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Cardiovascular diseases are among the most significant 
health problems in the United States. Genome-wide asso-
ciation studies (GWASs) have identified hundreds of com-
mon genetic variants associated with many common, 
complex disease traits (http://www.genome.gov). However, 
most identified variants confer relatively small increments 
in risk and explain only a small fraction of the heritability.1 
For example, the 29 common variants identified through 
3 recent GWASs consortia2–4 have shown to collectively 
explain <2.5% of systolic and diastolic blood pressure 
(BP) variance.4 It is increasingly recognized that the near-
exclusive focus on main effects has become a barrier to the 
identification of additional genes underlying these complex 
traits. Greater emphasis is being placed in recent years on 
gene–environment interaction analyses.5 The identification 
of gene–environment interaction is important for many 
reasons. Gene–environment interaction or more complex 
pathways involving multiple genes and environments can 
explain part of the missing heritability.1,6 They can further 
elucidate the biological networks underlying complex dis-
ease risk and enable “profiling” of individuals at highest risk 
for disease.7

Many lifestyle factors, including physical activity, tobacco 
use, excessive alcohol consumption, and dietary factors, 
influence BP.8 These lifestyle factors may modulate the effect 
of genes on BP. This journal has recently published 3 articles 
that are related to environmental contribution to BP and 
hypertension. Dong et al.9 presented the relationship between 
increasing trends in BP and body mass index among Chinese 
children and adolescents from 2005 to 2010. Xi et al.10 pre-
sented a significant association of hypertension susceptibility 
loci in obese Chinese children, suggesting a likely influence 
of childhood obesity on the risk of hypertension. As nicely 
presented by Falkner,11 obesity and dietary sodium intake are 
potentially modifiable environmental factors.

In this study, we focused on the role of smoking in the 
genetic and environmental architecture of BP. Cigarette 
smoking is a leading cause of preventable death, causing 5 
million premature deaths worldwide each year, and current 
trends show that tobacco use will cause >8 million deaths 
annually by 2030, according to World Health Organization 
estimates. Smoking is a major risk factor for cancer, heart 
disease, stroke, and lung diseases. In the acute setting, cig-
arette smoking produces a rise in BP. Some epidemiologic 
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background
Cardiovascular diseases are among the most significant health prob-
lems in the United States. Blood pressure (BP) variability has a genetic 
component, and most of the genetic variance remains to be identified. 
One promising strategy for gene discovery is genome-wide analysis 
of interactions between single nucleotide polymorphisms (SNPs) and 
environmental factors related to cardiovascular diseases.

methods
We investigated SNP–smoking interaction effects on BP in genome-wide 
data in 6,889 participants from the Framingham Heart Study. We performed 
the standard 1 degree of freedom (df) test of the interaction effect and the 
joint 2 df test of main and interaction effects. Three smoking measures were 
used: cigarettes per day (CPD), pack years of smoking, and smoking status.

results
We identified 7 significant and 21 suggestive BP loci. Identified 
through the joint 2 df test, significant SBP loci include: rs12149862 

(P = 3.65 × 10–9) in CYB5B, rs2268365 (P = 4.85 × 10–8) in LRP2, rs133980 
(P  =  1.71 × 10–8 with CPD and P  =  1.07 × 10–8 with pack-years) near 
MN1, and rs12634933 (P = 4.05 × 10–8) in MECOM. Through 1 df inter-
action analysis, 1 suggestive SBP locus at SNP rs8010717 near NRXN3 
was identified using all 3 smoking measures (P = 3.27 × 10–7 with CPD, 
P = 1.03 × 10–7 with pack-years, and P = 1.19 × 10–7 with smoking status).

conclusions
Several of these BP loci are biologically plausible, providing physiologi-
cal connection to BP regulation. Our study demonstrates that SNP–
smoking interactions can enhance gene discovery and provide insight 
into novel pathways and mechanisms regulating BP.
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studies have associated chronic smoking with lower BP, 
even after adjustment for other cardiovascular risk traits.12 
Therefore, genome-wide studies incorporating interactions 
between genetic variants and smoking may enhance BP gene 
discovery efforts and provide novel insights into the biologi-
cal mechanisms and pathways underlying BP regulation.7

We examined the contribution of interactions between 
genetic variants and 3moking measures on BP traits: (i) ciga-
rettes per day, measuring a smoking rate (per day); (ii) pack-
years of smoking, measuring a volume of smoking exposure 
during a person’s entire lifetime; and (iii) smoking status, a 
binary (yes/no) indicator of a current smoking status. We 
performed a genome-wide analysis of single nucleotide 
polymorphism (SNP)–smoking interactions on systolic BP 
(SBP) and diastolic BP (DBP) using 6,889 participants from 
the Framingham Heart Study (FHS). Our aim was to iden-
tify novel BP loci; discovery of such loci may facilitate smok-
ing intervention strategies and achievement of BP goals in 
genetically susceptible individuals, thereby reducing the 
public health burden of hypertension.

METHODS

Study sample

In this study, we used the FHS SHARe (SNP Health 
Association Resource) data, as obtained through the 
Database of Genotypes and Phenotypes (dbGaP; http://
www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.
cgi?study_id=phs000342.v8.p8). FHS is the oldest prospec-
tive longitudinal cohort study of cardiovascular risk factors 
in the United States. FHS began in 1948 with the recruit-
ment of an original cohort of 5,209 men and women who 
were aged 28–62 years at entry. In 1971, a second generation 
of study participants, 5,124 children and spouses of children 
of the original cohort were enrolled. Enrollment of the third 
generation cohort of 4,095 children of the offspring cohort 
participants began in 2002. The study obtained informed 
consent from participants and approval from the appropri-
ate institutional review boards. We analyzed a date-matched 
set of individuals aged 20–80 years using data from the 26th 
visit of the original cohort, the 7th visit of the offspring 
cohort, and the 1st visit of the third-generation cohort.

Genotype data

Genotype data from the FHS SHARe project include 
approximately 550,000 SNPs that were genotyped using 
Affymetrix GeneChip Human Mapping 500 k Array Set and 
the 50 k Human Gene Focused Panel by Affymetrix (Santa 
Clara, CA). Genotype calls were made with the Bayesian 
Robust Linear Model with Mahalanobis distance classi-
fier (BRLMM) algorithm. Approximately 2.5 million auto-
somal SNPs were imputed with MACH (http://www.sph.
umich.edu/csg/abecasis/MACH) using the HapMap Phase 
II (release 22)  CEU reference panel from International 
HapMap Project (http://hapmap.ncbi.nlm.nih.gov/). More 
detailed information is available elsewhere.13

For the genotyped SNPs, we excluded SNPs that have 
Hardy–Weinberg equilibrium P values <10–6 and call rates 

<90%. Hardy–Weinberg equilibrium P values are computed 
based on founders only using PLINK,14 as recommended 
for family studies. For the imputed SNPs, we excluded SNPs 
that had imputation quality measures <0.30, which resulted 
in 2,455,927 imputed SNPs. Finally, for both genotyped and 
imputed SNPs, we excluded SNPs with <30 copies of the 
minor allele from our interaction analysis. When the SNPs 
were available as both genotyped SNPs and imputed SNPs, 
we used genotyped SNPs. The number of SNPs after quality 
control and exclusion was 2,485,435 SNPs; our genome-wide 
interaction analysis was performed using these SNPs.

Phenotype data

SBP and DBP were measured using a consistent protocol and 
a standard mercury column sphygmomanometer (portable 
Baumanometer 300 Model or wall-mounted Baumanometer 
E98169, W.A. Baum Co., Copiague, NY) in the clinic (the pro-
tocol descriptions are publicly available on dbGaP). Participants 
were seated for at least 5 minutes before the first BP measure-
ment. Our analysis phenotype was the average of 3 BP measure-
ments (1 nurse/technician reading and 2 physician readings).

Smoking measures

We considered 3 smoking measures: cigarettes per day 
(CPD), pack-years of smoking, and smoking status. CPD 
represents the number of cigarettes that the subject smoked 
on average per day if he/she has ever smoked. Pack-years are 
calculated as the average number of packs smoked per day 
times the total number of years a subject smoked during his/
her lifetime. Smoking status is a self-reported binary meas-
ure, coded as 1 if the subject smoked regularly in past year. 
All three smoking measures (CPD, pack-years, smoking sta-
tus) were set to zero for nonsmokers. Smoking status was set 
to 0 for former smokers who quit smoking since last year, 
but their CPD and pack-years were used as they were in the 

Table 1.  Descriptive statistics of the blood pressure traits, 
covariables, and smoking measures used in the analysis

Characteristics Descriptive statistics

Sample size 6,889

% Male 46.7

% Hypertensive 27.9

% Taking antihypertensive meds 19.4

Age, y 49.3 ± 13.7

BMI, kg/m2 27.5 ± 5.5

SBP, mm Hg 120.5 ± 16.5

DBP, mm Hg 74.83 ± 9.4

Cigarettes per day 9.2 ± 12.8

Pack-years 9.9 ± 17.6

% Smoking status 15.76

Data are mean value ± SD or percentage.
Abbreviations: BMI, body mass index; DBP, diastolic blood pres-

sure; SBP, systolic blood pressure.

http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000342.v8.p8
http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000342.v8.p8
http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000342.v8.p8
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analysis with CPD and pack-years. All smoking phenotype 
data were thoroughly checked, and any conflicting informa-
tion regarding smoking responses were set to missing before 
analysis. In particular, if CPD and pack-years information 
was provided for nonsmokers, both values were simply 
deleted (set to missing) as part of routine quality control.

We note that the 3 smoking variables measure different 
aspects of nicotine smoking exposure. The current smoking 
status reflects the overall smoking behavior; the CPD reflects 
the rate/intensity of smoking; the pack-years information 
represents the total volume of smoking in one’s life (up to 
that time), which therefore is a function of one’s age. Our 
analysis sample included 6,889 genotyped individuals with 
at least 1 BP measure, 1 smoking measure, and nonmissing 
values of all covariables.

Statistical analyses

To identify SNP–smoking interactions, we performed the 
test proposed by Kraft et  al.15 that jointly tests the genetic 
main and G × E interaction effects. The expected response 
trait (Y) has the regression form

	 E Y G E GEg e ge[ ] = + + +α β β β ,	

where βg and βe, respectively, are the genetic and environmen-
tal (smoking) main effects and βge is their multiplicative inter-
action effect. In particular, we used a Wald test statistic that 
follows a χ2 distribution with 2 degrees of freedom (df) under 
the H0: βg=βge=0. This Wald test statistic is based on estimates 
of βg and βge and their corresponding 2 × 2 covariance matrix. 
We also performed the standard approach to identify G × E 
interactions by using the Wald test statistic that follows a χ2 
distribution with 1 df under the H0: βge=0 (i.e., testing for the 
G × E interaction effect in the presence of the genetic main 
effect). Finally, we also tested the genetic main effect in the 
presence of G × E interaction effect by using Wald test statis-
tic that follows a χ2 distribution with 1 df under the H0: βg=0.

We used a linear mixed effect modeling framework, where 
a random effect is included to take account of phenotypic 
correlation across family members in the FHS family study; 
the covariance was determined by the kinship matrix based 
on the pedigree structure. In particular, we used GenABEL/
MixABEL16 that can provide estimates of βg and βge and their 
corresponding 2 × 2 covariance matrix for the analysis of 
family data. Age, sex, body mass index, and antihypertensive 
medication use (yes/no) were included as covariables for our 
SNP–smoking interaction analysis.

We declared an SNP as genome-wide significant if P ≤ 
5 × 10–8 and suggestive if P ≤ 1 × 10–6 following a standard 

Figure 1.  Manhattan plots of the joint 2 degree of freedom (df ) test of the single nucleotide polymorphism (SNP) main effect and SNP–smoking inter-
action effect for each combination of 2 blood pressure (BP) traits (systolic BP (SBP) and diastolic BP (DBP)) and 3 smoking measures cigarettes per day 
(CPD), pack-years, and smoking status). The P value of the joint 2 df test of each SNP was plotted vs. the chromosomal location for all SNPs genome-wide.
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GWAS practice. A consensus using 5 × 10–8 corresponds to a 
conservative Bonferroni correction based on roughly 1 mil-
lion ‘‘effectively independent’’ common SNPs throughout the 
genome, given the pattern of linkage disequilibrium among 
common variants across the genome.17 For each significant/
suggestive association, a locus was defined as a cluster of 
SNPs within 100 kb of the SNP with the lowest P value in the 
region (called an index SNP). We plotted quantile–quantile 
(QQ) plots and computed the genomic inflation factor λ, the 
degree of inflation of the median test statistic, for each analy-
sis. We also computed the genomic controlled P values by 
dividing test statistics by λ, as they are widely used to correct 
for minor substructure problems.18 Manhattan plots were 
created with the y-axis indicating −log10(P) values and the 
x-axis plotting the physical position of the SNPs. Regional 
association plots were generated to highlight chromosomal 
regions with a clustering of SNPs with significant associa-
tion using LocusZoom software (available at http://csg.sph.
umich.edu/locuszoom/). All other plots were generated in 
R, a freely available language and environment for statistical 
computing and graphics (available from cran.r-project.org).

RESULTS

Table 1 displays the descriptive statistics for the FHS sub-
jects used in the interaction analysis of 3 smoking measures. 
All 6,889 subjects with GWAS and BP measures had current 
smoking status (yes/no). CPD and pack-years were available 
for 6,796 and 6,686 subjects, respectively. We performed 3 
genome-wide tests (1 df main effect, 1 df interaction effect 
test, joint 2 df test) using 2 BP traits (SBP and DBP) and 3 
smoking measures (CPD, pack-years, and smoking status). 
The Manhattan plots in Figure 1 display the results for the 
joint 2 df test of the SNP main effect and SNP–smoking 
interaction effect for all 6 combinations of trait and smoking 
measure. We computed genomic inflation factors λ for each 
BP trait and smoking measure. The genetic main effect test 
exhibited no genomic inflation (all λ ≤ 1.02). However, the 
1 df interaction effect test exhibited substantial inflation (λ 
up to 1.46), and the joint 2 df test also exhibited inflation (λ 
up to 1.22). Therefore, we computed the genomic controlled 
(gc) P values for both 1 df interaction and joint 2 df tests to 
achieve the expected distribution of P values. QQ plots for 
these original and genomic controlled P values are displayed 
in the Supplementary Materials.

Using the joint 2 df test, we found 110 signals with  
P ≤ 1 × 10–6 across the 2 BP traits and 3 smoking meas-
ures. These signals were grouped into 28 loci. For each BP 
trait, we selected an index SNP to represent each significant  
(P ≤ 5 × 10–8) and suggestive (P ≤ 1 × 10–6) locus. Association 
results for the index SNPs are displayed in Table 2. We found 
7 significant and 19 suggestive SBP loci. In particular, inter-
action analysis with pack-years enabled the discovery of 7 
significant loci and 15 suggestive SBP loci. Six loci achieved 
significant or suggestive evidence when using CPD, whereas 
only 2 loci reached suggestive evidence with smoking sta-
tus. Except for 1 locus (represented by rs9533282) on chro-
mosome 13 that was driven mostly by main effect (with 
Pinteraction  =  0.06), all 25 loci were identified by interaction 
analysis with smoking measures.

http://csg.sph.umich.edu/locuszoom/
http://csg.sph.umich.edu/locuszoom/
http://cran.r-project.org 
http://ajh.oxfordjournals.org/lookup/suppl/doi:10.1093/ajh/hpu149/-/DC1
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Figure 2.  Regional association plots of the 3 systolic blood pressure (SBP) loci showing genome-wide significant associations (P < 5 × 10-8) using the 
joint 2 degree of freedom (df ) test of single nucleotide polymorphism (SNP) main effect and SNP–pack-years interaction effect. These regional plots were 
generated using LocusZoom (http://csg.sph.umich.edu/locuszoom/).

Using the 2 df joint test, we found 4 loci that signifi-
cantly interacted with pack-years to influence SBP. Figure 2 
displays the regional association plots for 3 of these 4 SBP 
loci. The highest evidence of association (P = 3.65 × 10–9; gc 
P = 1.15 × 10–7) was observed at SNP rs12149862, which lies 
within cytochrome b5 type B (CYB5B) on chromosome 16. 
Three other significantly associated loci are SNP rs2268365 
(P = 4.85 × 10–8; gc P = 9.72 × 10–7) intronic to low-density 
lipoprotein receptor-related protein 2 (LRP2) on chromo-
some 2, SNP rs4573996 (P = 8.77 × 10–9; gc P = 2.38 × 10–7) 
on chromosome 18, and SNP rs133980 (P = 1.07 × 10–8; gc 
P = 2.82 × 10–7) near meningioma 1 (MN1) on chromosome 
22. The latter two loci were identified also using CPD interac-
tion analysis (P = 3.13 × 10–7, gc P = 8.25 × 10–7 at rs4573996; 
P=1.71 × 10–8, gc P = 5.44 × 10–8 at rs133980).

Using the 1 df interaction test, we found the 3 additional 
loci that significantly interacted with pack-years to influ-
ence SBP. Figure 3 displays the regional association plots for 
these 3 SBP loci. They are rs12634933 (1 df P =4.05 × 10–8; 
1 df gc P  =  5.47 × 10–6) intronic to MDS1 and EVI1 com-
plex locus (MECOM) on chromosome 2; rs6989684 (1 df 
P  =  3.09 × 10– 8; gc P  =  4.54 × 10–6) near collectin subfam-
ily member 10 (COLEC10), T-cell differentiation protein 
2 (MAL2); and rs7823724 (1 df P  =  4.28 × 10–8; 1 df gc 

P = 5.69 × 10–6), intronic to trafficking protein particle com-
plex 9 (TRAPPC9) on chromosome 8.

Two of the 28 loci gave suggestive evidence for DBP. The 
first locus on chromosome 3 had joint 2 df P  =  8.0 × 10–7 
and gc P  =  9.5 × 10–7, mostly driven by interaction with 
pack-years, whereas the second locus chromosome 7 had 
P = 5.5 × 10–7 (gc P = 1.1 × 10–6), which was driven by both 
SNP main effect (P = 3.1 × 10–7) and interaction with CPD 
(P = 9.0 × 10–6).

We found the suggestive SBP locus at SNP rs8010717 near 
neurexin 3 (NRXN3) on chromosome 14 using all 3 smoking 
measures (P = 3.27 × 10–7 using CPD; P = 1.03 × 10–7 using 
pack-years; P = 1.19 × 10–7 using smoking status). To evalu-
ate consistency across 3 smoking measures, we present scat-
terplots of –log10(P) values for the analysis of SBP at all 2.5 
million SNPs in Figure 4. Supplementary Table S1 presents 
P values at the 28 SNPs listed in Table 2. We found that the 2 
quantitative measures CPD and pack-years were more con-
sistent with each other than with the smoking status (with 
correlation = 0.87, 0.71, and 0.82 for 1 df main effect, 1 df 
interaction effect, and joint 2 df test, respectively). Smoking 
status was less consistent with either CPD or pack-years, as 
shown in the 2nd and 3rd rows in Figure 4. As described in 
the Methods, the 3 smoking variables measure very different 

http://csg.sph.umich.edu/locuszoom/
http://ajh.oxfordjournals.org/lookup/suppl/doi:10.1093/ajh/hpu149/-/DC1


American Journal of Hypertension  28(3)  March 2015  349

Gene–Smoking Interactions on Blood Pressure

aspects of smoking exposure. Based on nicotine biology, we 
do not necessarily expect highly consistent results across the 
3 smoking variables.

Our interaction analysis used all subjects with smok-
ing status. In particular, we used 6,796 and 6,686 subjects 
for CPD and pack-years by including nonsmokers, whose 
values were set to 0.  Therefore, we also performed our 
interaction analysis using 3,329 smokers only after exclud-
ing nonsmokers for the analysis of SBP with pack-years at 
the 28 SNPs listed in Table 2. Scatterplots in Figure 5 show 
effect sizes, standard errors (SEs), and –log10(P) values at 28 
SNPs between 2 sets of analysis. For both SNP main effect 
and interaction effects, analysis using all subjects provided 
smaller SE, as shown in the 2nd column of Figure  5. This 
leads to smaller P values, as the red dashed regression line 
was below the blue diagonal line. Our most significantly 
associated locus in CYB5B on chromosome 16 was identi-
fied using both samples (1 df interaction P = 7.43 × 10-10, 2 df 
joint P = 3.09 × 10–9 using smokers only; 1 df P = 4.76 × 10-10, 
2 df P = 3.65 × 10–9 using all subjects).

Discussion

We identified 7 significant and 21 suggestive BP loci by 
exploiting gene–smoking interactions in the analysis of 

6,889 participants from FHS. Our results demonstrated the 
advantage of including G × E interactions for gene discovery. 
The joint 2 df test can be more powerful than either the 1 
df test of the genetic main effect only or the 1 df test of the 
interaction effect alone.15 The increase in power for the 2 df 
over either 1 df test can be dramatic when the type I error 
rate is controlled at low levels as it is common in GWASs.19 
Because the joint 2 df test supplements standard marginal 
tests of genetic main effects with additional information 
from G × E interactions, the joint test can detect loci that are 
missed in marginal scans. Manning et al. used this approach 
and demonstrated power enhancement for detecting G × E 
interactions.20

Our significant association in the MECOM–MDS1–EVI1 
sequence complex on chromosome 2 (1 df P = 4.05 × 10–8) 
is supported by several GWASs with BP traits. The Cohorts 
for Heart and Aging Research in Genome Epidemiology 
(CHARGE) Consortium identified a marginal association with 
SBP (P = 1.28 × 10–6), which strengthened (P = 1.18 × 10–7)  
when combined with the top SNPs replicated in cohorts of 
the Global BPgen Consortium.3 In a companion article pub-
lished simultaneously, another SNP in MDS1 was associated 
with DBP in the Global BPgen Consortium; the associa-
tion improved with joint analyses also using data from the 
CHARGE Consortium (P = 8 × 10–8).2 The Women’s Genome 

Figure 3.  Regional association plots of the 3 additional systolic blood pressure (SBP) loci showing genome-wide significant associations (P < 5 × 10-8) 
using the 1 degree of freedom (df ) single nucleotide polymorphism (SNP)–pack-years interaction test.
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Health Study also found suggestive association (P = 9.1 × 10–8), 
21 which was replicated in the International Consortium for 
Blood Pressure Genome-Wide Association Studies (SBP: 
P = 1.8 × 10–13; DBP: P = 2.1 × 10–12).4 The MECOM–MDS1–
EVI1 complex is an oncoprotein that is located in a region 
often fused with AML1 (3;21 translocation) in patients with 
a variety of hematologic disorders.22 The mechanism by 
which MDS1 can regulate BP remains uncertain, although 
this locus may be involved in the regulation of apopto-
sis stimulated by DNA damage.23 Genetic variants in the 
MECOM–MDS1–EVI1 complex have also been associated 
with nasopharyngeal cancers in individuals of Chinese and 
Thai descent.24,25 Smoking has shown to be a key risk factor 
for nasopharyngeal cancers, particularly among populations 
of Asian descent.25,26

Our most significantly associated locus in CYB5B on 
chromosome 16 (1df P = 4.76 × 10–10; 2df P = 3.65 × 10–9) is 
biologically plausible. CYB5B is a member of the mitochon-
drial cytochrome P450 enzyme complex that is integral to 
the synthesis of steroid sex hormones by the adrenal glands. 
Cytochrome b5 is also overexpressed in the adrenal tissue 
from 2 distinct murine models of hypertension.27 However, 
the mechanism by which CYB5B influences BP may be more 
directly related to its role in the kidney and the vascula-
ture, where the cytochrome P450 complex has been shown 
to metabolize arachidonic acid into a variety of substances 
that modulate renal and system arterial tone.28 Cytochrome 
P450 enzymes are also responsible for the oxidation of nico-
tine to its long-acting, active metabolite, cotinine.29 Because 
cotinine levels have been inversely association with BP,30 our 

Figure 4.  Scatterplots of –log10(P) values using 3 smoking measures for the analysis of systolic blood pressure (SBP). The 1st row compares pack-years 
vs. cigarettes per day (CPD); the 2nd row compares pack-years vs. smoking status; the 3rd row compares CPD vs. smoking status. The 1st column is P 
values using 1 degree of freedom (df ) main effect; the 2nd column is P values using 1 df interaction effect test; and the 3rd column is using the joint 2 df 
test. The dashed line is the regression line, and the solid line indicates where the values on the two axes are equal.
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finding of association may point to a role for tobacco use in 
modulating CYB5B’s genetic contributions to BP regulation.

Our suggestive SBP association near neurexin 3 (NRXN3) 
on chromosome 14 was consistently found using all 3 smok-
ing measures (2df P = 3.27 × 10–7using CPD; P = 1.03 × 10–7  
using pack-years; P  =  1.19 × 10–7 using smoking status). 
NRXN3 belongs to a class of transmembrane adhesion pro-
teins widely expressed in the central nervous system where 
they play roles in modulating nerve signaling.31 NRXN3 
has been associated with a wide range of neuropsychiatric 
and addiction disorders,32 including tobacco33 and alcohol 
use34 and autism spectrum disorders.35 Recently, neurexins 
have also been shown to be widely expressed by endothe-
lial and vascular smooth muscle cells, where they influence 
blood vessel tone, a key determinant in BP regulation.31 

NRXN3 has also been directly associated with BP traits 
in GWASs. For example, a suggestive association with 
DBP was identified in a relatively small cohort of blacks 
(n  =  1,017; P  =  4.47 × 10–6).36 Although this locus failed 
to replicate in an independent black cohort (n  =  2,474; 
P = 0.21),37 it did replicate for hypertension as a binary trait 
in a larger Korean cohort (n = 8,842; P = 0.03).38 We believe 
that our association between SNPs in NRXN3 and SBP 
may have been strengthened by consideration of smoking 
interactions.

A suggestive SBP locus in OPCML (opioid binding pro-
tein/cell adhesion molecule-like) on chromosome 11 (2df 
P  =  6.65 × 10-8) also appears to be biologically plausible. 
OPCML is a tumor suppressor gene that is also believed 
to play an accessory role in opioid receptor function.39 

Figure 5.  Scatterplots showing effect sizes, standard errors (SEs), and –log10(P) values at the 28 SNPs (listed in Table 2) between analysis using all 6,686 
subjects and the analysis using 3,329 smokers only for the analysis of systolic blood pressure (SBP) with pack-years. The dashed line is the regression line, 
and the solid line indicates where the values on the two axes are equal.
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Association with an OPCML SNP and smoking initiation 
has been also identified elsewhere (with P = 9.74 × 1 0-5).40 
This region of chromosome 11 has also been linked to car-
diometabolic traits such as glucose homeostasis in black 
and Hispanic families,41 and SNPs in OPCML have been 
associated with body fat distribution in blacks.42 However, 
our suggestive association with BP can be considered novel.

A significantly associated SBP locus on chromosome 22 
(2df P = 1.07 × 10-8) is also considered novel. It is approxi-
mately 100–200 kb upstream from MN1 (meningioma 
(disrupted in balanced translocation) 1) and PITPNB (phos-
phatidylinositol transfer protein, β). PITPN is a member of a 
family of lipid-binding proteins that shuttle lipid messengers 
between membrane compartments.43 As the name suggests, 
MN1 is an oncogene that has been identified in several forms 
of malignancy, including meningioma44 and myeloprolifera-
tive disorders such as leukemia.45 No clear physiologic links 
to BP, addiction, or tobacco use were identified for either 
gene. It is possible that this region contains regulatory ele-
ments for more distant genes.

In summary, we identified 7 significant and 21 sugges-
tive BP loci by exploiting genome-wide gene–smoking 
interactions in the analysis of 6,889 participants from the 
FHS. One significant locus corresponds to one of 29 BP loci 
identified through the International Consortium for Blood 
Pressure Genome-Wide Association Studies.4 We found that 
26 (of 28)  loci were identified through interaction effects. 
Although genomic control lowers the levels of significance, 
several of these BP loci are biologically plausible, providing 
physiological connection to BP regulation. Given that pub-
lished GWASs with sample sizes up to 200,000 individuals 
have collectively identified fewer than 50 BP-associated loci, 
the identification of 28 candidate loci using interactions in 
a modest-sized sample demonstrates the potential advan-
tage of including G × E interactions in association analysis. 
Although we restricted this analysis to a single visit from each 
participant, we plan to follow up with a longitudinal analysis 
of gene–smoking interactions using the FHS SHARe data. 
In addition, the validity of our findings is somewhat limited 
because they are based on a single study. We acknowledge 
that further validation and replication in an independent 
sample would strengthen our findings.

SUPPLEMENTARY MATERIAL

Supplementary materials are available at American Journal 
of Hypertension (http://ajh.oxfordjournals.org).
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