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Abstract

Linear Dynamical System (LDS) is an elegant mathematical framework for modeling and learning 

Multivariate Time Series (MTS). However, in general, it is difficult to set the dimension of 

an LDS’s hidden state space. A small number of hidden states may not be able to model the 

complexities of a MTS, while a large number of hidden states can lead to overfitting. In this paper, 

we study learning methods that impose various regularization penalties on the transition matrix 

of the LDS model and propose a regularized LDS learning framework (rLDS) which aims to (1) 

automatically shut down LDSs’ spurious and unnecessary dimensions, and consequently, address 

the problem of choosing the optimal number of hidden states; (2) prevent the overfitting problem 

given a small amount of MTS data; and (3) support accurate MTS forecasting. To learn the 

regularized LDS from data we incorporate a second order cone program and a generalized gradient 

descent method into the Maximum a Posteriori framework and use Expectation Maximization to 

obtain a low-rank transition matrix of the LDS model. We propose two priors for modeling the 

matrix which lead to two instances of our rLDS. We show that our rLDS is able to recover well 

the intrinsic dimensionality of the time series dynamics and it improves the predictive performance 

when compared to baselines on both synthetic and real-world MTS datasets.

Introduction

Multivariate time series (MTS) analysis is an important statistical tool to study the behavior 

of time dependent data and to forecast its future values depending on the history of 

variations in the data (Reinsel 2003). MTS modeling takes into account the sequences of 

values of several contemporaneous variables changing with time. By analyzing the influence 

of other observable variables known or suspected to be related to the time series of interest, 

better understanding and forecasting are usually obtained. For example, in economics, 

forecasting consumer price index usually depends on the time series of money supply, the 

index of industrial production and treasury bill rates (Kling and Bessler 1985). In clinical 

domain, in order to get accurate sequential predictions of the patients’ parameters, such as 

platelets counts, time series of hemoglobin, hematocrit and red blood cell measurements 

should be considered (Batal et al. 2013). Developing and learning accurate models of MTS 
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are critical for their successful applications in outcome prediction, decision support, and 

optimal control.

A large spectrum of models have been developed and successfully applied in MTS modeling 

and forecasting (Du Preez and Witt 2003; Ljung and Glad 1994). However, MTS modeling 

of real-world data poses numerous challenges. First, a large number of MTS collected in 

the real-world problems have a relatively short span (Bence 1995). For example, in biology, 

more than 80% of all time series in gene expression datasets are short (less than 80 data 

points) (Ernst, Nau, and Bar-Joseph 2005). In economics, econometric MTS, such as gross 

domestic product, consumer price index, etc, are measured quarterly or yearly which leads 

to MTS’ lengths of less than 200 (Data 2014). In the clinical domain, patients’ clinical MTS 

are usually less than 50 due to the fact that the majority of patients’ hospitalizations is less 

than two weeks (Liu, Wu, and Hauskrecht 2013). A short-span complex MTS undoubtedly 

poses a hard modeling problem since the existing well-developed models and algorithms 

may easily overfit the data when they are applied to such time series. Second, while in 

some cases the problem of short-span MTS may be alleviated by learning the models from 

multiple short-span MTS instances, the number of MTS instances available in the datasets is 

often limited and for many problems it is restricted to just one time series we want to learn 

from (e.g. various time series in economics or business) and the model overfitting remains a 

big concern.

In this paper we study and develop solutions that are applicable and can learn models from 

short-span MTS. Our work focuses on the refinements of a popular model for MTS analysis: 

the Linear Dynamical System (LDS) (a.k.a Kalman filter) (Kalman 1960) and its application 

to MTS forecasting. We aim to develop an algorithm to automatically learn an LDS that 

performs better forecasting when learned from a small amount of complex MTS data.

Briefly, the LDS is a classical and widely used model for real-valued sequence analysis, that 

is applicable to many real-world domains, such as engineering, astronautics, bioinformatics, 

economics, etc (Lunze 1994; Liu and Hauskrecht 2013). This is due to its relative simplicity, 

mathematically predictable behavior, and the fact that exact inference and predictions for 

the model can be done efficiently. The LDS is Markovian and assumes the dynamic 

behavior of the system is captured well using a small set of real-valued hidden-state 

variables and linear state transitions corrupted by a Gaussian noise. The LDS can be 

learned from observation data. Standard LDS learning approaches use the Expectation-

Maximization (EM) (Ghahramani and Hinton 1996) or spectral learning (Katayama 2005; 

Van Overschee and De Moor 1996) algorithms. However, learning an LDS model from 

short-span low-sample MTS datasets gives rise to numerous important questions: (1) Since 

the observational sequences in MTS data may exhibit strong interactions and co-movements, 

given the MTS sequences, how many hidden states are needed to represent the system 
dynamics well?; (2) Due to the fact that the number of parameters representing transitions 

among hidden state components (a.k.a transition matrix) is quadratic in the dimensionality 

of the hidden space, how do we prevent the overfit of the model parameters when the 
training size is small?
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In this work we address the above issues by presenting a regularized LDS framework (rLDS) 

which

1. recovers the intrinsic dimensionality of MTS by minimizing the rank of the 

transition matrix rather than the state space size.

2. prevents model overfitting given short MTS datasets.

3. supports accurate MTS forecasting.

Our framework builds upon the probabilistic formulation of the LDS model, and casts its 

parameters optimization as a maximum a posteriori (MAP) problem, where the choice of 

parameter priors biases the model towards a low-rank solution. We propose two strategies 

for choosing the parameter priors that lead to two instances of our rLDS. The first strategy, 

rLDS , assumes a multivariate Laplacian prior over each row of the LDS’s transition 

matrix. This enforces a row-level sparsity on the transition matrix (Garrigues and Olshausen 

2010; Raman et al. 2009). The second strategy, rLDSℛ, relies on a nuclear norm prior on 

the entire transition matrix to induce the low-rank matrix property (Alquier et al. 2014). 

Experiments show that our regularized framework can recover very well the underlying 

dynamical model in a variety of synthetic domains. We also show that rLDS gives a better 

accuracy than alternative methods when predicting future time series values on several 

real-world datasets.

The reminder of the paper is organized as follows: the Background and Related Work 
section introduces the LDS and provides a detailed review of existing regularized methods 

related to LDSs. In the The Regularized LDS Framework section, we describe the 

inference and learning procedures for rLDS and the two regularization strategies with their 

corresponding optimizations. The Experiment section focuses on two problems: (1) recovery 

of the intrinsic MTS dimensionality, and (2) MTS forecasting on a variety of synthetic and 

real-world datasets and comparison of the proposed approach to alternatives. We summarize 

our work and outline potential future extensions in the Conclusion section.

Background and Related Work

Linear Dynamical System

The Linear Dynamical System (LDS) models real-valued MTS {yt ∈ ℝn}t = 1
T

 using hidden 

states {zt ∈ ℝd}t = 1
T

 :

zt = Azt − 1 + εt; yt = Czt + ζt (1)

Briefly, {zt} is generated via the transition matrix A ∈ ℝd × d. Observations {yt} are 

generated from zt via the emission matrix C ∈ Rn × d (see eq.(1)). {εt}t = 1
T  and {ζt}t = 1

T

are i.i.d. multivariate normal distributions with mean 0 and covariance matrices Q and R 
respectively. The initial state (z1) distribution is also multivariate normal with mean ξ and 

covariance matrix Ψ. The complete set of the LDS parameters is Ω = {A, C, Q, R, ξ, 

Ψ}. While in some LDS applications the model parameters are known a priori, in the 

majority of real-world applications the model parameters are unknown, and we need to learn 
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them from MTS data. This can be done using standard LDS learning approaches such as 

the Expectation-Maximization (EM) (Ghahramani and Hinton 1996) or spectral learning 

(Katayama 2005; Van Overschee and De Moor 1996) algorithms.

Related Work

Recently, various regularization methods have been incorporated into LDSs for both time 

series modeling and prediction tasks. These can be divided into five categories: C1: state 

regularization; C2: innovation regularization; C3: combination regularization; C4: parameter 

regularization; and C5: regularization on other related models.

C1: State Regularization—In the state regularization approach (Carmi, Gurfil, and 

Kanevsky 2010; Angelosante, Roumeliotis, and Giannakis 2009; Charles et al. 2011) the 

hidden states {zt}t = 1
T  are sparsified during the Kalman filter inference step. (Charles et al. 

2011) formulates the traditional Kalman filter as a one-step update optimization procedure 

and incorporates sparsity constraints to achieve a sparse state estimate ẑt at each time stamp 

t. (Angelosante, Roumeliotis, and Giannakis 2009) treats all the state estimates {zt}t = 1
T  as a 

state estimate matrix and enforces a row-level group lasso on the state estimate matrix.

C2: Innovation Regularization—In signal processing, “innovation” is referred to as the 

error of state estimation, i.e., ‖ẑt − Aẑt−1‖. Both (Asif et al. 2011) and (Charles et al. 2011) 

incorporate ℓ1 regularization on innovation during the state estimation procedures to balance 

fidelity to the measurements against the sparsity of the innovations.

C3: Combination Regularization—The basic idea underlying the combination 

regularization is to find a representation of the LDS which is sparse in terms of a given 

dictionary of LDSs. Given multiple MTS sequences, (Ghanem and Ahuja 2010) trains an 

LDS for each MTS and obtains the final LDS by using a weighted combination of the 

individual LDSs such that each weight is regularized by an ℓ1 penalty.

C4: Parameter Regularization (★)—Parameter regularization introduces regularization 

penalties on the parameters of an LDS during the learning process. (Boots, Gordon, and 

Siddiqi 2007) develops a spectral algorithm that is able to learn a stable LDS by limiting the 

largest eigenvalue of transition matrix A to be less than 1. Our rLDS also belongs to this 
category due to the fact that we develop a Maximum a Posteriori learning framework and 

apply low-rank priors on the A to implicitly shut down spurious and unnecessary dimensions 

and prevent overfitting problem simultaneously.

C5: Regularization on Other Related Models—There are various approaches that 

incorporate regularizations into MTS models that are alternatives to LDSs. For example, 

(Chiuso and Pillonetto 2010) introduces a Bayesian nonparametric approach to the 

identification of observation-only linear systems. (Städler and Mukherjee 2013) considers 

a hidden Markov model with d multivariate normal emission matrices and applies an 

ℓ1-penalization on the inverse covariance matrix of every state-specific emission matrix.
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Our rLDS is different from C1 and C2 methods since both of them try to learn a sparse 

representation for the hidden-state estimation problem by assuming that all parameters of the 

LDS are known a priori. Hence they are not directly applicable to the problem of learning 

MTS models from data. The combination approach in C3 requires an extensive training 

process since it has to build a dictionary of multiple LDSs trained on the different time 

series. Also, the combination approach does not attempt to solve the overfitting problem and 

it does not attempt to determine the correct number of hidden states. Compared with (Chiuso 

and Pillonetto 2010) in C5 category, our rLDS utilizes hidden states to capture the variations 

behind MTS while (Chiuso and Pillonetto 2010) relies on an observation-only linear system 

where no hidden states are involved. The underlining assumption of this approach is that the 

observations are obtained from linear combinations of previous observations and additional 

system inputs, which may be too restrictive to model complex MTS and makes the model 

more sensitive to noisy observations and outliers. Another method in C5 (Städler and 

Mukherjee 2013) uses a hidden Markov model with discrete hidden states and entries in the 

transition matrix describe the transition probabilities between these discrete states. LDSs and 

HMMs are under different underlying assumptions. The LDS is often preferred to HMM in 

modeling real-value MTS since it is able to model better smooth state evolution. Similarly 

to LDSs, in HMMs we usually don’t have a prior knowledge about the discrete states and 

their number. Finally, even though our rLDS belongs to the same category (C4) as the stable 

LDS proposed by (Boots, Gordon, and Siddiqi 2007), the two methods focus on the different 

aspects of the problem. (Boots, Gordon, and Siddiqi 2007) attempts to achieve stability in a 

learned LDS while our rLDS tries to find an appropriate state space and prevent overfitting 

given a small amount of MTS data.

The Regularized LDS Framework

In this section, we propose a regularized LDS framework that is able to (1) automatically 

shut down unnecessary and spurious dimensions of a LDS’ hidden state space, and 

consequently, determine its optimal dimensionality; (2) prevent the model overfitting 

problem for short-span low-sample MTS datasets; (3) support accurate MTS forecasting.

rLDS Framework

In rLDS, the LDS has a large implicit state space but a low-rank transition matrix. The 

rLDS recovers the intrinsic dimensionality of MTS by using the rank of transition matrix 

rather than the state space size. In order to achieve the low-rank property, we introduce 

a prior, i.e., p(A) (The choice of p(A) is discussed in the Learning section) for the 

hidden state transition matrix A. The log joint probability distribution for our rLDS is: 

log p(z, y, A) = logp(z1) + ∑t = 1
T p(yt | zt) + ∑t = 2

T logp(zt | zt − 1, A) + logp(A) , where z ≡ {zt}t = 1
T  and 

y ≡ {yt}t = 1
T  .

Learning

We develop an Expectation-Maximization (EM) algorithm for the MAP estimation of the 

rLDS. In the following, we use ‖·‖F, ‖·‖* and ‖·‖2 to represent the matrix Frobenius norm, 

matrix nuclear norm and vector Euclidean norm. vec(·) denotes the vector form of a matrix; 

and ⊗ represents the Kronecker product. Id is the d × d identity matrix.
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E-step(Inference)—Since the Markov chain z defined by the LDS is unobserved, we 

cannot learn our rLDS directly. Instead, we infer the hidden state expectations. The E-step 

infers a posterior distribution of latent states z given the observation sequences y, p(z|y, Ω). 

In the following, we omit the explicit conditioning on Ω for notational brevity.

The E-step requires computing the expected log likelihood of the log joint probability with 

respect to the hidden state distribution, i.e.,  = z[log p(z, y, A|Ω)], which depends on 3 

sufficient statistics [zt|y], E[ztzt
′ | y] and E[ztzt − 1

′ | y] . Here we follow the backward algorithm 

in (Ghahramani and Hinton 1996) to compute them. The backward algorithm is presented in 

the supplemental material.

Q = Ez logp(z1) + Ez ∑
t = 1

T
logp(yt | zt) + Ez ∑

t = 2

T
logp(zt | zt − 1, A) + logp(A) (2)

M-step(Learning)—In the M-step, we try to find Ω that maximizes the likelihood lower 

bound  (eq.(2)). As we can see,  function’s differentiability with respect to A depends on 

the choice of A’s prior, i.e., p(A), while it is differentiable with respect to (C, R, Q, ξ, Ψ). 

Therefore, we separate the optimization into two parts, i.e., O1 and O2.

O1: Optimization of A—In each iteration in the M-step, we need to maximize 

Ez ∑t = 2
T logp(zt | zt − 1, A) + logp(A) with respect to A, which is equivalent to minA g(A) − log 

p(A), where g(A) = 1
2 ∑t = 2

T Ez (zt − Azt − 1)′Q−1(zt − Azt − 1)  .

In order to recover the intrinsic dimensionality from MTS datasets through the rank of 

transition matrix A rather than the state space size d, we need to choose specific priors 

which can induce the desired low-rank property. Here we have two choices of inducing a 

low-rank A: (1) a multivariate Laplacian prior and (2) a nuclear norm prior as shown in 

Table 1. Ai represents each row (or column)1 of A. The prior choices lead to two instances 

of our rLDS framework, I1 (rLDS ) and I2 (rLDSℛ).

I1: rLDS  with multivariate Laplacian priors—In rLDS , we assume every row Ai 

is independent of each other and has the multivariate Laplacian density. Also in order to 

avoid overfitting, we add a multivariate Gaussian prior to each Ai, which leads to the ridge 

regularization. Therefore, we combine the multivariate Laplacian prior and Gaussian prior to 

get a new prior for transition matrix A. Its log probability is:

logp(A|λ1, λ3) = − λ1 ∑
i = 1

d
‖Ai‖2 − λ3

2 ‖A‖F
2 + const, (3)

and the objective function we want to optimize becomes:

1Without loss of generality, we will use Ai to represent the row in the following text.
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min
A

g(A) + λ3

2 ‖A‖F
2 + λ1 ∑

i = 1

d
‖Ai‖2 (4)

min
a

1
2a′Ha − b′a + λ1 ∑

i = 1

d
‖aGi‖2 (5)

where a = vec(A), {Gi}i = 1
d  is the row membership indicator, 

H = (Q−1 ⊗ ∑t = 2
T Ez[zt − 1zt − 1

′ ] + λ3Id2), b = (L ⊗ ∑t = 2
T Ez[ztzt − 1

′ ]′)vec(L) and Q−1 = LL′. 

Mathematical transformation from eq.(4) to eq.(5) is listed in the supplemental material.

Since eq.(5) consists of a quadratic form and a non-smooth Euclidean norm, it can be easily 

casted into a second order cone program (SOCP) (eq.(6)), which can be solved efficiently 

by any existing SOCP solvers. Various algorithms can be used to solve eq.(5), such as 

(Yuan, Liu, and Ye 2011; Qin, Scheinberg, and Goldfarb 2013), however, the second order 

optimization methods, like SOCP, always get solutions with high precision (low duality 

gap) (Bach et al. 2011). If the state size stays moderate (<50) which is the case in our 

experiments, the SOCP solver should be a reasonable choice.

min
η, η1, η2, ⋯, ηd

η + λ1 ∑
i = 1

d
ηi (6)

s . t . η ≥ 0.5a′Ha − b′a, ηi ≥ ‖aGi‖2i = 1, …, d

I2: rLDSℛ with a nuclear norm prior—In rLDSℛ, we directly assume A has a nuclear 

norm density and similarly to rLDS , we also assume a multivariate Gaussian prior for each 

Ai. In this case our objective function is:

min
A

ℎ(A) + λ2‖A‖*whereℎ(A) = g(A) + λ3

2 ‖A‖F
2

(7)

Since h(A) is convex and differentiable with respect to A, we can adopt the generalized 

gradient descent algorithm to minimize eq.(7). The update rule is

A(k + 1) = proxρk A(k) − ρk ∇ℎ(A(k)) (8)

where ρk is the step size at iteration k and the proximal function proxρk (A) is defined as the 

singular value soft-thresholding operator,

proxλ2ρk(A) = U · diag((σi − λ2ρk)+) · V ′ (9)

where A = Udiag(σ1, ⋯, σd)V′ is the singular value decomposition (SVD) of A.
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An important open question here is how to set the step size of the generalized gradient 

method to assure it is well behaved. Theorem 1 gives us a simple way to select the step size 

while also assuring its fast convergence rate.

Theorem 1—Generalized gradient descent with a fixed step size 

ρ ≤ 1/(‖Q−1‖F · ‖∑t = 1
T − 1 E[ztzt

′ | y]‖F + λ2) for minimizing eq.(7) has convergence rate O(1/k), 

where k is the number of iterations.

Proof: The proof appears in the supplemental material.

O2: Optimization of Ω\A = {C, R, Q, ξ, Ψ}—Each of these parameters is estimated 

similarly to (Ghahramani and Hinton 1996) by taking the corresponding derivative of the 

eq.(2), setting it to zero, and by solving it analytically. Update rules for Ω\A = {C, R, Q, ξ, 

Ψ} are as follows:

C(k + 1) = ( ∑
t = 1

T
ytE[zt | y]′)( ∑

t = 1

T
E[ztzt

′ | y])
−1

(10)

R(k + 1) = 1
T ∑

t = 1

T
(ytyt

′ − C(k + 1)E[zt | y]yt
′) (11)

Q(k + 1) = 1
T − 1( ∑

t = 2

T
E[ztzt

′ | y] − A(k + 1) ∑
t = 2

T
E[ztzt − 1

′ | y]) (12)

ξ(k + 1) = E[z1 | y] (13)

Ψ(k + 1) = E[z1z1
′ | y] − E[z1 | y]E[z1 | y]′ (14)

Algorithm 1

Parameter estimation in rLDS

INPUT: Initialization Ω(0) = {A(0), C(0), Q(0), R(0), ξ(0), Ψ(0)}.

PROCEDURE:

1: repeat

2:   E-step: estimate [zt|y], 
E[ztzt

′ | y]
and 
E[ztzt − 1

′ | y]
.

3:   M-step: M1:estimate C, R, Q, ξ, Ψ by eq.(10) – eq.(14)

4:   if rLDS then
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5:     M2:estimate A by SOCP solvers.

6:   end if

7:   if rLDSℛthen

8:     M2:estimate A by generalized gradient descent algorithm.

9:   end if

10: until Convergence

OUTPUT: Learned LDS parameters: Ω̂ = {Â, Ĉ, Q̂, R̂, ξ̂, Ψ̂}.

Summary of the learning algorithm—The entire parameter estimation procedure for 

rLDS is summarized by Algorithm 1.

Experiment

In this section, we will (1) verify that our regularized LDS approach indeed results in a 

low-rank solution and (2) show that our rLDS models are able to alleviate model overfitting 

by starting the learning process from a large initial hidden state space and by working with 

small amounts of training data. Experiments are conducted on both synthetic and real-world 

datasets. We would also like to note that the hyper parameters (λ1, λ2 and λ3) used in our 

methods are selected (in all experiments) by the internal cross validation approach while 

optimizing models’ predictive performances.

Baselines

We compare the two instances of our rLDS framework, i.e., rLDS  and rLDSℛ to the 

following LDS learning baselines:

• LDS learned using the standard EM learning algorithm (EM) (Ghahramani and 

Hinton 1996) that iteratively finds the maximum likelihood solution.

• Subspace identification algorithm (SubspaceID) (Van Overschee and De Moor 

1996). SubspaceID computes an asymptotically unbiased solution in closed form 

by using oblique projection and SVD.

• Stable linear dynamical system (StableLDS) (Boots, Gordon, and Siddiqi 2007). 

StableLDS constrains the largest singular value of the transition matrix to ensure 

the stability of LDS models.

Evaluation Metrics

We evaluate and compare the performance of the different methods by calculating the 

average Mean Absolute Percentage Error (Average-MAPE) of models’ predictions. Average 

MAPE measures the prediction deviation proportion in terms of the true values:

Average−MAPE = 1
nT ∑

i = 1

n
∑

j = 1

T
|1 − ŷij/yij | × 100%
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where |·| denotes the absolute value; yij and ŷij are the jth true and predicted observations 

from time series i. n is the number of time series and T is the length of a MTS.

Datasets

Synthetic Data—To get a good understanding of our approach, we first test it on synthetic 

data. We generate our synthetic MTS dataset of length T = 200 using a 20-state LDS with 

zero-mean, 0.01 variance Gaussian innovations. A uniform random emission matrix C is 

used to generate 20 measurements at each time stamp t with i.i.d. zero mean variance 0.01 

measurement noise. We uniformly and randomly generate a 20 × 20 matrix, normalize its 

SVD decomposition by its largest singular value to ensure its stability and truncate its 10 

smallest singular values to obtain an exact 10-rank matrix A. We train both rLDS  and 

rLDSℛ with the different state sizes, i.e., d = 15, 20 and 30. The results of rLDS  and 

rLDSℛ for recovering MTS intrinsic dimensionality are shown in Figure 1. Figure 1 shows 

the shrinkage changes of 20 singular values from A. We can see that both the multivariate 

Laplacian prior and the nuclear norm prior lead us to a low-rank transition matrix and that 

our rLDS framework is able to recover the correct dimension even if the dimensionality of 

the initial state space is large.

Production and Billing Data—We use production and billing figures data (Reinsel 

2003) as a benchmark data set2 for the time series prediction experiments. The data is a 

bivariate time series of length T = 100. We run various LDS learning baselines on the first 

60 observations of this data and use the remaining 40 for testing. First we train the LDS 

models with the standard EM algorithm and vary the state space size of the LDS from 1 to 

13. The prediction results are shown in Figure 3. As we can see, the prediction performance 

varies a lot with the different number of hidden states we use in the model and the LDS 

model tends to overfit the data when the state space becomes large. For example, an LDS 

with 13 states that shows significant prediction performance deterioration uses a 13 × 13 

transition matrix. However, its is trained on only 60 × 2 = 120 data points. In contrast to 

this, our rLDS approach was run on 15 and 25 initial states and the results show that the 

approach is able to shut down unnecessary dimensions and capture the dynamics using a 

lower-dimensional hidden state space representation (See Figure 4). In order to gain a more 

comprehensive insight into rLDS’s prediction abilities, we explored numerous initial state 

space sizes (We also varied the training size: 90 for training and 10 for testing, due to the 

space limit, we put the results in the supplement material.) The results of these experiments 

are summarized in Table 2 which show that our rLDS methods is able to outperform all the 

baselines in terms of their prediction performance.

Clinical Data—We also test our rLDS on a MTS clinical data obtained from electronic 

health records of post-surgical cardiac patients in PCP database (Hauskrecht et al. 2010; 

Valko and Hauskrecht 2010; Hauskrecht et al. 2013). We take 500 patients from the database 

who had their Complete Blood Count (CBC) tests3 done during their hospitalization. The 

MTS data consists of 6 individual CBC lab time series: mean corpuscular hemoglobin 

2 http://www.stat.wisc.edu/~reinsel/emtsa-data/prod-bill 
3CBC panel is used as a broad screening test to check for such disorders as anemia, infection, and other diseases.
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concentration, mean corpuscular hemoglobin, mean corpuscular volume, mean platelet 

volume, red blood cell and red cell distribution width. We have randomly selected 100 

patients out of 500 as a test set and used the remaining 400 patients for training the models. 

We first run standard EM to learn an LDS from the training data and varied the initial hidden 

state space sizes from 1 to 30. The results showing the average MAPE on the test set are 

summarized in Figure 5. The results show an overfitting pattern very similar to the pattern 

seen in Figure 3 for the production data. After that we applied our rLDS approach using 

models with 10, 20 and 30 initial states and the same train/test data splits. The results are 

listed in Figure 2 and Table 3. Once again the results show that our rLDS methods are very 

robust and lead to better prediction performance in the majority of the experiments.

Conclusion

In this paper, we presented a regularized LDS learning framework for MTS modeling. 

Comparing with the traditional LDS learning algorithms, the advantages of our rLDS are: 

(1) it automatically seeks the intrinsic state dimensionality; (2) it is robust in preventing 

model overfitting even for a small amount of MTS data; and (3) it is able to make 

accurate MTS prediction. Experiment results on both synthetic and two real-world datasets 

demonstrated that rLDS outperforms other state-of-the-art LDS learning approaches in terms 

of MAPE and effectively prevent LDSs from overfitting the data even with a large initial 

state space. In the future, we plan to study a combination of our regularized framework with 

spectral learning algorithms for LDS.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
State space recovery on a synthetic dataset.
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Figure 2. 
State space recovery on a clinical dataset.
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Figure 3. 
LDS EM overfitting in benchmark data.
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Figure 4. 
rLDS state size recovery.
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Figure 5. 
LDS EM overfitting with different training sizes in clinical data.
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Table 1

Prior choices for rLDS.

Prior Name Prior Form Regularization

Multivariate Laplacian ∝ exp(−λ1‖Ai‖2) λ1‖Ai‖2

Nuclear norm ∝ exp(−λ2‖A‖*) λ2‖A‖*
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