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Abstract

Metabolomics is the study of small molecules, called metabolites, of a cell, tissue or organism. It is of particular
interest as endogenous metabolites represent the phenotype resulting from gene expression. A major challenge in
metabolomics research is the structural identification of unknown biochemical compounds in complex biofluids. In
this paper we present an efficient cheminformatics tool, BioSMXpress that uses known endogenous mammalian
biochemicals and graph matching methods to identify endogenous mammalian biochemical structures in chemical
structure space. The results of a comprehensive set of empirical experiments suggest that BioSMXpress identifies
endogenous mammalian biochemical structures with high accuracy. BioSMXpress is 8 times faster than our previous
work BioSM without compromising the accuracy of the predictions made. BioSMXpress is freely available at http://
engr.uconn.edu/~rajasek/BioSMXpress.zip

Introduction
Metabolomics is the comprehensive, qualitative, and quan-
titative study of all the small molecules, called metabolites,
in an organism [1]. A major challenge in metabolomics is
the interpretation of the vast amount of data produced by
the high-throughput techniques used for information
extraction and data interpretation [2,3]. The existence of
several on-line chemical structure databases has provided
a vital support for molecular identification by allowing the
search for candidate compounds using experimentally
determined features with computationally simulated fea-
tures. Such searches often result in a large number of false
positives, making identification of the compound under
investigation extremely difficult. Hence, cheminformatics
methods are needed to efficiently search such large chemi-
cal databases and potentially identify unknown endogen-
ous biochemical compounds. Several methods have been
developed with the objective of discriminating between
candidate structures that are synthetic and those that are

biochemical. The first attempt to solve this problem was
reported by Nobeli et al. [4] who used two-dimensional
molecular structures to manually derive a library of 57
structural fragments commonly found in 745 E. coli meta-
bolites. Such fragments were used to reveal the main con-
stituents of metabolites and to assist in the classification of
the metabolome into biochemically relevant classes. In
related work, Gupta and Aires-de-Sousa [5] and Peironcely
et al. [6] employed fingerprints and random forest classi-
fiers [7] to classify endogenous biochemical compounds.
Molecular fingerprints represent the structure of a mole-
cule as a list of binary values (0 or 1) that indicate the pre-
sence or absence of structural features in the molecule [8].
Gupta and Aires-de-Sousa’s model correctly annotates
95% of the 1,811 compounds downloaded from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) [9] used for
training their model. While Peironcely et al. reported that
96% of 457 compounds downloaded from the Human
Metabolome Database (HMDB) [10], not used for training
the model, were classified as endogenous. In our previous
work [11], we developed BioSM, a molecular classifier that
can identify endogenous mammalian biochemical struc-
tures contained within chemical structure space. BioSM
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uses the structures of known endogenous mammalian bio-
chemical compounds to aid in the classification process, as
opposed to other works that use fragments of known
structures. BioSM correctly predicted 95% of 1,388
(KEGG) compounds as endogenous mammalian biochem-
ical in a set of leave-one-out cross validation experiment.
Additionally, 89% of 2,330 compounds downloaded from
HMDB were identified as endogenous metabolites. One of
BioSM’s limitations, granting its encouraging results, was
its need to exhaustively search all known biochemical
structures to be able to make a decision about the candi-
date compound under investigation which resulted in an
undesirably high run time. In this paper we propose an
efficient cheminformatics tool, which can be used to iden-
tify biological compounds based on their molecular struc-
tures, called BioSMXpress. Similar to our previous work,
the prediction method applied by BioSMXpress relies on a
set of endogenous mammalian biochemical compounds
obtained from the KEGG database, hereafter referred to as
scaffolds. In a nutshell, BioSMXpress is designed to predict
that a given query structure is biological after encounter-
ing exactly one scaffold match satisfying a given thresh-
old. This threshold is based on the number of atoms in
both the query structure and the scaffold being examined.
Knowing this gives us the opportunity to avoid the need
to exhaustively search the entire scaffolds list before mak-
ing a decision about the query compound with confidence.
To do this efficiently, BioSMXpress selects the scaffolds
that have the potential to promote the candidate in the
least possible time. Then, only those scaffolds, with
enough atoms to satisfy the given threshold, are checked
against the candidate compound for similarity.

Materials and methods
BioSMXpress was designed as an enhancement to BioSM
with the aim of making the least possible number of
structure comparisons to efficiently identify biochemical
structures with the aid of a scaffolds list. BioSMXpress
decides if a candidate structure is biochemical based
upon how similar that structure is to any of the struc-
tures in the scaffolds list. In this work, two molecular
structures are considered to be a “match”, if the smaller
structure is an exact substructure (atom and bond types)
of the larger structure being compared. The underlying
cheminformatics functionality of BioSMXpress is based
on an open source Java based toolkit called the Small
Molecule Subgraph Detector (SMSD) [12]. This toolkit is
used to find the maximum common sub-graph between
small molecules using atom type matches and bond sen-
sitivity information. In addition to SMSD, BioSMXpress
uses Marvin, a chemical structure processing software, to
generate both the canonical SMILES and atom counts
from structure data files (.sdf) for all the compounds
described in this work.

Computational algorithm
Here, we introduce a tool that can efficiently identify
small endogenous mammalian biochemical structures
from chemical structure space. First we will start by
defining some notations followed by a detailed explana-
tion of the computational model behind BioSMXpress.
Let cq be the molecular structure of a query compound,
S = {s1, s2,...,sn} be a set of n small biological compounds
(scaffolds). Let sx ∼ cq indicate that scaffold sx is a sub-
structure of candidate compound cq, and AC (sx) repre-
sent the number of atoms in compound sx. Let minAC
define the minimum number of atoms required in a
scaffold sy to identify cq as biological if cq ∼ sy. If two
molecular structures r and q were found to be a match,
a similarity score

Sc =
AC(r)
AC(q)

(1)

is computed where r ∼ q. Based on a given substruc-
ture threshold (subThr), the minimum atom count is
computed as

minAC = [AC(cq) ∗ subThr]. (2)

Similarly, based on a given superstructure threshold
(superThr ), BioSMXpress computes the maximum atom
count,

maxAC =
[

AC(cq)

sup erThr

]
. (3)

Finally, let S̄ = {s′1, s′2, . . . , s′l}|l ≤ n be the scaffold list
assigned to cq where S̄ ⊆ S . A scaffold s′x ∈ S is assigned

to S̄ if and only if minAC ≤ AC(s′x) ≤ maxAC . Please
note that each candidate structure with a different atom
count is provided with a different set of scaffolds in S̄ .
Once S̄ is populated with the appropriate scaffolds for cq,
BioSMXpress examines cq against each of those scaffolds.
As soon as a match (substructure or superstructure) is
found, BioSMXpress predicts that cq is biological and ter-
minates. Otherwise, it’s predicted to be nonbiological.
Values for subThr and superThr are determined by cross
validation as described in the following section.
In addition to that, BioSMXpress orders the potential

scaffolds in S̄ such that scaffolds with atom counts clo-
ser to the candidate atom count are examined first fol-
lowed by those with a larger atom count difference. In
this case, once a match is found the search terminates
and it is guaranteed that this is the best possible match
(as a substructure or superstructure). Figure 1 illustrates
a visual example of the BioSMXpress scaffolds ordering
process.
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Figure 1 Scaffold selection and sorting process. In this example, it is assumed that the candidate compound (cq) consists of 9 atoms and

that subThr = 0.5 and superThr = 0.51. Therefore, minAC = [9 * 0.5] = 4 and maxAC =
⌈

9
0.51

⌉
= 18 . (a) The hashed scaffolds list with

minAC and maxAC identified. (b) The sorted scaffolds list consists of all the scaffolds with 9 atoms followed by those with 10 atoms followed by
those with 8 atoms and so on.
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Datasets
We will briefly describe the source and nature of the
datasets selected to train and validate BioSMXpress.
Since these datasets will be used to compare between
BioSMXpress and BioSM in terms of prediction accu-
racy, we utilized the same datasets and followed the
same curation steps in [11]. In each dataset, compounds
with any of the following characteristics were elimi-
nated: (1) compounds with elements other than C, H,
N, O, P and S; (2) compounds with less than 4 atoms
and more than 53 atoms (explained below); (3) com-
pounds that were polymers; (4) charged structures
except those in which the charge was due to quaternary
amines or sulfonium ions; (5) compounds with duplicate
structures; and (6) compounds with disjoint structures.
We start by defining compounds used to define biologi-
cal versus non-biological in chemical structure space in
this study.
Biological Dataset (Scaffolds list)
The KEGG database was chosen as the source of endo-
genous mammalian compounds. The list of 1,564 mam-
malian scaffolds (KEGGscafs) defined in [11] were used
to represent the biochemical structure space in BioSMX-
press. Each compound in the scaffolds list comprises of
a number of atoms from 4 to 80 atoms per compound.
Non-Biological Dataset (Synthetic compounds list)
The Chembridge http://www.chembridge.com and
Chemsynthesis http://www.chemsynthesis.com databases
served as the sources of compounds representing the
non-biological chemical space. These databases were
selected because they comprise synthetic compounds for
chemical synthesis and drug screening and design. After
curation, a set of 375,930 structures represented the
synthetic compounds list. Chemsynthesis and Chem-
bridge databases mainly contain compounds with low
molecular weights (a maximum atom count of 53 atoms
per compound). Accordingly, 143 of the 1,564 KEGGs-
cafs (with atom count between 54 and 80) were elimi-
nated from any testing set throughout this study and
were only used for superstructure scaffold matching.
This restriction was enforced to ensure that the sole dis-
crimination between a compound being biological or
non-biological is based on the structure of a compound
and not on the number of atoms in that compound.
Training Dataset
A total of 2,842 compounds, with at least 4 atoms and at
most 53, were used to train and test our predictive
model. Half of those compounds were obtained from the
scaffolds list (representing the endogenous mammalian
chemical space) and the other half from the synthetic
compounds list (representing the non-biological chemical
space). The later molecules were randomly selected from
the synthetic dataset to match the atom count distribu-
tion of the 1,421 biological set.

Independent Datasets
To estimate the performance of our predictive model and
compare it with that of BioSM, four external validation
sets were used: one set of putative human metabolites, one
set of plant secondary metabolites, one set of drugs, and
one set of synthetic compounds. For each dataset, any
compound with a structure identical to any of those in the
scaffolds list was removed. Also, structures found in more
than one dataset were removed from all datasets except
one. Molecules in each dataset had to satisfy both mass
(50 - 700 Da) and atom count (4 - 53 atoms) constraints
to allow for a fair comparison between BioSMXpress and
BioSM. Additionally, compounds with at least one non-
biological substructure (NBS) were eliminated. NBSs are
substructures that are not commonly found in mammalian
biochemical compounds. This decision was based on our
interest in comparing the core predictive models of BioSM
and BioSMXpress since in reality, NBS filters will be
applied to both models before any scaffold comparisons
are involved. For more details on the curation process
followed please refer to [11].
The following is a brief description of the five datasets.

Please note that the numbers of compounds reported
below refer to the datasets after curation. The first dataset
consisted of 2,329 compounds and was obtained from
HMDB version 2.5 representing putative human metabo-
lites. The second dataset consists of 2,416 secondary plant
metabolites, as specified by KEGG, representing plant
structures. The drug dataset was represented by 3,282
compounds and was obtained from DrugBank [13] version
3.0 and from the 1989 USAN and the USP Dictionary of
Drug Names. A randomly chosen set of approximately
46,203 molecules was from the National Center for
Biotechnology Information’s (NCBI) PubChem database
[14]. PubChem is the largest freely accessible compound
database currently available. Finally, a set of 374,509 com-
pounds from the Chembridge and Chemsynthesis data-
bases, not used in training the model, were used as a
synthetic compound test set.

Results and discussion
Classification methods selection
Four classification methods were proposed for BioSMX-
press specifically, the SSF method which refers to finding
a substructure scaffold match or a superstructure scaf-
fold match in the sorted scaffolds list was utilized. SSSF
refers to searching for the best substructure scaffold
similarity score (Scsub), if existent, and the best super-
structure scaffold similarity score (Scsuper), if existent. It
declares the candidate as biological if Scsub + Scsuper ≥
sumThr. From my experience with BioSM, I found that
distributing candidates into mass bins, with each bin
having its own threshold values, showed an improve-
ment in the prediction quality. Thus, we decided to test
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if the same concept applies here. I split the set of test
compounds into five bins based on the number of
atoms per compound and used CV to evaluate the
model. This introduced two more methods, SSB and
SSSB, similar to SSF and SSSF respectively, except that
there are independent thresholds assigned to each bin.
Cross Validation (CV) is a method used for estimating

how accurately a predictive algorithm will perform in
practice while avoiding overfitting as well as tuning
meta-parameters [15]. In this study, we used a nested
CV framework where parameter tuning was performed
by executing 5-fold CV on the training data and the
classification accuracy was empirically assessed using 2-
fold CV on the testing data. For the results of each
training fold, the score where SENS = SPEC was
recorded as the cutoff threshold of that fold. This pro-
cess was repeated 5 times to insure that each of the 5
parts was evaluated. Then the average thresholds of all
five training sets were used as the cutoff values when
evaluating the CV testing data as explained in.
We ran 15 CV experiments to evaluate the performance

of each method. Several accuracy measures were applied

to each experiment such as sensitivity (SENS = TP
TP+FN ) ,

specificity (SPEC = TN
TN+FP ) , and matthews correlation

coefficient (MCC = TP.TN−FP.FN√
(TN+FN).(TN+FP).(TP+FN).(TP+FP)

).

Were TP refers to the number of correctly identified com-
pounds while FP refers to the number of incorrectly iden-
tified molecules. Similarly, TN refers to the number of
correctly rejected compounds and FN refers to the num-
ber of those incorrectly rejected. The mean and standard
deviation of the 15 experiments are displayed in Table 1.
The highest sensitivity of 90% was obtained by the SSF
classifier. At the same time, SSF suffered from the lowest
specificity of 55% only. Another observation is that the
application of sumThr improved the specificity signifi-
cantly, 82% (SSSB) and 71% (SSSF) versus 62% (SSB) and
55% (SSF) but affected the sensitivity negatively (53% and
73%, respectively). SSB had the best MCC of 51% and
hence was selected as the method of choice for BioSMX-
press with a sensitivity of 86% and a specificity of 62%.

Leave-One-Out cross validation analysis
As an additional method to evaluate how well BioSMX-
press can identify endogenous mammalian biochemical
structures using the SSB classifier, we carried out a set
of LOOCV experiments using the SSB method with the
averaged subThr, superThr and bin boundaries deter-
mined by CV as explained in the Methods section.
Here, 1,421 experiments representing KEGG structures
(with atom count between 4 and 53 atoms/compound)
were carried out. Please note that in every experiment,
the scaffolds list was composed of 1,420 compounds
plus 143 compounds (those with atom count between
54 and 80 atoms/compound) as the scaffolds list. As a
result, BioSMXpress annotated 94% of the 1,421 com-
pounds as being biological structures.
Using 1,387 scaffolds in a set of LOOCV experiments

implemented by BioSMXpress and BioSM independently
were implemented and compared. These 1,387 com-
pounds were the scaffolds that satisfied the constraints
of both BioSM and BioSMXpress (mass in the range of
50 - 700 Da and number of atoms in the range of 4 -
53). BioSM was capable of identifying 94.5% of the
1,387 scaffolds as biochemical structures while BioSMX-
press identified 94.2%. Figure 2 shows the breakdown of
the results of this comparison with compounds binned
by atom count.
BioSMXpress performed best when identifying com-

pounds in the first bin (99% positive identification of
biochemical compounds) while BioSM was able to pre-
dict only 92% of those compounds. In general, Figure 2
indicates that BioSMXpress is better at identifying bio-
chemical compounds in the first and second bins (99%
and 97%, respectively), while BioSM is better at identify-
ing biochemical compounds in the fourth and fifth bins
(96% and 94%, respectively).
A note worth mentioning is that in addition to the 1,387

scaffolds annotated, BioSMXpress was able to positively
identify 34 compounds in the scaffolds list that were
rejected by BioSM without classification due to mass
restrictions (masses were greater than 700 Daltons). This
indicates that BioSMXpress has broadened the range of
compounds examined just by restricting the number of
atoms in a candidate compound versus its molecular mass.

Prospective validation
Independent datasets containing plant secondary meta-
bolites, drugs, human metabolites, synthetic molecules,
and PubChem compounds were classified by BioSMX-
press. Subsequently, the same datasets were also anno-
tated by BioSM. Table 2 presents a comparison of
BioSM’s predictions versus those of BioSMXpress. The
results indicate that 91% of the 2,329 HMDB molecules
were correctly classified as endogenous mammalian
metabolites while 88% of them were identified by BioSM.

Table 1 Mean and standard deviation of accuracy
measures obtained for 15 cross validation experiments
using 4 different scoring

SSF SSSF SSB SSSB

SENS Mean 0.90 0.73 0.86 0.58

StdDev 0.02 0.04 0.02 0.03

SPEC Mean 0.55 0.71 0.62 0.82

StdDev 0.04 0.05 0.04 0.03

MCC Mean 0.41 0.45 0.51 0.48

StdDev 0.03 0.02 0.05 0.05
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Predictions for the 2,416 plant metabolites by BioSMX-
press and BioSM were comparable with 72% and 73%,
respectively. As for the 3,282 drug compounds, 58% were
predicted to be biological by BioSMXpress versus 62% by
BioSM. In contrast, only 25% of the randomly selected
46,203 PubChem compounds were predicted as biological
by BioSMXpress as opposed to 35% by BioSM.
In addition to these four prospective datasets, a set of

374,509 synthetic compounds (represented by Chembridge
and Chemsynthesis compounds) were evaluated by
BioSMXpress and BioSM with 36% and 33% of these being
predicted to be biochemical, respectively. Overall, the com-
parison in Table 2 shows that the biochemical prediction
percentages made by BioSM and BioSMXpress are practi-
cally comparable except that BioSMXpress predicted 10%
lesser compounds of the PubChem compounds as biological.

Execution and CPU time comparison
Now that we have shown that the predictive perfor-
mance of BioSMXpress is analogous to BioSM, in this

section we discuss their time performance. We used a
high-end cluster http://becat.uconn.edu/hpc/ hosted by
the School of Engineering and the Taylor L. Booth Engi-
neering Center for Advanced Technology (BECAT) at
the University of Connecticut to run and compare the
performance of both BioSM and BioSMXpress. We ran
both classifiers with a set of randomly generated data-
sets as candidate datasets for prediction. Each dataset
was evaluated by both predictive models under the same
circumstances (same number of cluster nodes, threads,
same scaffolds list, etc.) and the time for each model
was recorded. We were also interested in comparing the
CPU time utilized by both BioSM and BioSMXpress.
CPU time is the amount of time for which a central
processing unit (CPU) was used for processing instruc-
tions of a computer program or operating system, as
opposed to, for example, waiting for input/output opera-
tions. Figure 3 shows the average CPU time utilized by
each of the classifiers when making predictions for each
data set size (50 - 50,000 compounds). Similar to
response time, BioSMXpress has outperformed BioSM
by utilizing an average of 7 times less CPU time. We
generated multiple candidate datasets with 50, 100, 500,
1,000, 5,000, 10,000, and 50,000 compounds. Each data-
set was composed of randomly selected compounds
from a pool of all the independent datasets used in this
study as described in the Methods section. To ensure
that the only factor we are measuring is the number of
compounds in a set no matter what the nature of the
compounds included is, we generated multiple random
datasets (specifically 3) with the same number of com-
pounds for each size required. So we ran 3 groups each
containing 50 randomly selected compounds, 3 groups

Figure 2 Biological predictions resulting from a set of LOOCV experiments by BioSMXpress and BioSM with 1,387 KEGG compounds.
Compounds were binned by atom count.

Table 2 Predictive results using the SSB classifier for
6 different datasets

Dataset Number of
Compounds

BioSM BioSMXpress

HMDB Compounds 2,329 88% 91%

Plant Metabolites 2,416 73% 72%

Drug Compounds 3,282 62% 58%

PubChem
Compounds

46,203 35% 25%

Synthetic
Compounds

374,509 33% 36%
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of 100 compounds and so on, and then reported the
average response time of each group size. Figure 3 dis-
plays the average run time of BioSM versus that of
BioSMXpress when annotating datasets of sizes 50 to
50,000 compounds as explained above.
Obviously, BioSMXpress impressively outperformed

BioSM across all datasets. BioSMXpress was 10 times
faster than BioSM when analyzing 10,000 compounds.
Across all datasets examined, BioSMXpress provided an
8 times average speed up over BioSM. Another interest-
ing observation is that it takes BioSM an average of 6
minutes and 51 seconds to evaluate 1,000 compounds
while it takes BioSMXpress an average of 5 minutes and
8 seconds to evaluate 10,000 compounds (10 times
more compounds in less time).
This drastic difference in run time and CPU time can

be explained by observing the number of scaffold com-
parisons required by each predictive model to make a
prediction about any given candidate compound. BioSM
needs to compare the candidate structure with each and
every structure in the scaffolds list accumulating scores
and then finally comparing that score with a threshold
to make a prediction. BioSMXpress intelligently selects
and sorts the scaffolds that would produce the highest

match scores, based on the thresholds, if they were to
match the candidate. Only a portion of the scaffolds are
added to the list that is actually used by BioSMXpress as
the scaffolds list and once a match is found the candi-
date is predicted to be biological with no other compu-
tational steps further needed.

Conclusions
In this paper, we describe the development and valida-
tion of BioSMXpress, an efficient supervised cheminfor-
matics tool that uses endogenous mammalian
biochemical scaffolds to predict whether a candidate
chemical structure is biochemical or synthetic. BioSMX-
press is at average 8 times faster than BioSM without
compromising the accuracy of the predictions. BioSMX-
press was able to correctly classify 94% of 1,421 bio-
chemical compounds in a set of leave-one-out cross
validation experiment. Thus BioSMXpress may be useful
for searching large chemical databases in metabolomics
applications where the number candidates is extremely
large as well as the number of potential false positives
in an efficient manner.
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