Skip to main content
. Author manuscript; available in PMC: 2015 May 1.
Published in final edited form as: Proc AAAI Conf Artif Intell. 2015 Jan;2015:1798–1804.

Algorithm 1.

Parameter estimation in rLDS

INPUT: Initialization Ω(0) = {A(0), C(0), Q(0), R(0), ξ(0), Ψ(0)}.
PROCEDURE:
1: repeat
2:   E-step: estimate 𝔼[zt|y], 𝔼[ztzt|y] and 𝔼[ztzt1|y] .
3:   M-step: M1:estimate C, R, Q, ξ, Ψ by eq.(10)eq.(14)
4:   if rLDS𝒢 then
5:     M2:estimate A by SOCP solvers.
6:   end if
7:   if rLDS then
8:     M2:estimate A by generalized gradient descent algorithm.
9:   end if
10: until Convergence
OUTPUT: Learned LDS parameters: Ω̂ = {Â, Ĉ, , , ξ̂, Ψ̂}.