Skip to main content
. 2015;7(1):7–15.

Table II. Diagnostic performance of the Support Vector Machine on images processed using a Local Binary Pattern operator in the test group when using Radius R = 2.

Average diagnostics for SVM without LBP Average diagnostics for SVM & LBP (P = 8,R = 2) LBP/Histogram diff in Accuracy p
2 × 2 block image Sensitivity [95%CI) Specificity [95%CI) Accuracy [95%CI) Sensitivity [95%CI) Specificity [95%CI) Accuracy [95%CI)
Original image 0.63 [0.60-0.66] 0.61 [0.575-0.645] 0.62 [0.59-0.65] 0.69 [0.67-0.71] 0.66 [0.635-0.685] 0.67 [0.65-0.69] 0.05 [0.01-0.09] 0.01
Original ROI 0.68 [0.65-0.71] 0.645 [0.61-0.68] 0.66 [0.63-0.69] 0.75 [0.73-0.77] 0.72 [0.71-0.73] 0.74 [0.73-0.75] 0.08 [0.04-012] 0.0008
Enhanced image 0.59 [0.54-0.64] 0.64 [0.62-0.66] 0.62 [0.59-0.65] 0.80 [0.77-0.83] 0.77 [0.74-0.80] 0.78 [0.76-0.80] 0.16 [0.12-0.20] 0.0001
Enhanced ROI 0.66 [0.63-0.69] 0.65 [0.625-0.675] 0.65 [0.63-0.67] 0.77 [0.75-0.79] 0.77 [0.75-0.79 0.77 [0.75-0.79] 0.12 [0.09-0.15] 0.0001

SVM: Support vector machine. LBP: Linear binary processor. ROI: Region of interest.