all these parameters
for all the kinases among the three GI algorithms. RPNI and genetic algorithm performs al-
most equally well although genetic algorithm performs slightly better than RPNI for predict-
ing the true positives among total positives, i.e., yield a better recall value for MAPK and CK2
kinase. For all the other parameters and kinases, RPNI performs superior to genetic
algorithm.

To test whether the prediction accuracy of the our proposed method based on Alergia algo-
rithm, is significantly higher than those of other GI method based on RPNI and Genetic algo-
rithm, a paired t-test was performed on the accuracy results obtained from the datasets. The
null hypothesis is that the difference between the means of accuracies obtained by the two
methods is zero and the alternative hypothesis is that the difference is positive. Table 4 summa-
rizes the average accuracy returned by each GI method on the 10 datasets for all the four ki-
nases. Table 4 clearly shows that Alergia algorithm yields highest accuracy as compared to
other GI methods for all the kinases. A hypothesis test is performed to evaluate the significance
of the differences between the performances of the Alergia algorithm with other two GI meth-
ods. The results at 5% significance level are summarized in Table 5. From the Table 5 we find
that the null hypothesis is rejected at 5% significance level for the problem in hand. It means
that the prediction accuracy rates obtained using our proposed method using Alergia algorithm
are higher than those obtained using other two GI methods and the difference is statistically
significant. It is also noted that, all P-values obtained through paired t-test are smaller than
0.01, which means that the differences are statistically highly significant.
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Table 4. Average accuracy of three different Gl algorithms (Alergia, RPNI, Genetic Algorithm) on 10
various test sets generated by us.

Name of the Kinase Name of the Gl method name Accuracy (%)
PKA Alergia 95.68
RPNI 65.07
Genetic Algorithm 61.79
PKC Alergia 97.91
RPNI 70.1
Genetic Algorithm 60.49
MAPK Alergia 96.84
RPNI 65.35
Genetic Algorithm 61.94
CK2 Alergia 96.18
RPNI 62.29
Genetic Algorithm 59.28

doi:10.1371/journal.pone.0122294.t004

Performance Comparison with other phosphorylation site prediction
methods

In order to evaluate the performance of our proposed method, we have compared our ap-
proach with five other popular open access kinase specific phosphorylation site prediction
methods along with our previous proposed method. In most of the previous studies, these five
methods have been used because of their high performance and free availability in the public
domain. The six methods are PPSP [10], KinasePhos2.0 [8], GPS2.1 [11, 48], Scansite [7], Net-
phosK 1.0 [9] and our previous method [17]. PPSP is based on Bayesian decision theory
(BDT). Kinasephos uses Hidden Markov Model (HMM) to predict kinase specific phosphory-
lation sites. Scansite searches for motifs within proteins that are likely to be phosphorylated by
specific protein kinases, using the scores calculated from position-specific score matrices
(PSSM). Netphosk1.0 employs an artificial neural network to predict 17 kinase-specific phos-
phorylation sites while GPS2.1 server uses a modified version of group based scoring algorithm
[49, 50] to predict PK specific phosphorylation sites in hierarchy. Our previous method em-
ploys an ensemble method approach to predict kinase specific phosphorylation sites. Here, we
have opted predict by individual kinase and balanced performance option for PPSP. In the case
of NetphosK, prediction without filtering and a threshold value of 0.5 was selected to predict
phosphorylation sites. KinasePhos2.0 was run with the option of default specificity for a

Table 5. The results of t-test at 5% significance level for various Gl methods for PKA, PKC, MAPK and CK2.

Name of Kinase
PKA

PKC

MAPK

CK2

doi:10.1371/journal.pone.0122294.1005

Gl Method T-value P-value Null Hypothesis
Alegia Vs RPNI 157.27 1.05E-29 Reject
Alegia Vs GA 195.93 2.02E-31 Reject
Alegia Vs RPNI 199.03 1.53E-31 Reject
Alegia Vs GA 294.51 1.32E-34 Reject
Alegia Vs RPNI 262.69 1.03E-33 Reject
Alegia Vs GA 291.10 1.63E-34 Reject
Alegia Vs RPNI 262.17 1.07E-33 Reject
Alegia Vs GA 278.88 3.53E-34 Reject
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Fig 7. Performance comparison of six methods along with our proposed method in terms of precision, recall, accuracy, F-measure for the four
types of kinases: (a)PKA, (b)PKC, (c)MAPK and (d)CK2.

doi:10.1371/journal.pone.0122294.9007

specific kinase. In this work, Scansite2.0 was run by searching all motifs and the “medium
stringency level” setting was selected. For GPS2.1, a medium threshold was selected for a par-
ticular kinase family.

To avoid biased prediction, we have considered a candidate sequence to be true positive
only when the sequence is predicted correctly. We have used the sequences in the 40% test
dataset, i.e. PHSDB dataset taken from the PhosPho.ELM database version 9.0 for comparison.
The advantage of using the PHSDB dataset is its non-biasness and independence; thereby we
can fairly compare several existing methods with our proposed method. The performance
of comparison is assessed on the basis of the parameters precision, recall, accuracy and F-
measure. Fig 7A-7D shows the comparisons of predictive performance of our method with the
six other prediction systems for the Kinase PKA, PKC, MAPK and CK2 respectively. From the
Fig 7 we observed that our method outperforms all the methods in terms of Precision, Accura-
cy and F-measure for all the kinases. For kinase CK2, KinasePhos2.0 yields the highest recall
value followed by GPS2.1 and for all the other kinases (PKA, PKC and MAPK) GPS2.1 yields
superior recall values. NetPhosK performs worst in terms of recall for all the kinases. PPSP per-
forms better in terms of recall but yield a lower precision value. GPS2.1 performs worst in
terms of precision for PKA, MAPK and CK2. NetPhosK obtains lowest precision for PKC.
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Fig 7A-7D shows that for Kinase PKA, PKC, MAPK and CK2, the six methods achieve a good
recall value but sacrificing the precision result in a low F-measure. Also lower precision value
implies a higher number of false positives. GPS 2.1 and PPSP obtain a very high recall value
but at the same time a very low precision value which means these two methods have yielded a
large number of false positives. For PKA and CK2, GPS2.1 performs worst in terms of accuracy
and F-measure whereas NetPhosK lowest accuracy and F-measure for PKC and KinasePhos
2.0 for MAPK. Our method offers high and balanced precision as well as recall, which reflects
that our method is superior to the well known existing phosphorylation site prediction meth-
ods and can effectively distinguish the phosphorylation sites from non-phosphorylation sites
in a kinase specific manner. Moreover, the good performances of our method illustrates that
our method can efficiently evaluate the sequence similarity of phosphorylation substrates for
different kinases.

Conclusion

In this article, we have proposed a novel kinase specific phosphorylation prediction method
based on primary sequence information only. The method is simple because it does not require
any sequence encoding and hence computational complexity is reduced. Experimental results
of the method show a satisfactory performance as compared to other methods and quite a
good performance improvement over our previous method for all the kinases. Alergia algo-
rithm infers Deterministic stochastic finite state automata that perform better than the finite
state automata inferred by RPNI and genetic algorithm. In summary, applying the new method
produces good results without the need for a sophisticated machine learning techniques in de-
tecting phosphorylation sites. Furthermore, the results of the predictions through the proposed
GI based method indicate that our method is very promising in detecting protein phosphoryla-
tion sites and may play an important complementary role against existing methods. We expect
to apply our new method to other kinds of biological systems to achieve high performance and
a substantial improvement.
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S1 Fig. Change of accuracy with various threshold values for the kinase PKA.
(TTF)

$2 Fig. Change of accuracy with various threshold values for the kinase PKC.
(TIF)

$3 Fig. Change of accuracy with various threshold values for the kinase MAPK.
(TIF)

$4 Fig. Change of accuracy with various threshold values for the kinase CK2.
(TIF)

S5 Fig. ROC curve by varying threshold for four kinase PKA, PKC, MAPK and CK2 for
resampled dataset size B = 10.
(TIF)

$6 Fig. ROC curve by varying threshold for four kinase PKA, PKC, MAPK and CK2 for
resampled dataset size B = 20.
(TTF)
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S7 Fig. ROC curve by varying threshold for four kinase PKA, PKC, MAPK and CK2 for
resampled dataset size B = 30.
(TIF)

S8 Fig. ROC curve by varying threshold for four kinase PKA, PKC, MAPK and CK2 for
resampled dataset size B = 40.
(TTF)

S9 Fig. ROC curve by varying threshold for four kinase PKA, PKC, MAPK and CK2 for
resampled dataset size B = 50.
(TIF)
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