Table III. Diagnostic performance of the kNN on images processed using a Local Binary Pattern operator. Euclidean distance metric when k = 1.
Average diagnostics for kNN & LBP (P = 8,R = 2) | Average diagnostics for kNN without LBP | |||||
2 × 2 block image | Sensitivity [95%CI] | Specificity [95%CI] | Accuracy [95%CI] | Sensitivity [95%CI] | Specificity [95%CI] | Accuracy [95%CI] |
Original image | 0.55 | 0.56 | 0.55 | 0.65 | 0.59 | 0.62 |
Original ROI | 0.62 | 0.53 | 0.58 | 0.71 | 0.49 | 0.63 |
Enhanced image | 0.57 | 0.69 | 0.63 | 0.66 | 0.59 | 0.63 |
Enhanced ROI | 0.69 | 0.56 | 0.63 | 0.73 | 0.46 | 0.60 |
kNN: k-Nearest Neighbours LBP: Linear binary processor. ROI: Region of interest.