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ABSTRACT

Extensive and multi-dimensional data sets generated
from recent cancer omics profiling projects have pre-
sented new challenges and opportunities for unravel-
ing the complexity of cancer genome landscapes. In
particular, distinguishing the unique complement of
genes that drive tumorigenesis in each patient from
a sea of passenger mutations is necessary for trans-
lating the full benefit of cancer genome sequencing
into the clinic. We address this need by presenting
a data integration framework (OncolMPACT) to nomi-
nate patient-specific driver genes based on their phe-
notypic impact. Extensive in silico and in vitro vali-
dation helped establish OncolMPACT’s robustness,
improved precision over competing approaches and
verifiable patient and cell line specific predictions
(2/2 and 6/7 true positives and negatives, respec-
tively). In particular, we computationally predicted
and experimentally validated the gene TRIM24 as a
putative novel amplified driver in a melanoma patient.
Applying OncolMPACT to more than 1000 tumor sam-
ples, we generated patient-specific driver gene lists
in five different cancer types to identify modes of
synergistic action. We also provide the first demon-
stration that computationally derived driver mutation
signatures can be overall superior to single gene and
gene expression based signatures in enabling pa-
tient stratification and prognostication. Source code
and executables for OncolMPACT are freely available
from http://sourceforge.net/projects/oncoimpact.

INTRODUCTION

In recent years, advances in genomic technologies have en-
abled the systematic generation of clinical cancer omics data
at an unprecedented scale and rate, interrogating tumor bi-
ology at multiple levels—genomic, transcriptomic as well as
epigenomic (1,2). Integrative mining of these clinically char-
acterized, information-rich data sets is expected to provide
deep insights into tumor biology and guide new efforts to
develop cancer diagnostics and therapeutics (3,4). Recent
studies have, however, highlighted the complexity of can-
cer genome landscapes in terms of somatic mutations, tran-
scriptomic changes and epigenetic alterations, potentially
confounding modeling, mining and integrative analysis of
cancer omics data (5,6). While the complexity of cellular
processes that link the different levels of changes in can-
cer cells may suggest the use of sophisticated systems biol-
ogy (mechanistic or probabilistic) models for data integra-
tion, their utility can be hampered by the need to learn a
large number of parameters from a limited number of pa-
tient samples (7). On the other hand, it is unclear if sim-
pler models can adequately capture key features of the data
and be used to obtain biologically relevant insights. Corre-
spondingly, despite its importance, relatively few methods
have been proposed that can model and integrate cancer
omics data (8-11) and limitations in mining and interpre-
tation continue to be a major barrier for their exploitation
in clinical applications (3,12).

One of the fundamental challenges in the analysis and in-
terpretation of cancer genomic data is to identify and distin-
guish functional (driver) mutations from the numerous non-
functional (passenger) mutations that are found to popu-
late cancer genomes (13,14). This problem has relevance
not only for an understanding of tumor biology (in terms

“To whom correspondence should be addressed. Tel: +65 6808 8071; Fax: +65 6808 8292; Email: nagarajann@gis.a-star.edu.sg

{These authors contributed equally to the paper as first authors.

© The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.


http://sourceforge.net/projects/oncoimpact

e44 Nucleic Acids Research, 2015, Vol. 43, No. 7

of characterizing oncogenes and tumor suppressors) but
also from a clinical perspective where patient-specific driver
genes hold significant value for defining therapeutic tar-
gets. While recent studies that have cataloged the frequency
of mutations in genes based on a large number of patient
samples have been quite successful in identifying the ma-
jor oncogenes and tumor suppressors in a cancer subtype
(15,16), these approaches are not well-suited for identify-
ing rare drivers or patient-specific driver genes (14,17), even
with the use of more sophisticated statistical approaches
(18,19). An orthogonal approach that has been used with
some success relies on the direct evaluation of evolutionary
conservation and physiochemical properties to infer func-
tional mutations (20,21), but these methods are restricted to
point mutations and were found to lack in accuracy due to a
dependence on high-quality training data (22). Integration
of mutation data with gene interaction networks has also
been proposed as an approach to identify rare drivers, rely-
ing on the assumption that they will cluster on the network,
but limited to the analysis of point mutations (23-25).

A natural and powerful approach to assess the functional
impact of mutations is to measure changes in gene expres-
sion patterns that can be attributed to them. When done
without prior information about which genes interact, this
association analysis requires a large number of samples and
can potentially lead to many false positives (9,17). Alterna-
tively, reconstructed interaction networks based on gene co-
expression (26) or known molecular networks (8,10) have
been exploited to better define informative associations.
These methods come closer to integrative modeling of can-
cer omics data and have the potential advantage of provid-
ing biologically plausible hypotheses for candidate driver
genes. In addition, these methods can be applied to a range
of mutation classes, unlike several popular mutation-type
restricted methods (e.g. CHASM (20), OncodriveFM (18)
and PARADIGM-SHIFT (11)), thus allowing for a joint
assessment of driver events and genes. They are, however,
currently still limited to making aggregate predictions for a
data set and are not designed to support the sample-specific
analysis that would be key for defining personalized can-
cer management and therapy. An additional limitation in
the field is that existing methods have not been shown to
robustly analyze data from cancer cell lines, which are fre-
quently used as in vitro models for pharmacological investi-
gations (3) and can form the basis of a framework for per-
sonalized cancer therapy.

Tumor stratification and prognostication is another im-
portant end-goal for cancer genomic profiling and analy-
sis (27) that is often considered independent of driver gene
prediction, despite being potentially related objectives. A
commonly used approach for tumor stratification is based
on the clustering of gene expression profiles, even though
its prognostic value has appeared limited at times and de-
pends greatly on the adopted gene signature (28). Improved
driver gene prediction should, in principle, be informative
for tumor stratification as the identified mutated genes are
likely causative events for carcinogenesis and metastasis.
However, to our knowledge, this application has yet to be
demonstrated by driver gene prediction algorithms, despite
a report on whole-exome mutation profiles being useful for
tumor stratification (29).
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Advances in the capability to identify oncogenic drivers
and to stratify tumors can potentially revolutionize person-
alized cancer therapy (3,27). To address existing method-
ological limitations, we developed a first-in-class algorith-
mic framework (OncolMPACT) that nominates patient-
specific driver genes by integratively modeling genomic mu-
tations (point, structural and copy-number) and the result-
ing perturbations in transcriptional programs via defined
molecular networks. Our benchmark analysis on large pub-
licly available data sets from The Cancer Genome Atlas
(TCGA) for several cancer subtypes revealed notable im-
provements over existing approaches in terms of precision
and robustness for identifying driver genes. Furthermore,
OncolMPACT’s robustness on cell line data sets was con-
firmed using data from the Cancer Cell Line Encyclope-
dia (CCLE) (30) and we additionally provide direct exper-
imental evidence using a patient-derived cancer cell line to
showcase its potential in personalized medicine. Finally, we
present the first demonstration for the use of a set of com-
putationally identified driver genes as a mutational-status-
based signature for tumor stratification and prognostica-
tion. Taken together, our results highlight the potential of
computational methods in integrative modeling of cancer
omics data for uncovering new insights into tumor biology,
and their application in a clinical setting for stratification
and personalized therapy.

MATERIALS AND METHODS

Design of a robust framework for patient-specific data inte-
gration

A natural framework to assess the impact of candidate
driver mutations (genomic and epigenomic) is to use gene
interaction networks to associate mutations with changes
in cell state (e.g. transcriptome (8), proteome, epigenome or
metabolome) and this is the approach adopted in the design
of OncolMPACT. For the sake of simplicity and due to its
wide availability, we consider only transcriptomic changes
in this study, though similar ideas as proposed here apply
to other omics information as well. A key consideration in
the design of OncolMPACT is the ability to characterize the
impact of mutations (non-synonymous Single Nucleotide
Variantions (SNV), indels and Copy Number Variations
(CNYV)) at a patient-specific level and for that purpose we
propose an approach that associates mutations with mod-
ules of patient-specific deregulated genes on the network.
Specifically, given a mutation in a patient we consider a
deregulated gene in the patient as being explained if there is
a small path (length less than a parameter L) of deregulated
genes in the patient that connect it to the mutated gene in
the interaction network. To account for promiscuous asso-
ciations, we disallow paths that go through hub genes (with
degree greater than a parameter D) in the network and iden-
tify deregulated genes as those that are significantly differ-
entially expressed in cancer versus normal cells (false dis-
covery rate corrected P-value < 0.05) and with a strong fold
change (greater than a parameter F). The parameters in this
framework (L, D and F) are directly determined using a sta-
tistical approach based on the interaction network and data
sets used, as discussed in the next section. In order to clus-
ter mutations and deregulated genes into relevant modules,
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we then define the notion of a phenotype gene as frequently
explained (default >5% of patients) deregulated genes for
a cancer subtype, where the phenotype genes serve to rep-
resent and nucleate modules as described in a later section.
Finally, OncoIMPACT distinguishes passenger mutations
from potential driver mutations by identifying those that
explain phenotype genes and thus have a significant impact
on the associated modules.

A systematic approach to determine model parameters

While the parameters L and D are largely determined by
the properties of the network, the fold-change parame-
ter F could potentially interact with them to increase the
number of spurious associations to a mutation. Under the
assumption that with a suitable set of parameters, real
data sets should have many more associations than ran-
dom data sets, we use the following permutation-based ap-
proach to set parameters: (i) We generate random data sets
by permuting gene labels for mutation and transcriptome
data sets independently. Note that this procedure main-
tains the frequency distributions of mutated and deregu-
lated genes across patients and within a patient, while de-
stroying the association between mutated and deregulated
genes. (i1) For each random data set (which contains the
same number of patients as the real data set), we identify
explained genes on the network and compute the distri-
bution of the frequency with which a gene is explained.
(iii) Aggregating this information across data sets, we com-
pare it to the distribution for the real data set using the
Jensen—Shannon divergence metric. (iv) A grid search over
suitable ranges of parameter values is then used to set
the parameters based on the choice that maximizes the
Jensen—Shannon divergence from random data sets (default
settings: L € {2,4,...,20}, D € {10,15,...,100} and F €
{1, 1.5, ..., 3}). To avoid extreme parameter choices, we ig-
nore choices for which the median number of deregulated
genes (across samples) is more than half the genes in the net-
work or less than 300 genes. Our experiments with subsets
of patients confirmed the robustness of the parameter infer-
ence procedure and the feasibility to do it with small data
sets to reduce overall running time (Supplementary Figure
S1).

Assessing the significance of phenotype genes

In order to identify statistically significant phenotype genes,
we adopted a permutation-based testing framework to test
each candidate. Specifically, we permuted gene labels for the
mutations for each sample independently. The random data
sets were then used to obtain an empirical null distribution
(default = 500 data sets) for the frequency with which a gene
is explained and compute P-values for observed frequencies
(= probability of observing frequencies that exceed the ob-
served frequency by chance). Corrections for multiple hy-
pothesis testing were done using the method of Benjamini
and Hochberg and a significance threshold of 0.1 was used
in addition to the frequency threshold (default = 5%) to
identify significant and meaningful phenotype genes for nu-
cleating modules.
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Distinguishing driver mutations from back-seat driver muta-
tions

While the approach to individually assess the impact of mu-
tations and to use their association with phenotype genes
for distinguishing potential drivers from passengers works
reasonably well, in situations where a strong driver deregu-
lates many genes in the network, extranecous mutated genes
in the neighborhood can get associated with a module. In
order to distinguish such back-seat driver mutations, we
applied a parsimony principle to identify a minimal set
of drivers associated with phenotype genes. Encoding the
patient-specific association of mutations with phenotype
genes as set (also implicitly defining a bipartite graph), this
problem can be formulated as the classical Minimum Set
Cover problem, a well-known NP-complete problem with
a greedy O(log n) approximation algorithm. In OncolM-
PACT, we implemented a version of this algorithm that iter-
atively selects the gene covering the most number of uncov-
ered phenotype genes, breaking ties by choosing the gene
predicted as a driver in the most number of patients. In
the patient-specific mode, a mutated gene is considered as
a driver in a patient only if it aided in covering a patient-
specific phenotype gene (stringent mode), while in a more re-
laxed setting (sensitive mode; default) OncolMPACT marks
a potential driver gene as a back-seat driver only if it is so
in all patients. Note that the stringent mode is particularly
well suited for analyzing data sets where there is a high rate
of false-positive mutations.

Construction of patient-specific gene modules for assessing
mutational impact

The construction of patient-specific gene modules in On-
coIMPACT allows us to obtain a more comprehensive mea-
sure of the impact/importance of a putative driver gene.
To coalesce mutated genes and phenotype genes into mod-
ules we employ the following steps: (i) For each patient a
driver gene defines a module composed of the set of ex-
plained genes associated with it. (il) Modules of the same
patient that share a phenotype gene are merged together.
(ii1) Deregulated genes that do not belong to paths between
driver and phenotype genes are trimmed from modules.
(iv) The patient-specific impact of a driver gene is com-
puted as the sum of fold change of genes that belong to
its module and the overall impact is defined as the average
patient-specific impact. Finally, OncoIMPACT orders pre-
dicted driver genes based on their impact value.

Use of pre-computed information from large public data sets

OncolMPACT is configured to run in two modes: (i) a
database mode that allows it to determine parameter set-
tings (L, D and F) and significant phenotype genes from the
data sets provided and (ii) a discovery mode where informa-
tion in the provided database is used to predict driver genes
for each sample in an additional data set (which can be the
same as the one used to create the database). In the discov-
ery mode, identification of back-seat drivers is done by com-
bining the database data sets with discovery data sets. Note
that OncolMPACT can be run by default in a combined
database-plus-discovery setting on an input data set, while
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the discovery mode is useful to avoid computations when a
pre-computed database is available. As part of the OncolM-
PACT package, we provide databases constructed from all
the TCGA data sets analyzed in this study, to enable easy
integration with custom, in-house data sets for these cancer
subtypes. New releases of OncolMPACT will include addi-
tional subtype databases as well.

Patient stratification and survival analysis

Clusterings of driver gene profiles (binary 1-0 vectors) were
computed using non-negative matrix factorization (NMF)
based on consensus clustering using the R package ‘nmf”
(31). In order to produce robust clustering the consensus
clustering was obtain using 200 random runs of the NMF
optimization algorithm. Kaplan—Meier curves were drawn
for the clusters and log rank P-values computed using the
R package ‘survival’ (29).

Data sets and networks

All TCGA data sets were downloaded from the TCGA
data portal (https://tcga-data.nci.nih.gov/tcga/). OncolM-
PACT analysis was restricted to samples for which infor-
mation on point mutations, copy-number alterations and
gene expression was available. Cell line data sets (47 ovar-
ian and 41 glioma lines) were downloaded from the CCLE
data portal (http://www.broadinstitute.org/ccle/home) and
shRNA data from the Achilles data portal (http://www.
broadinstitute.org/achilles; 24 ovarian cell lines with ge-
nomic and shRNA data). A detailed description of data
parsing and pre-processing steps can be found in the Sup-
plementary Text.

By default, OncoIMPACT uses the gene interaction net-
work constructed by Wu et al. (32) (covering nearly 50%
of the human proteome) for its analysis. This interaction
network integrates information from known pathways (e.g.
KEGG, NCI-Nature) as well as interactions derived from
computational predictions (e.g. gene co-expression, protein
domain interactions and shared gene ontology (GO) bio-
logical process). However, OncolMPACT can use other net-
works as input as well and our experiments with a manually
curated network (33) suggest that while a less complete net-
work can reduce its predictive power, its predictions are still
typically better than a frequency-based approach (Supple-
mentary Figure S2).

Genomic analysis of melanoma sample and functional valida-
tion using patient-derived cell line

Distant metastasis melanoma samples and the correspond-
ing patient-derived cancer cell line were provided and estab-
lished by the John Wayne Cancer Institute as previously de-
scribed (34). Details of genome and transcriptome sequenc-
ing and analysis of the melanoma samples can be found in
the Supplementary Text. Driver genes in the cell line de-
rived from distant metastasis were validated using siRNA-
mediated knockdown. Briefly, the patient-derived cell line
was cultured in complete RPMI culture medium containing
10% fetal bovine serum and was kept at 37°C with 5% CO,.
For the knockdown experiment, cells were incubated with
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25 nM siRNA and lipofectamine RNAimax (Life Tech-
nologies) at 37°C for 72 h. Active cell proliferation was
detected using Click-iT EdU Alexa Fluor 488 HTS Assay
(Life Technologies). Fixation and staining of cells was per-
formed according to manufacturer’s instructions. The siR-
NAs used are tabulated in Supplementary Table S1. Dhar-
macon ON-TARGETplus Non-Targeting Control Pool was
used as a negative control. The TagMan primers for quan-
titative polymerase chain reaction are designed by and or-
dered comerically from Life Technologies.

RESULTS
An overview of OncolMPACT’s algorithmic framework

OncolMPACT is designed to integrate information re-
garding mutations (genomic and epigenomic), changes
in cell state (e.g. transcriptome, proteome, epigenome or
metabolome) and gene interaction networks to nominate
and rank driver cancer mutations in a patient-specific man-
ner (i.e. driver predictions are made for each patient; Figure
la and Materials and Methods). Briefly, it does so by evalu-
ating the impact of a mutation by associating them to mod-
ules of patient-specific deregulated genes through the gene
interaction network (step 3 in Figure 1a). A key step in this
process is the identification of sentinel phenotype genes fre-
quently deregulated in a cancer subtype (but not typically
mutated) and serve to distinguish relevant driver mutations
from passengers (step 2 in Figure la). The association of
mutations to phenotype genes is controlled by three param-
eters (maximum path length L, maximum gene connectiv-
ity D and a perturbation threshold F) that are determined
in a data-driven fashion using a statistical maximization ap-
proach (step 1 in Figure 1a, b and Materials and Methods).
To further differentiate true drivers from back-seat drivers,
OncolMPACT employs the parsimony principle to iden-
tify a minimal set of driver mutations for each patient (Fig-
ure 1c). Finally, the nominated patient-specific drivers are
ranked based on their impact on associated modules. A de-
tailed description for each of the steps in OncolMPACT can
be found in the Materials and Methods section.

OncolMPACT nominates cancer drivers accurately and con-
sistently

As existing methods for identifying driver genes are based
on aggregate analysis over a large number of patients, we
begin by comparing OncolMPACT’s performance for this
task against an aggregate network approach (DriverNet (8))
as well as a commonly used mutation frequency-based ap-
proach for ordering candidate drivers (35-39) (Frequency).
Our experiments using large TCGA data sets (328 sam-
ples for Glioblastoma multiforme or GBM (1) and 316 for
Ovarian Cancer (40)) indicate that OncolMPACT can suc-
cessfully integrate information regarding copy-number as
well as point mutations and indels to highlight key driver
genes across categories (Supplementary Tables S2 and S3).
In contrast, a naive frequency-based approach seems to en-
rich for less known cancer driver genes (Supplementary Ta-
bles S2 and S3 and Supplementary File S1), e.g. the top
gene on the Glioblastoma list is JARID1 D instead of EGFR
and both lists omit PIK3CA from the top 10. While results
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Figure 1. A schematic representation of OncolIMPACTs algorithmic framework. (a) Overview of OncolMPACT’s workflow involving three main stages
of data-processing. (b) Depiction of OncolMPACT’s search through a multi-dimensional space to set network and expression parameters (F, fold change
of genes; L, length of path; D, degree of nodes). (c) Parsimony-based matching of potential driver and phenotype genes in a bipartite graph to eliminate
back-seat drivers. Solid and dashed lines indicate the association of potential driver genes to phenotype genes that were accepted and rejected, respectively.

for DriverNET were more comparable to those from On-
colMPACT, DriverNET failed to identify several known
oncogenes, such as NF/ and RBI, in ovarian cancer (40)
and MDM4 in Glioblastoma (41) among others (Supple-
mentary Tables S4 and Supplementary File S1). To per-
form a more systematic comparison across methods, we
used genes in the cancer gene census (CGC) (42) and a
previously compiled pan-cancer driver list (43) as a proxy
for potential drivers to assess the concordance/precision
of the top driver genes reported for five different cancer
types (GBM, Melanoma, Ovarian, Prostate and Bladder)
(Figure 2a, Supplementary Figure S3). These results indi-
cate a strong enrichment for potential true positive driver
genes in OncolMPACTs predictions (Supplementary Fig-
ure S3b). For example, among the top 20 predictions in
Glioblastoma, OncolMPACT’s concordance is above 60%
while the frequency-based approach and DriverNet are be-
low 40%, suggesting that it is generally more accurate and
less likely to be influenced by frequently mutated passen-
gers. This trend was seen in all cancer types, except for the
Melanoma data set where the lack of sufficient normal con-

trols likely affected OncolMPACT’s results in relation to
DriverNet (Supplementary Figure S3).

We further tested the robustness of OncolMPACT using
a subsampling-based approach to compare predictions to
those on the full data set of patients. Our results suggest
that OncolMPACT’s predictions are extremely stable even
with very small sample sizes (~20 patients), with more than
90% of reported drivers being found on the full data set
(Figure 2b). In addition, OncolMPACT can recover a siz-
able proportion of drivers using a relatively small subset of
the data set (>70% with 50 patients; Figure 2b). Although
both common drivers (> 5% mutational frequency) and rare
drivers (<5% mutational frequency) have high recovery, a
higher fraction of common drivers is generally recovered,
possibly due to the bias in the passenger filtering step in
OncolMPACT (Figure 2b; Materials and Methods). How-
ever, the recovery rates for rare and common drivers con-
verge as the number of samples increases. The stability at-
tribute of OncolMPACT is likely to be a useful feature in
the analysis of rare forms of cancers (e.g. cardiac tumors
(44)), where the availability of samples is limited. In partic-
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Figure 2. OncolMPACT makes precise and robust driver gene predictions. (a) Concordance/precision measured by the fraction of top ranked driver genes
from OncolMPACT, DriverNet and a frequency-based approach that are included in the CGC and a pan-cancer driver gene list. (b) Stability (precision
when evaluated on predictions from the full data set) and recovery (sensitivity when evaluated on the full data set) characteristics of OncolMPACT as a
function of the size of the data set analyzed (average of 20 simulations). (¢) Common genes predicted as drivers by OncolMPACT in both clinical tumor

samples and cell lines (cancer census genes).

ular, the naive frequency-based approach would be unsuit-
able for such data sets due to limited statistics.

To further demonstrate that OncolMPACT is able to dis-
cern true signals from noisy data, and to establish its utility
for analyzing cell line data sets, we repeated our analysis
using data from CCLE (30). As the cell lines here do not
have normal controls, identification of somatic variants is
error-prone, but despite this we found that OncolMPACT
results enrich for true drivers and are significantly better
than a competing approach (Supplementary Figure S4). A
significant fraction of drivers in the cell line were also fur-
ther confirmed using shRNA experiments, as detailed in the
next section. Cancer cell lines are commonly used as in vitro
models for clinical tumors with the caveat that they can de-
viate genetically from their tumor counterparts after years

of adaptation to artificial culturing conditions (45). Fur-
thermore, there is a diversity bias inherent in cell line col-
lections, where mutation frequencies in cell lines may not
be reflective of clinical tumor collections. Despite this, our
comparisons of driver genes predicted from cell lines and
patient samples suggested that the overlap between them
is significant (P-value = 2.3 x 10~ and 3.3 x 107 for
Glioblastoma and Ovarian Cancer, respectively; hyperge-
ometric test, Supplementary Figure S5) and involves key
known cancer driver genes (Figure 2¢). However, important
differences still exist in terms of cell line and patient-specific
drivers (Supplementary File S2), possibly due to differences
in the biological contexts in which they exist.
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OncolMPACT makes robust and verifiable patient-specific
driver gene predictions

While the identification of patient-specific driver genes is
challenging, validating a methodology that identifies them
is even more so, given the lack of gold standards (e.g. by
their very definition patient-specific drivers are less likely to
be in CGC). We attempted to verify OncolMPACT’s abil-
ity to call patient-specific drivers using three different ap-
proaches. First, we experimented with in silico data sets de-
rived from real TCGA data sets by introducing random mu-
tations to test our ability to discriminate them. These exper-
iments highlight that OncolMPACT shows a high-degree of
tolerance to the introduction of decoy mutations, and can
robustly accommodate up to 10% of erroneous mutation
data (e.g. due to sequencing or variant-calling errors) (Fig-
ure 3a, Supplementary Figure S6). In doing so, it is able to
control the false positive rate (FPR) to be generally less than
10% (median FPR < 5% for 2.5% decoy mutations), sug-
gesting that a majority of patient-specific driver predictions
are likely to be true positives. To further validate the consis-
tency of patient-specific driver gene predictions, we experi-
mented with learning phenotype genes from a random sub-
set of samples, with prediction on unselected samples (cross-
validation). Our results show good predictive stability for
all drivers and good predictive recovery for both common
(>5% frequency) and rare drivers (<5% frequency) (Sup-
plementary Figure S7), further confirming OncolMPACT’s
robustness for patient-specific driver gene prediction.

Second, we leveraged data from a recent genome-scale
functional screen for genes essential for survival and prolif-
eration (ESP) in 24 different ovarian cancer cell lines (46),
to evaluate our cell line-specific predictions. We noted a
significant overlap (P-value = 9.5 x 10~*; hypergeomet-
ric test, Figure 3b) between predicted drivers and validated
ESP genes, including several that are rarely mutated in ovar-
ian cancer (e.g. MAPKI (1.6%) and JUN (2.2%)) and with
functions consistent with cancer driver genes (Supplemen-
tary Tables S5). As control, we evaluated overlap with the
frequency-based approach and found it to be not significant
(P-value = 0.96 at frequency cutoff of 5%; hypergeometric
test). Furthermore, increasing the stringency for ESP genes
(validated by 4 shRNAs), increased the enrichment in On-
colMPACT predictions (5 out of 7; P-value = 2.5 x 107¢;
hypergeometric test) suggesting that most strong prolifera-
tion drivers are identified by OncolMPACT. Further valida-
tion would be needed to characterize drivers that play a role
in other cancer processes, such as invasion, genome stability
and angiogenesis.

Finally, to showcase OncolMPACT’s ability to combine
large publicly available data sets with data from custom
sample collections, we analyzed data from a clinical dis-
tant metastasis sample (paired tumor-normal exome se-
quencing, mate-pair sequencing-based copy-number profil-
ing and RNA-seq) in combination with a data set of 160
melanoma samples from TCGA (see Materials and Meth-
ods). Despite the presence of a large number of mutations
and amplifications in the sample, OncolMPACT nominated
a concise list of driver mutations (Figure 3c). As proof of
principle, a patient-derived cell line from the patient was
used for experimental validation (see Materials and Meth-
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ods). Using siRNAs, we attempted to knock-down the ex-
pression of the two amplified, predicted driver genes in
the cell line (BRAF and TRIM24, Supplementary Figure
S8) and noted a substantial reduction in the proliferation
rate of cancer cells for both genes (Figure 3d, Supplemen-
tary Figure S9). BRAF is a well-known frequently mu-
tated and amplified driver in melanoma (47). On the other
hand, even though TRIM24-BRAF fusion gene was previ-
ously reported to be present in a subset of melanomas (48),
TRIM?24 on its own has not been characterized as a driver
and was ranked 671 in the list of frequently mutated genes in
the TCGA melanoma data set. Interestingly, while TRIM24
was initially identified as a transcriptional co-regulator, it
has been recently shown to ubiquitinate 7P53 for degrada-
tion in breast cancer (49) and could play a similar role in
melanoma. We further performed an experimental assess-
ment of our false-negative rate by silencing seven selected
amplified genes (CASP2, CNOT4, CULI, EZH2, HIPK?,
SSBPI and ZYX) with known functions in oncogenic pro-
cesses that were not predicted as drivers by OncolMPACT
(Supplementary Figure S8). Strikingly, despite our enrich-
ment for potential false negatives, we observed a reduction
in the proliferation of cancer cells in only one (EZH?2) out
of seven selected genes (Supplementary Figure S10). To-
gether, these results provide evidence that a computational
approach, combined with clinical genome sequencing could
serve as a means to reliably identify personalized therapeu-
tic targets in cancer.

Distributional properties of driver genes and associated
deregulated modules

The ability to generate patient-specific lists of driver genes
allowed us to analyze the distributional properties of driver
genes without having to resort to an aggregate analysis that
may obscure its interpretation. For example, using all pre-
dicted drivers, we readily observed that driver genes tend
to cluster on the gene interaction network, similar to what
was observed by others (50), and distances between them
were significantly lower than between all mutated genes and
between random genes (Supplementary Figure S11). How-
ever, this observation has several potential explanations in-
cluding, but not limited to: (i) tumors share driver mu-
tations that affect the same functional network (29) and
(i) biases in the data (50). Analysis using patient-specific
driver gene lists avoids some of these issues and our analy-
sis using OncolMPACT revealed a similar pattern of clus-
tering at a sample-specific level (Figure 4a and Supplemen-
tary Figure S12), that is not explained by mutation fre-
quency or network structure (i.e. hub genes), suggesting that
an alternative explanation—that the occurrence of multi-
ple mutations in a network module is necessary for path-
way deregulation in a tumor—may be valid here. We further
investigated such synergistic interactions between drivers
by using an unbiased search and statistical testing to iden-
tify potential co-drivers and compared our patient-specific
results with a non-patient-specific approach (Supplemen-
tary Figure S13, Supplementary File S3). Our results show
that the patient-specific analysis likely identifies more mean-
ingful co-driver gene pairs (i) identifying a smaller subset
of potential gene-pairs as co-drivers (Supplementary Fig-



e44 Nucleic Acids Research, 2015, Vol. 43, No. 7

a) b)

S B Glioblastoma
% B Ovarian Cancer
[
o°| 7
2 T
- ; :

0 s :
o039 e T C)
. i : T i
) i i i i
0 ; ; =
51 H E El
s (| B B8 =
2_EI.% S‘I’/Za T.é% 1(;%
% Simulated Mutations
80
P-value = 1.3 x 104

1) 3k %k 5k

?’ - P-value = 1.8 x 104

o €0 % %k %k

o
=
i
® 40 -

£

9

o 20 A

N

0 .

siCtrl siBRAF siTRIM24

PAGE 8 OF 13

ESP Genes
[N ONncolMPACT Predicted Drivers

P-value = 9.5x10+*

Predicted T Mutation
Driver YP® | Freq (TCGA)
BRAF SNV&AMPL 51.2%

C6 SNV 24.4%
PTPRD SNV 22.5%
RELN SNV 20.6%
ANK2 SNV 16.3%
ANK1 SNV 16.3%
C8B SNV 15.6%
PPFIA2 SNV 12.5%
GRIA2 SNV 12.5%
TRIM24 AMPL 10.0%
ITGB8 SNV 9.4%
GLI3 SNV 6.9%
ITGA2B SNV 5.0%
SLIT1 SNV 4.4%
ITGA9 SNV 4.4%
BACE1 SNV 4.4%
ARVCF SNV 4.4%

Figure 3. Validation of sample-specific driver gene predictions. (a) Box plots depicting the distribution across samples of FPR for driver gene predictions
in OncolMPACT (average of 20 simulations). Decoy mutations were introduced in random genes as proxy for non-drivers in this assessment. (b) Overlap
between predicted unique cell line-specific drivers and shRNA validated genes (using at least 2 shRNAs) ESP in 24 ovarian cancer cell lines. Number in
parenthesis represent the number of unique genes. The P-value is computed using hypergeometric test. (c) Frequency in TCGA samples and mutation
type for driver gene predictions from a melanoma sample. (d) Cell proliferation assay in a patient-derived melanoma cell line treated with control siRNA
or siRNA targeting BRAF and TRIM24. Error bars represent SEM of three independent repeats. Statistical significance was assessed by using student’s

1-test.

ure S13a), (ii) that are less likely to be enriched in false-
positives due to genomic proximity (Supplementary Figure
S13b) and (iii) are more enriched in genes that are likely to
have similar functional roles (Supplementary Figure S13c).
In addition, we identified several gene-pairs as co-drivers
that were not necessarily correlated in their mutation occur-
rences and were not therefore detectable without a patient-
specific analysis as provided by OncolMPACT (Supplemen-
tary File S3). Interestingly, in comparison to glioblastoma,
ovarian and prostate cancer, we noted only a handful of co-
drivers in melanoma and bladder cancer (Supplementary
Figure S13a) and we discuss this observation further in a
following section (see Discussion).

An intrinsic feature of OncolMPACT is that it ‘anno-
tates’ candidate driver genes with an associated module of
deregulated genes and phenotype genes in the network that
can provide hints to the mechanism by which the putative
driver acts as one (see Materials and Methods). For exam-

ple, in our analysis of the TCGA Ovarian Cancer data set,
amplification of the ¢-M YC oncogene was frequently asso-
ciated (in 58% of mutated tumors) with an increase in the
expression of the phenotype gene BCATI, an amino acid
transaminase that produces branched-chain L-amino acids
required for cell proliferation. This suggests that BCATI
may be a direct transcriptional target of ¢-M YC and an ef-
fector through which ¢- M YC exerts its oncogenic influence,
a relationship that has previously been demonstrated in na-
sopharyngeal carcinoma (51), but needs to be explored in
ovarian cancers. As another notable example, we observed
that the amplification of DVL3 was associated in 81% of tu-
mors by a corresponding down-regulation in the expression
of the phenotype gene CXXC4. DV'L3 is a human homolog
of the Drosophila dishevelled gene and to our knowledge,
not yet directly implicated as a driver in ovarian cancers.
CXX(C4 is known to negatively regulate the Wnt signaling
pathway by binding and inhibiting Dvl (52). Thus, our anal-
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ysis suggests the hypothesis that DVL3 amplifications, cou-
pled with decrease in CXXC4 expression, could drive ovar-
ian cancer progression through enhanced activation of the
Whnt signaling pathway. These and other novel driver gene
predictions from OncolMPACT can be further investigated
based on downstream analysis (e.g. GO enrichment) and in
vitro testing of the phenotype genes and modules associated
with them.

We further analyzed the patient-specific deregulated
modules from OncolMPACT and observed that multiple
distinct deregulated modules exist in most patients (Supple-
mentary Figure S14). Despite this, a single dominant mod-
ule comprising of multiple driver genes was also frequently
observed (Figure 4b and Supplementary Figure S15), sug-
gestive of the existence of a core deregulated module driving
cancer progression in each tumor sample. Furthermore, GO
enrichment analysis (53) of the dominant modules showed
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that they are frequently enriched for genes that regulate cel-
lular processes contributing to the hallmarks of cancer (54)
(e.g. regulation of cell proliferation, apoptosis and cell mi-
gration; Figure 4c). The functional enrichment of deregu-
lated modules in these processes further demonstrates their
utility for guiding validation (e.g. distinguishing prolifer-
ation drivers from angiogenesis drivers) and mechanism-
informed therapy from patient-specific predictions in On-
colMPACT.

Tumor stratification using personalized driver mutation pro-
files

Patient-specific driver mutational profiles are potentially
promising inputs for tumor stratification since by defini-
tion, they are likely causative events for carcinogenesis and
metastasis. However, while the mutational status of selected
single genes has been shown to be of value in various cancers
(16,55-56), unsupervised stratification using whole-exome
mutation profiles is significantly more challenging (29), and
the use of a small, computationally derived driver gene list
for this purpose has not been demonstrated before. As a
first, pilot exploration of this concept, we tested the utility of
OncolMPACT’s predictions for stratifying patients accord-
ing to their survival outcomes. Specifically, we used unsu-
pervised consensus clustering using NMF to cluster patient-
specific driver mutational profiles. Despite the sparseness of
mutational profiles and the use of only a subset of genes
containing predicted driver mutations (307 and 183 genes
for Glioblastoma and Ovarian Cancer, respectively), we ob-
tained robust clustering of patients (Figure 5a). In addition,
we found that most clusters are defined by a few key driver
genes that are predominantly mutated in tumors belonging
to that cluster and serve to distinguish them from tumors in
other clusters (Figure 5a).

Evaluation of survival outcomes for patients in these clus-
ters using Kaplan—Meier statistics suggested that the clus-
ters carry significant prognostic value for survival (Figure
5b). For example, for Glioblastoma, cluster 4 has a mean
survival time of 7.3 months compared to cluster 5 with
a mean survival time of 18.4 months. Further analysis of
these prognostic driver mutation signatures suggested that
a smaller subset of them (using as few as the top 47 and top
6 genes for Glioblastoma and Ovarian Cancer, respectively)
could contribute to the development of clinical grade signa-
tures (Supplementary Figure S16). Overall, gene signatures
selected based on driver genes also showed significantly bet-
ter prognostic value compared to similar sized subsets of
genes selected from all mutated genes, as well as single gene
classifiers (Figure 5¢). Comparison with mRNA expression
profiles suggested that driver mutation-based stratification
could provide better patient survival predictive value over-
all (Supplementary Figure S17). This could also extend to
other attributes, e.g. in prostate cancer this approach suc-
cessfully clustered patients into subgroups with differential
prostate-specific antigen expression, the main biomarker for
prostate cancer (Supplementary Figure S18). In all, these
results not only highlight the promise of driver mutation
profiles to stratify patients in an unsupervised fashion, but
also indirectly confirm the quality of driver gene predictions
from OncolMPACT.
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DISCUSSION

In recent years, as the generation of high-dimensional
molecular profiling data sets has become easier, the chal-
lenge has naturally shifted toward better mining of this in-
formation. While, in principle, these data sets represent a
rich resource, their high-dimensionality entails that correla-
tions and associations are easy to find, but validating them
may not be so. In particular, cancer genomics is an area that
has benefitted from the facility of data generation and the
focus has now rightly shifted toward integrative analysis,
with driver gene identification being a key focus (57). In this
work, we show that a simple, model-based approach can re-
liably sort through the sea of passenger mutations that dot
cancer genomes (13) to nominate patient-specific drivers,
outperforming competing approaches to do so. Our bench-
marking analysis suggests that this approach is robust to
noise and works with small data sets, making it applicable to
a wider array of sample collections, including cell lines and
xenograft models. By being model based, our approach dis-
tinguishes itself from others in that it can (i) provide insights
into the mechanisms by which putative drivers act and (ii)
enable integration of diverse molecular profiles. For exam-
ple, phospho-proteomic, microRNA and methylation pro-
filing can provide valuable additional information about tu-
mor biology and can naturally be integrated into OncolM-
PACT’s model as new perturbations, genes and mutations,
respectively.

The ability to make patient-specific driver predictions
open up new avenues in personalized medicine and targeted
cancer therapy. Our validation results suggest that OncolM-
PACT is the first method to make robust and verifiable
patient-specific driver gene predictions. As a proof of prin-
ciple, using genomic profiling of melanoma samples and a
patient-derived cell line, we provide evidence that a compu-
tational approach, such as OncolMPACT, combined with
clinical genome sequencing can help identify personalized
therapeutic targets. This is an exciting area for further work,
including in the development of gold standard data sets for
benchmarking, and further validation to bring this vision
closer to clinical practice.

Additionally, our analysis of OncolMPACT’s patient-
specific driver predictions revealed new biological insights,
including the clustering of driver mutations on the network
for each patient, suggesting that multiple hits may be re-
quired to significantly deregulate a pathway for oncogene-
sis. These observations support a model where there is sub-
stantial functional redundancy between genes, giving rise to
robust cellular networks. They also suggest an additional
aspect to the multiple-mutation theory of carcinogenesis
(58), where the functional relationship of potential driver
genes (reflected by their proximity in the molecular net-
work) may be another determining factor for progression
to cancer. Further work will be needed to explore and con-
firm this hypothesis, particularly through single tumor cell
profiling to eliminate the caveat that the identified drivers
mutations may not have occurred in the same cell.

A surprising observation from our co-driver analysis
was the lower number of co-drivers found in melanoma
and bladder cancer compared to glioblastoma, ovarian and
prostate cancer. As our statistical analysis is influenced by
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Figure 5. Tumor stratification using predicted driver gene profiles. (a) Heatmaps depicting consistency of clustering (fraction of bootstrap replicates in which
patients clustered together) for predicted driver gene mutational profiles (binary 0-1 vectors) using NMF. (b) Survival profiles of glioblastoma and ovarian
cancer patients stratified by consensus clustering in (a). (c) Box plots showing the distribution of P-values (log rank test) for survival profiles of random
subsets of glioblastoma (sample size 275) and ovarian cancer (sample size 250) patients, clustered into the same number of groups using different gene
signatures (OncolMPACT predicted driver genes; DriverNET predicted driver genes; Randomly selected sets of genes of the same size as OncolMPACT

predicted drivers; Randomly selected single genes).

the frequency of driver genes, it is not clear if this obser-
vation can be solely attributed to the biological differences
in specific cancer types. In addition, as co-drivers can more
easily emerge from a single CNV event, this could partially
explain the imbalance in the number of co-drivers observed
in various cancer types. This question deserves further in-
vestigation through the analysis of additional cancer types.

Given that mutations in driver genes are the putative
underlying causes for tumorigenesis and have been shown
to hold strong prognostic value individually (59), driver
gene prediction-based tumor stratification has been sur-
prisingly difficult and elusive. While individual genes are
useful for prognostication, a more comprehensive panel of
driver genes for a cancer type can help capture relevant in-
teractions between drivers, without sequencing the whole
genome. In this study, we directly confirmed that tumors
can be robustly stratified into subgroups through standard
consensus clustering of digital mutational profiles restricted
to driver genes predicted by OncolMPACT. Moreover, the
subgroups obtained exhibited significantly different sur-
vival outcomes, establishing the clinical relevance for such

a stratification and indirect validation for OncolMPACT’s
predictions. Given that DNA-based assays can be easier to
work with, refinement of the mutational signatures identi-
fied here and validation using large, independent cohorts
can help complement the ongoing efforts to develop RNA-
based prognostic signatures (60,61).

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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