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De novo missense mutations in the NAA10 gene cause
severe non-syndromic developmental delay in males
and females

Bernt Popp1,6, Svein I Støve2,3,6, Sabine Endele1, Line M Myklebust2, Juliane Hoyer1, Heinrich Sticht4,
Silvia Azzarello-Burri5, Anita Rauch5, Thomas Arnesen2,3 and André Reis*,1

Recent studies revealed the power of whole-exome sequencing to identify mutations in sporadic cases with non-syndromic

intellectual disability. We now identified de novo missense variants in NAA10 in two unrelated individuals, a boy and a girl,

with severe global developmental delay but without any major dysmorphism by trio whole-exome sequencing. Both de novo

variants were predicted to be deleterious, and we excluded other variants in this gene. This X-linked gene encodes N-alpha-

acetyltransferase 10, the catalytic subunit of the NatA complex involved in multiple cellular processes. A single hypomorphic

missense variant p.(Ser37Pro) was previously associated with Ogden syndrome in eight affected males from two different

families. This rare disorder is characterized by a highly recognizable phenotype, global developmental delay and results in death

during infancy. In an attempt to explain the discrepant phenotype, we used in vitro N-terminal acetylation assays which

suggested that the severity of the phenotype correlates with the remaining catalytic activity. The variant in the Ogden syndrome

patients exhibited a lower activity than the one seen in the boy with intellectual disability, while the variant in the girl was the

most severe exhibiting only residual activity in the acetylation assays used. We propose that N-terminal acetyltransferase

deficiency is clinically heterogeneous with the overall catalytic activity determining the phenotypic severity.
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INTRODUCTION

Naa10, the N-alpha-acetyltransferase 10, is the catalytic subunit of the
N-alpha-acetyltransferase protein complex NatA. The NAA10 gene lies
in the gene-rich region Xq28 and is composed of 8 exons
(NM_003491.3; Figure 1a). It is highly expressed in the developing
brain of mice embryos1 and shows a lower yet uniform and
ubiquitous expression in adult mice.2 Complete knockout is lethal
in Trypanosoma brucei,3 Caenorhabditis elegans4 and Drosophila
melanogaster.5 The N-terminal two-thirds of the encoded protein
show a globular conformation and contain a dimerization and the
catalytic N-acetyltransferase domains, while the C-terminal third
represents an unstructured flexible tail.6 By dimerization of Naa10
with the auxiliary subunit Naa15, the major N-acetyltransferase
complex in eukaryotes – NatA – is formed.7–10 This complex is not
only responsible for acetylation of nascent polypeptides at the
ribosomes11 but also shows non-ribosomal localization12 and
posttranslational acetylation activity.13 The acetyl-coenzyme-A
dependent N-alpha-acetylation is the most common protein
modification with approximately 80–90% of all proteins in humans
being modified by the NAT enzyme complexes (NatA-F),14 which
differ in substrate specificity and subunit composition.15 For a long
time, NAA10 has been studied as a cancer candidate gene,16–18 and it
has been suggested to have a role in enzymatic and non-enzymatic
regulation of dendrite growth,19 cell cycle control and apoptosis

induction.20 This large number of cellular functions and the lethality
in knockout model organisms is in accordance with the severe
phenotype previously described in Ogden syndrome patients (MIM
300855). Rope et al21 described this new syndrome as a rare lethal
X-linked disorder of infancy. Strikingly, the eight affected boys from
two independent families showed the exact same inherited c.109T4C
p.(Ser37Pro) variant in hemizygous state leading to a highly
recognizable phenotype (see Table 1). The serine codon affected by
this variant lies in exon 2 of the NAA10 gene within the dimerization
domain with Naa15 and is highly conserved in eukaryotes.22,23

Recently, exome sequencing has been successfully applied in large
studies to identify de novo mutations in cases of intellectual
disability.24,25 However, these studies mostly replicated known
disease-associated genes. Due to the heterogeneity of the identified
mutations, the authors could only imply previously not associated
genes as causative based on de novo truncating mutations. As the de
novo criterion, even in combination with a second mutation, is not
sufficient to reach exome-wide significance and thus to establish
pathogenicity, further replication studies in individuals with a similar
phenotype and functional analysis of the new candidate genes are
required.26,27

Using exome sequencing in singleton trios, we identified two
different de novo missense variants in the NAA10 gene in two
unrelated patients, a girl and a boy, with severe but unspecific global
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developmental delay. Functional analyses of the novel as well as the
previously published variants support causality and suggest a
genotype–phenotype correlation.

MATERIALS AND METHODS

Clinical data
This study was approved by the ethics committee of the Medical Faculty,

Universität Erlangen-Nürnberg, and by the Kantonale Ethikkommission

Zurich, and written consent was obtained from parents or guardians of the

patients.

Family A
The first patient (Individual II-3 of family A) was a girl aged 2 years and 11

months at the last investigation. She was born with normal birth weight and

length, after an uneventful pregnancy as the third child of healthy non-

consanguineous parents of German descent. As an infant, she had feeding

problems and recurrent infections. She developed postnatal short stature with

microcephaly. At the last physical examination, she had a height of 81 cm

(�4.38 SD), a head circumference of 45.7 cm (�3.04 SD) and a weight of

10.3 kg. Her developmental course showed severe intellectual disability without

regression. She could sit at age 2 years but does not walk or speak, so far. The

girl has only minor unspecific dysmorphic features, the most obvious being

long curved eyelashes, thin arched eyebrows, a broad nasal bridge and a thin

arched upper lip. She showed distinct skeletal anomalies like delayed closure of

the fontanels (age 2 years 1 month), a delayed bone age (1 year 6 months at age

2 years 9 months) and also broad great toes and a mild pectus carinatum. The

girl was a floppy infant with initial hypotonia progressing to hypertonia of the

extremities and truncal hypotonia later in life. Sonography of the brain showed

borderline normal ventricles at 8 months of age. An MRI could not be

performed due to respiratory arrest under propofol sedation. The patient

shows stereotypic behaviours, such as self-hugging and repetitive hand

movements. She also shows only little eye contact. As an infant, the girl had

a systolic murmur, which led to identification of a pulmonary artery stenosis

and an atrial septal defect. At 4 years and 8 months of age, her mother reported

that a prolonged QT interval was identified by electrocardiography. No

molecular testing has been performed, and there is no familial history for

long QT-syndrome.

Standard karyotyping and genetic testing for Prader Willi, Angelman and

Noonan syndromes, as well as sequencing of MECP2, TCF4 and CDKL5 were

unremarkable as was a high-resolution chromosomal microarray analysis

(CMA). The X-inactivation pattern was random.

Family B
The second patient (Individual II-1 of family B) was a boy aged 10 years 7

months, who was 5 years 11 months at the last physical examination. He was

born with normal birth weight and length as the first child of healthy non-

consanguineous parents of Swiss descent. Like the girl, this boy also developed

postnatal growth retardation but to a lesser extent. At the time of investigation,

he was 108 cm tall (�1.83 SD), had a head circumference of 50 cm

Figure 1 (a) Genomic position and domain structure of the NAA10 gene with positions of the herein described de novo variants (Exon 5/6) and the

previously reported Ogden syndrome variant (Exon 2). Exons are numbered after NM_003491.3. The domain structure is based on the NCBI reference

sequence NP_003482 and the recently described crystal structure of the NatA complex.23 (b, c) Pedigrees of the two singleton families and results of

Sanger validation. (d) Amino-acid sequence alignment of Naa10 orthologs at the de novo variant positions shows high sequence conservation. (e) Amino-

acid sequence alignment of Naa10 and known human NATs shows conservation of the N-acetyltransferase domain part containing the de novo variants.

Protein sequences were obtained from the UCSC Genome Browser,34 and T-Coffee55 was used for alignment.
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(�1.68 SD) and a weight of 18 kg. He reached a social smile at age 6 months,

could sit at age 18 months, started to walk independently at the age of about 6

years but did not develop speech or bowel or bladder control. Auto-aggressive

behaviour with hand biting was a transient problem. He was able to drive a

tree wheeler, was shy and hyperactive and needed constant supervision. Formal

testing at the age of about 8 years showed severe intellectual disability with a

developmental age of about 12 months and autistic features. He had minor

unspecific dysmorphic facial features, such as a prominent forehead, deep-set

eyes with long eyelashes, down slanting palpebral fissures and rather big ears.

Also he had a high arched palate, wide interdental spaces and very small hands

and feet. He had truncal hypotonia with hypertonia of the extremities.

Brain imaging through sonography showed enlarged ventricles and MRI

scanning at the age of 5 years and 6 months revealed reduced periventricular

volume and gliotic changes. Electroencephalography under photic stimulation

showed generalized epileptiform activity.

Previous genetic testing for Angelman and Fragile X syndromes were

unremarkable as was a high-resolution CMA. The healthy mother had a

normal non-skewed X-inactivation.

Exome sequencing
For family A, enrichment for whole-exome sequencing was performed on

DNA from individual II-3 and her parents using the SureSelect Human All

Exon Kit V3 (50 Mb, B21000 genes) (Agilent Technologies, Santa Clara, CA,

USA). Post-hybridization barcodes were used to allow multiplexing (Agilent

Technologies). The Beckman Coulter SPRIworks (Beckman Coulter, Danvers,

MA, USA) platform was used for the automated library preparation.

Sequencing was carried out with 50 bp single reads on a SOLiD 4 system

(Life Technologies, Carlsbad, CA, USA). On average, we obtained 4125

million reads per individual. Read alignment to the hg19 reference genome was

performed with the novoalignCS software V1.03.03 (NovoCraft Technologies,

Petaling Jaya, Malaysia) and yielded approximately 80 million aligned reads on

target per individual. The mean target coverage was 48, while 71 % of the

target sequence was covered at least five times. Variant calling was performed

using GATK UnifiedGenotyper v2.7 after removing duplicate reads, local

realignment of indels and base-quality-score recalibration.28,29 For the index

patient, a total of 47385 SNVs and 4612 Indels were annotated using

ANNOVAR.30 After applying filtering and manual inspection using the IGV

browser31 only 1 potential de novo variant remained and was validated by

Sanger sequencing (see Supplementary Table S2) in the patient and her

parents. Paternity was confirmed using identity by state calculation with

PLINK.32

The second patient was identified in an exome sequencing study of 51

patients with non-specific severe ID using an Illumina HiSeq2000 platform

and has been briefly reported by Rauch et al24 Details on exome sequencing are

described there.

The identified de novo variants were submitted to ClinVar (accessions

SCV000154970 and SCV000154971) and to the LOVD gene variant database at

http://www.lovd.nl/NAA10 (individual IDs 16948 and 16949).

Sanger sequencing
Genomic DNA was isolated from blood lymphocytes according to standard

procedures. De novo variants were confirmed by PCR and bidirectional

sequencing using the subjects’ original DNA samples. The DNA samples were

then screened for other NAA10 variants by bidirectional sequencing of all

Table 1 Features of all individuals with NAA10 mutations

Rope et al21(n¼8)

Esmailpour et al 46/Forrester

et al47 (n¼4) Family B Individual II-1 Family A Individual II-3

Variant (NM_003491.3) c.109T4C p.(Ser37Pro) c.471þ2T4A (p.Glu157fs45*; p.0?) c.346C4T p.(Arg116Trp) c.319G4T

p.(Val107Phe)

Inheritance Inherited Inherited De novo De novo

Gender Male (8/8) Male (4/4) Male Female

Age at last follow-up

examination (*age of

death)

5–16 months* 14–28 years 5 years 11 months 2 years 11 months

Postnatal growth failure 8/8 4/4 Yes Yes

Developmental delay Severe (8/8) Severe (3/4), mild (1/4) Severe Severe

Facial Large ears (6/8), down slanting palpebral

fissures (4/8), prominent eyes (4/8), flared

nares (3/8), hypertelorism (3/8), long

philtrum (3/8)

Large abnormally formed ears (4/4),

abnormally developed eyes (4/4),

prominent philtrum (3/4)

Prominent forehead, deep set

eyes, long eyelashes, down

slanting palpebral fissures, large

ears, diasthema

Long curved eyelashes,

thin arched eyebrows,

broad nasal bridge, thin

arched upper lip

Skeletal Large fontanels (5/8), broad or widely

spaced toes (2/8), delayed osseous

development (1/8)

High arched palate (4/4), clinodactyly

(4/4), syndactyly (4/4), scoliosis (3/4),

pectus excavatum (3/4), pes planus

(2/4), abnormal teeth (2/4)

Small hands/feet, high arched

palate, wide interdental spaces

Delayed closure of the

fontanels, delayed bone

age, broad great toes,

mild pectus carinatum

Cardiac Structural anomalies (6/8), arrhythmias (5/8) Right ventricular hypertrophy (1/4) — Pulmonary artery

stenosis, atrial septal

defect, prolonged QT

interval

Genital Cryptorchidism (5/8), inguinal hernia (3/8) — Hypoplastic scrotum —

Neurological Truncal hypotonia (4/8), generalized

hypertonia (1/8)

Hypotonia (4/4), seizures (2/4) Truncal hypotonia, hypertonia of

extremities, generalized

epileptiform activity

Truncal hypotonia,

hypertonia of extremities

Brain imaging Cerebral atrophy or immature corpus callosum

(3/8), enlarged ventricles (2/8)

Bilateral anophthalmia (3/4), micro-

phthalmia (1/4)

Enlarged ventricles, reduced

periventricular volume, gliotic

changes

Borderline normal

ventricles

Behavioural anomalies Fussy and irritable (1/8) Auto-aggressive behaviour (3/4),

autistic features (2/4), mood-swings

(1/4), hyperactivity (1/4)

Hyperactivity, auto-aggressive

behaviour, hand biting, autistic

features

Self-hugging, repetitive

hand movements
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NAA10 exons (1–8; numbered after NM_003491.3), including flanking

intronic regions. PCR amplification and Sanger sequencing were performed

as previously described.33 Primer sequences (see Supplementary Table S3) were

determined using the Exon Primer program from the UCSC genome

browser,34 and primers were supplied by Thermo Fisher Scientific (Ulm,

Germany).

In silico analysis and 3D homology modeling
Prediction of potential deleterious effects of missense variants detected in

NAA10 was performed using the software tools SIFT,35 PolyPhen2,36 SNAP37

and PANTHER38 (see Supplementary Table S1).

Both novel variants in Naa10 are located in the acetyltransferase domain,

which was modeled using the structure of the homologous ARD1 domain

from Sulfolobus as template (PDB code: 2X7B).39 Modeling of the wild-type

(WT) proteins was performed using SwissModel.40 Variants were introduced

in the structure by selecting the lowest-energy sidechain rotamer of the

mutated residue. Energy minimization was performed using Sybyl7.3 (Tripos

International, St Louis, MO, USA), and RasMol41 was used for structure

analysis and visualization.

The WT and mutant proteins are shown in Figure 3, and the interpretation

of their effect is given in the legend of the figure.

Functional analysis of the Naa10 variants
In order to examine the effects of the two variants on the catalytic activity of

hNaa10, quantitative Nt-acetylation assays were performed. We analysed the

catalytic activity of the two variants p.(Val107Phe) and p.(Arg116Trp) and

compared the activity with Naa10 WT and the previously described p.(Ser37-

Pro) variant causing Ogden syndrome (Figure 4). The substrate peptides tested

included a classical co-translational NatA substrate high-mobility group

protein A1 with the N-terminus SESS,14 and two posttranslational Naa10

targets, EEEI and DDDI, representing the N-termini of g-actin and b-actin,

respectively.12

Plasmid construction and protein purification
Plasmids encoding MBP-Naa10 p.(Arg116Trp) and MBP-Naa10 p.(Val107Phe)

were created by site-directed mutagenesis (QuikChange Multi Site-Directed

Mutagenesis kit, Agilent Technologies) according to the manufacturer’s

protocol. A pETM41 vector (G. Stier, EMBL, Heidelberg, Germany) encoding

Naa10 WT with Maltose Binding Protein/His-fusion as a fusion tag was used

as a template for the site-directed mutagenesis.12 Primers used for the

mutagenesis were hNAA10 G319T f: 50-CTTCAATGCCAAATATTTCTCCC

TGCATGTCAGG-30 and hNAA10 C346T f: 50-GTCAGGAAGAGTAACT

GGGCCGCCCTG-30. Mutations were verified by Sanger sequencing and

transformed into E. coli BL21 Star (DE3) by heat-shock transformation for

protein expression. E. coli BL21 cells were grown in 200 ml cell cultures to an

OD 600 nm, cultures were cooled down to 16 1C and protein expression was

started by the addition of IPTG to a total concentration of 500mM. After 14 h

of incubation, cell cultures were harvested, and the pellet was stored on

�20 1C. Pellets were dissolved in lysis buffer (50 mM Tris-HCl (pH 7,4),

300 mM NaCl, 2 mM DTT, 50 mM L-arginine, 50 mM L-glutamic acid and one

tablet of EDTA-free protease inhibitor pr 50 ml), and cells were lysed by 6�
60 s of short-pulse sonication on ice. Recombinant MBP-hNaa10 was purified

by Immobilized Affinity Chromatography (HisTrap HP, GE Healthcare,

Buckinghamshire, UK) and Size Exlusion Chromatography (Superdex 200

10/300, GE Healthcare). Buffers used for purification were: IMAC wash buffer

(50 mM Tris-HCl (pH 7.4), 300 mM NaCl, 2 mM DTT, 50 mM L-arginine, 50 mM

L-glutamic acid, 20 mM imidazole), IMAC elution buffer (50 mM Tris-HCl

(pH 7.4), 300 mM NaCl, 2 mM DTT, 50 mM L-arginine, 50 mM L-glutamic

acid, 300 mM imidazole) and Size Exclusion Chromatography buffer (50 mM

Tris-HCl (pH 7.4), 300 mM NaCl, 2 mM DTT, 50 mM L-arginine, 50 mM

L-glutamic acid). Fractions were analysed by SDS-PAGE, and protein

concentration was determined by both A280 measurements (Nanodrop1000,

Thermo Fisher Scientific, Wilmington, DE, USA) and Bradford assay (Bio-Rad

Laboratories, Hercules, CA, USA).

Quantitative in vitro acetylation assay
Purified recombinant MBP-hNaa10 was mixed with acetyl-CoA (600 mM),

synthetic oligopeptides (300 mM) and acetylation buffer (50 mM Tris-HCl

(pH 8.5), 1 mM EDTA, 10% glycerol), incubated at 37 1C and stopped after

10, 20 and 30 min by adding 10% trifluoroacetic acid (TFA). Product

formation was quantified with RP-HPLC as described previously.42

In the quantitative acetylation assay, the following oligopeptides (Biogenes,

Berlin, Germany) were used: EEEI ([H]EEEIAAL RWGRPVGRRRRPVRVYP

[OH]) representing g-actin, DDDI ([H]DDDIAAL RWGRPVGRRRRPVRVYP

[OH]) representing b-actin and SESS ([H]SESSSKS RWGRPVGRRRRP

VRVYP[OH]), representing high-mobility group protein A1.

RESULTS

Previously, we described a probable disease-causing hemizygous
de novo missense variant c.346C4T p.(Arg116Trp) in NAA10 in a
boy (individual II-1 from family B) with severe developmental delay.24

Using exome sequencing, we now identified a further heterozygous
de novo variant c.319G4T p.(Val107Phe) in a girl (individual II-3
from family A) presenting with severe global developmental delay
(Figures 1a–c). Both individuals described here show severe global
developmental delay, growth retardation and some overlapping
features as summarized in Table 1 (see also Figure 2).

Both variants were neither listed in dbSNP (build 137)43 nor in
NHLBI Exome Sequencing Project (ESP; EVS-v.0.0.22, Oct. 17,
2013)44 database or the 1000 Genomes Project (release April
2012)45 and absent from in-house controls (c.319G4T: 434 SOLiD
exomes; c.346C4T: 939 Illumina exomes). The de novo status was
confirmed by Sanger sequencing in both cases. Additional Sanger
sequencing of all coding exons showed no second variant in the girl.

Individual II-1 of family B also had two other de novo missense
variants, namely in the KRT27 gene c.877G4C p.(Asp293His) and in
the MYO1E gene c.1468G4A p.(Gly490Arg).24 These two variants
were excluded as causative for the phenotype seen in this boy (see
Supplementary Table S4 and discussion there).

The two identified de novo missense variants in the catalytic
N-acetyltransferase domain of Naa10 affect highly conserved amino-acid
residues both in orthologous and paralogous genes (Figure 1a, d and e).
As in silico predictions using different algorithms classified both
variants between benign and deleterious (Supplementary Table S1),
we further studied them using 3D homology modelling. These
protein structure-based predictions revealed that the Trp116
mutation most probably hampers CoA binding and reduces the
enzymatic activity of Naa10, while the bulky mutant Phe107 side
chain does not fit in the hydrophobic core of the protein and
therefore might reduce protein stability or enzymatic activity of the
protein (Figure 3).

We next performed in vitro analysis of the mutant proteins through
N-terminal acetylation assays with WT, both mutant proteins and the
previously described missense variant to elucidate reduced catalytic
activity as pathogenic mechanism. Of all the three known, presumably
pathogenic missense variants, p.(Val107Phe) has the strongest reduc-
tion in activity and is almost catalytically dead (B95% reduction in
the catalytic activity) towards all three tested oligopeptides in
comparison with Naa10 WT (Figure 4). The Naa10 p.(Arg116Trp)
variant seen in the boy (Individual II-1 of family B) in contrast has a
small but significant reduction in the catalytic activity for the
oligopeptides EEEI and SESS (B15% reduction in the catalytic
activity) in comparison to Naa10 WT. This small effect greatly differs
from the effects seen for the p.(Ser37Pro) variant, which has a
reduction of catalytic activity ranging from 30 to 70% dependent of
the substrate oligopeptide.
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DISCUSSION

We report two novel de novo missense variants in the NAA10 gene,
c.319G4T p.(Val107Phe) and c.346C4T p.(Arg116Trp) in two
patients with severe global developmental. We show that both variants
significantly reduce the catalytic activity of the NAA10 gene product,
an enzyme involved in N-terminal acetylation of proteins.

The two individuals described here, carrying de novo missense
variants in the N-acetyltransferase domain, show a milder non-lethal
phenotype without striking dysmorphic features, more similar to one
another than to the cases described previously.21,46 Although the most
noticeable overlap in all patients with probably pathogenic variants in
NAA10 is severe global developmental delay with postnatal growth
failure and skeletal anomalies, individual II-3 of family A and
individual II-1 of family B moreover share behavioural anomalies,
truncal hypotonia with hypertonia of the extremities and some minor
facial features (Table 1).

While this manuscript was in preparation, Esmailpour et al46

reported the identification of a splice-donor variant (c.471þ 2T4A)
in the NAA10 gene in a family47 with Lenz microphthalmia
syndrome. This variant resulted in no detectable normal NAA10
gene products but in different aberrant transcripts and low expression
of a truncated protein.46 The four affected males described had
congenital bilateral anophthalmia, postnatal growth failure, skeletal
anomalies, hypotonia and moderate-to-severe mental retardation with
a high degree of intra-familial variation.47 The authors also describe
three heterozygous carrier females having mild symptoms with
abnormally shaped ears, syndactyly of the toes, short terminal
phalanges and short stature.47

All the affected boys in the two families reported by Rope et al.21

showed severe postnatal growth delay, severe developmental delay and
some dysmorphic features. Also there were skeletal anomalies,
structural anomalies of the heart and arrhythmias in
electrocardiography. Death in all boys occurred between 5 and 16
months of age and was associated with cardiogenic shock or severe
infection. Where performed, autopsy showed cerebral atrophy.21

Though Rope et al21 conducted in vitro acetylation assays and
could show a 40–80% reduction in enzymatic activity for the mutant

protein expressed in their patients, the underlying disease mechanism
was not elucidated.21 To compare the remaining catalytic activity and
thereby the severity of our two de novo variants, we performed
N-terminal acetylation assays using all three missense variants
described above. Despite only a small number of likely pathogenic
distinct variants and uncertainty whether the in vitro results reflect the
in vivo situation, our data implies a correlation between remaining
catalytic activity of the particular NAA10 variant and the severity of
the phenotype observed in each patient.

First, the high remaining activity of the p.(Arg116Trp) variant helps
explain the relatively mild phenotype seen in the male patient when
compared with the previously known males with Ogden syndrome
(Figure 4). In males, no deletions spanning the NAA10 gene are
known, although deletions upstream (MECP2) and downstream
(L1CAM) of the gene are documented and cause distinct syndromes
(MIM 300673 and MIM 303350) in males.48,49 Thus, in accordance
with the observed lethality of homozygous knockout in model
organisms a complete loss-of-function of NAA10 seems to be lethal
in hemizygous males. Altogether, as only hypomorphic mutations are
present in males, it seems that more severe mutations, such as the
p.(Val107Phe) variant, in hemizygous state might lead to an early
intrauterine fetal death, which escapes analytical capabilities. This is
further strengthened by the carrier mothers described by Esmailpour
et al.46 having multiple spontaneous abortions.

The almost abolished catalytic activity for the p.(Val107Phe)
variant seen in the girl could also account for her phenotype through
a dominant-negative effect. This assumption is based on heterozygous
female carriers previously being described as healthy and also large
deletions encompassing the NAA10 gene being documented in the
DECIPHER50 database in females with intellectual disability as
phenotype when reported. The absence of deletions spanning the
NAA10 gene in controls according to the Database of Genomic
Variants51 can either point to the assumption that heterozygous loss-
of-function in females is pathogenic or more likely that this relatively
gene-dense region shows a low activity for genomic rearrangements.
Consequently, as we excluded recessive inheritance to a great extent in
the girl, an X-linked dominant mode of inheritance seems causative,

Figure 2 (a) Individual II-3 of family A at age 2 years and 11 months. (b) Individual II-1 of family B at age 5 years and 11 months; only minor

dysmorphisms and no syndromic features were observed.
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either through a dominant-negative effect of the altered Naa10
protein in the NatA complex or a mixture of loss-of-function and
dominant-negative effects. Although we excluded skewing of
X-inactivation in blood, the phenotypic gap between the girl
described here and the mothers of the Ogden families could also be
explained by skewed X-inactivation in the nervous system. Indeed
Esmailpour et al46 discussed the possibility of X-chromosome skewing
for the mild manifestations in the heterozygous females carrying the
c.471þ 2T4A splice-mutation. Also the variable expression and
severity of clinical symptoms could be explained by yet unknown
genetic modifiers (eg, variants in other NAT complex genes) or simply
because missense mutations can have very diverse effects on the
protein function.52 An example of another X-linked dominant disease
showing a high phenotypic variability in female carriers is the
Coffin-Lowry syndrome (MIM 303600); depending on the severity
of the mutation in the RSK2 gene, females either have only
minor manifestations or develop the full phenotype with facial
dysmorphism, tapering fingers and skeletal deformities.53,54

Although the inherited p.(Ser37Pro) variant lies close to the
N-terminus in the dimerization domain and the c.471þ 2T4A
variant leads to the truncation of the unstructured C-terminus, both
de novo NAA10 variants lie in close proximity in the catalytic
N-acetyltransferase domain. Taking into account the diverse cellular
functions of the NatA complex, it is likely that these four variants
show a different alteration in the NatA complex function. As a result,
the affected boys in the two families described by Rope et al21

carrying the exact same missense mutation show a strikingly similar
phenotype and the affected males in the family described by
Esmailpour et al46 also show a comparable phenotype while the
two patients described here have a more diverse phenotype.

For the first described pathogenic variant in NAA10, p.(Ser37Pro),
Rope et al21 could show a hampered NatA activity towards synthetic
peptides. For the newly described splice variant, the authors did not
analyse the catalytic activity of the truncated protein but discussed
that the absent expression of WT Naa10 and only minimal expression
of mutant Naa10 would lead to reduced activity of the NatA complex

Figure 3 Structural effects of the p.(Val107Phe) and p.(Arg116Trp) variants in the acetyltransferase domain of Naa10 (cyan ribbon). The cofactor coenzyme

A (CoA) is shown in space-filled presentation and coloured according to the atom type. The variant site is shown in green and key interacting residues in

magenta. (a) Val107 is located in the hydrophobic core of the enzyme and tightly interacts with other hydrophobic residues, such as Met98. (b) Phe107

cannot be accommodated in the hydrophobic core due to its larger side chain and forms steric clashes with adjacent residues (denoted by a red arrow).

These clashes are expected to cause protein unfolding and loss of enzymatic activity. (c) Arg116 is located close to the cofactor coenzyme A (CoA).

(d) Trp116 preferentially adopts a side chain orientation that interferes with CoA binding. The steric clashes between Trp116 and CoA are indicated by a

red arrow. These clashes are expected to hamper CoA binding and to reduce the enzymatic activity.
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in the patients’ cells.46 Our results imply that reduced catalytic activity
of the NatA complex is pathogenic. Still, as this complex acetylates
about 38% of all human proteins,15 the downstream targets and
molecular mechanisms in vivo remain unclear and other functions of
Naa10 could influence the phenotype. Actually, Esmailpour et al.46

could show a loss of TSC2 interaction46 for the truncated Naa10
protein, and a recent study by Van Damme et al22 could prove a
reduced NatA complex formation in vivo for the p.(Ser37Pro) variant.
Further functional studies may provide more insight into the
underlying pathogenic mechanism.

In conclusion, we have identified two de novo variants in NAA10 in
two unrelated individuals Also we describe the first affected female,
with severe global developmental delay and a de novo variant in
NAA10. Identification of more individuals carrying new variants in
NAA10 is needed to fully characterize the full phenotypic spectrum
associated with N-terminal-acetyltransferase deficiency.

Finally, our study adds to the growing evidence that current
syndrome descriptions are incomplete and strongly biased by
phenotypic grouping in small-scale study. Thus unbiased large-scale
sequencing approaches are needed to fully understand the complex
relation between genotype and phenotype in human developmental
diseases.24,25
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