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Mast cells are important in innate immune system.They have been appreciated as potent contributors to allergic reaction. However,
increasing evidence implicates the important role of mast cells in autoimmune disease like rheumatoid arthritis and multiple
sclerosis. Here we review the current stage of knowledge about mast cells in autoimmune diseases.

1. Introduction

If the immune system fails to recognize self- from non-
self-molecules, self-reactive lymphocytes can be activated by
innate immune cells and lead to an autoimmune response
[1]. Genetics, hormonal influences, and environment play
important roles in autoimmune diseases. Some of the factors
have been identified [2–4]. However, the specific determi-
nants that initiate an autoimmune response and allow it
to be sustained and cause pathology are still unknown.
Autoimmune diseases and allergic diseases share important
features. Both of them are the result of “hypersensitive”
immune responses directed toward inherently harmless anti-
gens [5]. Besides, many diseases models that we now know
are regarded as autoimmune diseases, such as “experimental
allergic” neuritis, encephalomyelitis, orchitis, uveitis, and
glomerulonephritis [6]. It is accepted that the cells of the
adaptive immune system are the directors of autoimmune
responses [7]. In addition, innate immune cells are critical for
sustaining the response that leads to pathology [8–13].

Mast cells (MCs) are first described by Paul Ehrlich in
1878 [1]. They have been viewed as effectors in IgE-mediated
allergic or antiparasitic responses; however, researches in the
last two decades have found that MCs are also involved
in innate immunity and inflammation by releasing a large
array of inflammatory mediators [14, 15]. These mediators
include compounds such as histamine and MC specific
proteases prestored in cytoplasmic secretory granules (SGs)
and newly synthesized lipid mediators such as leukotrienes

or prostaglandins or a variety of cytokines, chemokines, and
growth factors [16].

The idea that MCs are involved in the initiation and
sustaining events of autoimmunity is based on abundant data
from studies of both human disease and animal models [17–
19].

2. Mast Cells

MCs were discovered by Friedrich von Recklinghausen in
1863 and named by Paul Ehrlich in 1878 [20]. Connective
tissue is derived from undifferentiated mesenchymal cells.
During the first 100 years after the discovery, it was believed
that MCs were a component of connective tissue, functioned,
and died within connective tissue [21]. Furthermore, MCs
complete differentiation in connective tissue [21]. Until the
1980s, in vivo and in vitro evidence showed thatMCs originate
from hematopoietic stem cells, but the mast cell-committed
precursors (MCPs) have not been identified [21, 22]. In the
work of Chen et al., MCPs in the bone marrow of adult
mice were identified. They are identified by the phenotype
Lin− c-Kit+ Sca-1− Ly6c−Fc𝜀RI𝛼− CD27−𝛽7+ T1/ST2+ [23].
In addition, the experiment strongly suggests that MCPs are
the progeny of multipotential progenitors (MPPs) other than
common myeloid progenitors or granulocyte/macrophage
progenitors [23].

Development of MCs from MPPs does not need cell
division [21]. It is known that MCs leave the bone marrow
as immature cells and they mature via abundant cytokines
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Figure 1: Direct cell interaction between mast cells and T cells.

in the local tissue microenvironment [20, 24]. For example,
nerve growth factor (NGF) is well known as an important
MCs growth factor [25]. However, MCs show plasticity [20].
Moreover,matureMCs show extensive proliferation potential
[21].

The granules of MCs can be stained metachromatically
purple with Toluidine Blue and it is routine staining for
the demonstration of MCs [20, 26]. MCs are defined as
connective tissue mast cells (CTMCs) and mucosal mast
cells (MMCs) by the histamine, cytokines, and proteolytic
enzyme which MCs store [20]. In addition to innate and
acquired immunity, MCs play important role in bacterial
infection and autoimmunity [24, 27, 28]. MCs can secrete the
contents of preformed cytoplasmic secretory granules (SGs)
while encountering certain stimulants. For MCs, this process
is fundamental to their role in innate and acquired immunity
[29]. Various molecules are able to activate MCs.

3. Interactions between Mast Cells and
Other Cells

MCs can work with other cells like T and B lymphocytes
to enhance activation and migration by cell-cell interactions
or secreted products [18, 19]. Recently, the role of the inter-
actions between mast cells and other cells in autoimmune
diseases is becoming apparent [30].

3.1. Interaction among Mast Cells, T Regulatory Cell (Treg),
andTh17 Cells. Treg cells are defined as CD4+CD25+FoxP3+
and are known to suppress T effector cell response. Thus
Treg cells can induce tolerance and control autoimmunity.
MCs and Treg cells constitutively express OX40L and OX40,
respectively. Therefore, mast cell-Treg cell interactions are
in an OX40-dependent way. Gri et al. found that Treg
cells directly inhibited Fc𝜀RI-dependent MC degranulation
through cell-cell contact requiring OX40-OX40L interaction
[31] (Figure 1). Kashyap’s group showed that coculture
with Treg enhanced cytokines production by MCs [32].
In addition, MCs can also suppress Treg activity in an
OX40L-independent way [30]. However, the relationship

between MCs and Treg cells needs to be further explored in
autoimmunity.

Th17 cells are CD4+ T cells. At the meantime, they are
defined by the expression of the transcription factor ROR𝛾t
and cytokines IL-17. As Th1 cells, Th17 cells are involved in
the mouse models of MS and RA.The combination of TGF𝛽,
IL-6, IL-21, IL-23, and IL-1𝛽 contributes to the differentiation
of Th17 from a näıve CD4+ T cell. TGF𝛽 is essential for
the development of Treg cells, but it is inhibited by IL-6.
MCs can express TGF𝛽, IL-6, IL-21, and IL-23 under some
condition and promote Treg andTh17 cell differentiation and
plasticity [30]. It is interesting that MCs counteract Treg cells
suppression through IL-6 and OX40-OX40L axis towards
Th17 cell differentiation [33] (Figure 1).

3.2. Interaction betweenMast Cells and B Cell. MCs express a
variety of B cell-modulating molecules and immunoglobulin
(Ig) receptors [30]. MC FcRs include IgE and IgG receptors
[34]. Depending upon the type of MCs, IgG-antigen com-
plexes may activate MCs [34]. Conversely, the coengagement
of IgG and IgE receptors inhibits cells activation [34]. Increas-
ing data has been established indicating thatMCs play critical
roles in IgG-dependent tissue-specific autoimmune diseases
[34]. Low amounts of MCs are effective in influencing B cell
survival and proliferation in vitro through cell-cell contact
and MC-derived IL-6 expression whatever state the MC
activation is in [35]. Furthermore, MCs can promote B cells
to differentiate into CD138+ plasma cells secreting IgA and it
is dependent on CD40-CD40L expressed on B cells andMCs,
respectively [35] (Figure 2).

4. MCs and Autoimmune Diseases

It is well known that T cells are important in directing and
initiating the immune response in the target tissues [30]. In
addition, other cells also play an important role in aggravat-
ing the inflammatory damage [30]. Furthermore, there are
several examples of MCs association with autoimmune dis-
eases including multiple sclerosis (MS), rheumatoid arthritis
(RA), insulin-dependent diabetes mellitus (IDDM), bullous
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Figure 2: Direct cell interaction between mast cells and B cells.

pemphigoid, chronic idiopathic urticaria, and experimental
vasculitis [36–39]. Here we takeMS, RA, IDDM, and chronic
urticaria (CU) for example and summarize the role of MCs
in the autoimmune diseases.

4.1. MCs and MS. Mostly, the interest in the role of MCs in
the initiation and propagation of autoimmune disease comes
from studies on MS [40].

MS is a progressive demyelinating disease. Widespread
inflammatory lesions present in the brain and spinal cord
of patients with MS [30]. The symptoms of MS contain
visual disturbances, bowel and bladder incontinence, and
sensory and motor dysfunction [30]. Furthermore, patients
withMS are found to losememory, impair attention, and slow
information processing [41, 42]. Experimental autoimmune
encephalomyelitis (EAE) is a murine model of MS. Similar
to MS, the symptoms of EAE resulted from breach of the
blood-brain barrier (BBB)which allows inflammatory cells to
infiltrate into the central nervous system (CNS) and destruct
myelin and oligodendrocytes [30]. CD4+ T cells, including
IFN-𝛾-secreting T helper 1 cells (Th1), IL-17-producing T
helper 17 cells (Th17), and IL-9-producing T helper 9 cells
(Th9), contribute to the pathogenic autoimmune response in
EAE [43]. However, the roles of these cells in MS are still
unclear [44].

There are MCs in the leptomeninges, the choroid plexus,
thalamus, hypothalamus, andmedian eminence [24]. Similar
to CTMCs and MMCs, brain mast cells (BMCs) can be
identifiedmorphologically by Toluidine Blue stainingmostly.
Moreover, histamine fluorescence with o-phthaldialdehyde
is able to show BMCs in the leptomeninges, thalamus, and
hypothalamus. And histamine immunohistochemistry can
show BMCs in the median eminence [45–48]. However,
many BMCs are stained with Sudan Black which is distinct
fromCTMCs orMMCs [20]. Additionally, the ultrastructural
appearance of activated BMCs is different from that of
CTMCs because it is primarily characterized by intragranular
changes without typical compound exocytosis [49, 50]. They
may regulate vascular permeability and inflammatory cell
entry in the brain parenchyma [51]. Moreover, there is
interaction between functional MCs and neuron in the brain
and it can mediate neuroinflammation.

Kruger et al. have observedMCs within the demyelinated
plaques in the brains of 7 patients with MS [26]. Moreover,
MCs were found mostly located in close connection with
small vessels [26]. The data suggest that MCs playing a role
in MS have continued to accumulate [30]. It is reported that
mast cell deficient mice fail to develop EAE [52]. As in MS,
an increase of MCs is also found at sites of inflammatory
demyelination in the brain and spinal fluid of EAE [53]. MCs
are associated with Fc𝜀R, the histamine-1 (H1) receptor, and
tryptase [24]. Elevated levels of tryptase are present in the
cerebrospinal fluid of MS patients and gene array analyses of
MS reveal overexpression of genes encoding Fc𝜀R, H1 recep-
tor, and tryptase [24, 54]. BMCs do not express their surface
growth factor (c-kit) receptor normally but do so during EAE
[55]. Several studies reveal that mast cell-derived mediators
can increase BBB permeability [56, 57]. Products produced
by MCs can enter neurons and this indicates a new brain-
immune system [58]. Rat BMCs can produce tumor necrosis
factor (TNF) and TNF take part in both brain inflammation
and increased vascular permeability [59, 60]. An increased
mast cell tryptase in the cerebrospinal fluid (CSF) of MS
patients can activate peripheral mononuclear cells to secrete
TNF, IL-6, and IL-1 and stimulate protease-activated receptor
(PAR) which leads to microvascular leakage and widespread
inflammation [54, 61, 62]. Besides, human MCs will secrete
matrix metalloproteinase- (MMP-) 9 and IL-6 while contact-
ing activated T cells [63]. So we proposed that MCs may be
an underestimated contributor to the demyelinating process
of MS.

All in all, MCs participate in the pathogenesis of MS
in many different ways [24]. Firstly, they release cytokines/
chemokines to recruit and activate T cell/macrophage after
stimulation. Secondly, MCs present myelin antigen to T
cell. Furthermore, MCs disrupt the BBB to allow activated
T cells to infiltrate to brain and target in myelin basic
protein (MBP). What is more, MCs damage myelin and
then release fragments resulting in stimulating secretion of
tryptase. In turn, it enhances demyelination and induces
further inflammation through stimulation of PAR possibly.
As a result, MCs can be a possible therapeutic target for MS.
In vitro, on one hand, mast cell proteases degrade myelin
protein, while on the other hand, myelin stimulates mast
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cell degranulation directly [64, 65].Therefore, treatment with
inhibitors of mast cell degranulation may be a good way to
inhibit MS. Dimitriadou et al. found that hydroxyzine was
able to inhibit EAE [66].

4.2.MCs andRA. RA is a systemic and chronic inflammatory
disease that affects about 1% of the population worldwide
[30, 67]. After decades of research, we have found that T andB
lymphocytes, neutrophils, monocytes, and vascular endothe-
lium play the roles in RA [67]. However, the pathogenesis and
mechanism of RA are still unclear [67]. Rodent models of
autoimmune diseases are of great use to study the pathogenic
process of diseases. There are a number of models of RA
including K/BxN, adjuvant-induced and pristanemodels, but
the streptococcal cell wall (SCW) arthritis in rat and the
collagen-induced arthritis (CIA) in mice are the most widely
used [67].

Lee et al. found thatW/Wv and Sl/Sld, which are deficient
inMCs, were resistant to development of joint inflammation.
They proposed that MCs may serve as a cellular link among
numerous components in inflammatory arthritis [68]. What
is interesting is that MCs are normally expressed in the
synovial compartments of healthy people but increased in
RA patients [69]. The number of MCs increases 5- to 24-
fold in affected joints in human RA when compared to the
number of those in normal joints [69]. It is also found that
MCs number expand more than 3-fold in multiple animal
models of RA [70–72]. Besides, the cytokines and proteases
which are produced by MCs are involved in the pathogenic
process of RA, particularly TNF, IL-1𝛽, IL-17, and tryptase
[30, 73]. Tryptase is a preformed mast cell-specific protease
and is thought to lead to the inflammatory response by
working with heparin to induce the neutrophils and synovial
fibroblasts to release cytokines [74]. Tryptase can also directly
activate synovial fibroblasts by interacting with the protease-
activated receptor 2 (PAR2) to express more proteases that
degrade cartilage and bone [75, 76].

Matsumoto and Staub’s group found that RAmay be asso-
ciatedwith the enzyme glucose-6-phosphate isomerase (GPI)
[77]. K/BxNmice produce autoantibodies that can recognize
GPI. The antibodies aggregate with GPI, and then immune
complex is deposed on the surface of the articular cavity to
initiate a signaling cascade including MCs. Cytokines such
as IL-1 and IL-17A are also involved [73, 78]. The serum from
K/BxNmouse causes similar inflammatory arthritis in a wide
range of mouse strains, but KitW/W-v mouse deficient in MCs
resistant to autoimmune inflammatory arthritis was induced
by injection of sera fromK/BxNmouse. If theMCs are recon-
stituted, the sensitivity would be restored [68]. KitW-sh mice
deficient in MCs are sensitive to autoimmune inflammatory
arthritis induced by injection of sera from K/BxNmouse and
mast cell-reconstituted KitW-sh mice are still susceptible to
arthritis induced by sera from K/BxN mouse [79].

MCs accumulate in the synovial tissues and fluids of
patients with rheumatoid arthritis and produce inflamma-
tory mediators [1]. In addition to the degranulation in the
articulate cavity after antibody administration, the activation
of MCs through the IgG immune complex receptor Fc𝛾RIII

can precipitate the initiation of inflammation within the
joint through the production and release of IL-1 [68, 80].
Stem cell factor (SCF) is essential for mast cell survival and
development in vitro [1]. Furthermore, TNF-𝛼 derived from
MCs can induce fibroblasts to produce SCF, the ligand for the
CD117/c-Kit receptor [81, 82]. SCF increases the recruitment
of MCs and creates an amplification loop [81, 82].

4.3. MCs and IDDM. Insulin-dependent diabetes mellitus
(IDDM) is also called type I diabetes. IDDM is a chronic
metabolic disorder that develops in two discrete phases and
is mediated in part by CD8+ T cells [19, 83]. In the process
of IDDM, various leukocytes invade the pancreatic islets
and lead to insulitis. Then the insulin-producing 𝛽 cells of
the pancreas are destructed and lead to hyperglycemia [19].
Furthermore, IDDM is commonly associated with immune-
mediated damage [84]. There are several rodent models of
IDDM. In susceptible rodents, small dose of streptozotocin
induces insulinopenic diabetes in which immune destruction
plays the role, as in human type I diabetes [85]. In addition,
the nonobese diabetic (NOD) mouse and biobreeding (BB)
rat are the two most commonly used animals that sponta-
neously develop diseases with similarities to human type I
diabetes [85].

Normally, MCs locate within the pancreatic ducts and are
close to the pancreatic islets [86]. A lot of studies have found
a striking increase in the frequency of MCs in the acinar
parenchyma in inflammatory disease of pancreas [86–88].
Besides, MCs produce various mediators which are able to
affect the development of IDDM. For example, leukotriene B4
(LTB4), which is released by MCs and may be important for
recruitment or retention of autoreactive T cells in the target
organ, is found increased in type I diabetes [89]. What is the
most important is that Geoffrey et al. discovered more MCs
in the pancreatic lymph nodes of lymphopenic diabetic BB
rats before disease onset [36]. As a result, there is suspicion
that MCs are involved in IDDM.

4.4. MCs and CU. Chronic urticaria (CU) is a distressing
disorder that adversely impacts the quality of life, but its
pathogenesis is not delineated well [90]. An autoimmune
subset of chronic spontaneous urticaria is increasingly being
recognized internationally based on laboratory and clinical
evidence that has accrued over the last 20 years [91]. In 1983,
Leznoff et al. suggested that urticaria should be considered
autoimmune [92]. Gruber et al. detected functional anti-
IgE antibodies and proposed that these could be the cause
of urticarial wheals [93]. And now it is well recognized
that about 30–50% CU patients have circulating functional
autoantibodies against the high-affinity IgE receptor or
against IgE [94]. Besides, CU is associated with various
autoimmune diseases [95].

Urticaria is triggered by inappropriate activation and
degranulation of dermal mast cells. And the cellular contents
released by MCs prime the immediate phase of inflamma-
tion, resulting in a lymphocyte and granulocyte mediated
hypersensitivity reaction [96]. In turn, the infiltrating inflam-
matory cells produce more proinflammatory mediators to
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recruit and activate other cells and extend the host response
[96]. It lowers the reactive threshold ofMCs to induce stimuli
and promotes the maintenance of susceptibility to urticaria
[90]. It provides an explanation for Smith’s discovery that
MCs numbers remain unaltered [97]. Bossi et al. evaluated
permeabilizing activity of sera from CU patients and healthy
people by measuring serum-induced degranulation of two
MC lines (LDA2 and HMC-1) [98]. They discovered that
almost all the CU patients sera promoted degranulation of
MCs and 17/19 mast cell supernatant from HMC-1 and SNs
from LAD2 incubated with CU sera increased endothelia
permeability [98]. It is said that histamine released from
MCs is the major effector on pathogenesis [94]. Bossi et al.
also found that endothelial cell leakage was prevented by
antihistamine [98].

5. Conclusion

It is clear that MCs play an important role in autoimmune
diseases. In conclusion,MCs can worsen disease by a number
of mediators and counteracting Treg cells function. In the
mouse models of RA and MS, MCs promote inflammation
in the same way like TNF.

MCs can be a new treatment target in the autoimmune
diseases because of their pivotal position in the inflammation
process. The therapeutic strategies focus on three aspects as
follows: (1) at the level of the molecules produced by MCs,
(2) at the level of MCs activation, and (3) at the level of
MC proliferation [99]. The study of Saso demonstrated that
MCs can be inhibited through the action of an Fc𝜀–Fc𝛾
fusion protein engineered to engage human Fc𝛾RIIb with
high affinity. This study suggests that analogous fully human
Fc𝜀–Fc𝛾 tandem Fc biologic has potential as a potent and
selective inhibitor of cellular activation and degranulation
and thus represents a promising approach in treating mast
cell and basophil-mediated pathogenesis [100]. Masitinib, a
selective oral tyrosine kinase inhibitor, effectively inhibits the
survival, migration, and activity of MCs. Vermersch’s group
assessed the masitinib treatment in patient with progressive
MS and the data suggested that masitinib is of therapeutic
benefit to MS patients [101].

Cpa3Cre/+ mice are a strain deficient in MCs. In spite
of a great deal of evidence of the involvement of MCs in
the autoimmune disease models, using Cpa3Cre/+ mice in
study did not find an active role of MCs in both the K/BxN
serum transfer model of RA and the EAE model of MS [102].
Besides, Gutierrez et al. found that IDDM in NOD mice
was unaffected by mast cell deficiency [103]. Therefore, the
research about the roles of MCs in autoimmune diseases
remains a matter of great debate and ought to be further
studied, which is important for creating new MC targeted
therapies [5].
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