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Abstract

The Merkel cell polyomavirus (MCPyV), discovered in 2008, drives development of most Merkel 

cell carcinomas (MCCs) through several canonical mechanisms. A glaring gap in our knowledge 

remains the basis by which MCPyV, among all 12 human polyomaviruses, is the only one that 

causes cancer in humans. Moreover, initial attempts by numerous groups have failed to reproduce 

MCC in mice using oncoproteins from this polyomavirus. Verhaegen at al. report MCPyV small T 

antigen-expressing transgenic mice that now provide insight into in vivo transformation 

mechanisms.

Merkel cell carcinoma is a rare and aggressive human neuroendocrine skin cancer with a 

disease-associated mortality of approximately 50% (Lemos et al., 2010). Although reported 

incidences are increasing rapidly, it remains an orphan disease, with approximately 1600 

new cases per year in the United States. Accordingly, until recently, little was known about 

its pathogenesis and few clinical trials were available. MCC is associated with clonal 

integration of the Merkel cell polyomavirus in about 80% of cases (Feng et al., 2008), while 

a subset of cases appear to be truly independent of this virus. MCC typically arises on the 

UV-exposed skin of Caucasian individuals, and it often has a clinically benign appearance 

that may resemble a painless nodular cyst. Figure 1 shows representative clinical and 

microscopic features of a Merkel cell carcinoma.

Development of MCC involves several molecular steps, including upregulation of cell cycle 

progression proteins such as cyclin-E, inactivation of tumor suppressor proteins such as 

retinoblastoma (Rb) (Sihto et al., 2011) as well as immune evasion (Afanasiev et al., 2013a; 

Paulson et al., 2014). Great insight into the biology of this cancer has been obtained through 

characterization of human tumor material, including MCC tumor cell lines. However, 
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despite extensive effort, no animal model has been developed to determine how individual 

MCPyV oncoproteins interact with host cell pathways in vivo.

In this issue of the Journal of Investigative Dermatology, Verhaegen at al., demonstrate that 

expression of MCPyV small T-antigen (sT-Ag) results in dysregulation in epidermal 

differentiation in embryonic mice and in squamous cell carcinoma in situ when inducibly 

expressed in adult mice (Verhaegen et al., 2014). Furthermore, the authors demonstrate that 

the “LSD” (Large T-antigen Stabilization Domain) of the sT-Ag is necessary for 

transformation by this oncoprotein via the ubiquitin E3 ligase pathway.

Oncoproteins from the Merkel virus: what do we know?

A watershed finding regarding the etiology of MCC was the discovery in 2008 of the Merkel 

cell polyomavirus by the Chang-Moore group (Feng et al., 2008). They demonstrated that in 

most MCCs the viral DNA was clonally integrated into the host cell DNA, indicating that 

each tumor arose from a single cell and that the virus likely played an important etiologic 

role.

We now know that exposure to MCPyV is nearly ubiquitous, with antibodies specific to the 

capsid proteins of this virus often arising early in childhood (Chen et al., 2010). In contrast, 

development of MCC is rare and typically delayed by six to seven decades following initial 

virus exposure. Indeed, the presence of MCPyV does not lead directly to any apparent 

human disease, and this virus is often present on normal skin. Our current understanding of 

how this virus leads to MCC involves a “perfect storm” of events that is typically catalyzed 

by UV radiation exposure, and it includes integration of viral DNA, expression of small T 

antigen (sT-Ag), truncation/expression of large T-antigen (tLT-Ag), and evasion of a 

destructive immune response. When the above criteria are met and MCC develops, it is 

several times more likely to be fatal than any of the other more common skin cancers, 

including melanoma.

While MCPyV is ubiquitous and detection of its DNA by PCR can thus be difficult to 

interpret, immunohistochemistry data demonstrate persistent expression of MCPyV 

oncoproteins in MCC tumors, and the nature of viral DNA integration indicates that this 

virus is not merely a bystander. Consistent with the observation that sT-Ag and tLT-Ag are 

expressed persistently in human MCC tumor material, they appear to have separate and 

specific roles that are necessary for the ongoing growth of MCCs in vitro. Specifically, 

knocking down the sT-Ag and tLT-Ag oncoproteins results in growth arrest of MCPyV-

driven MCC cells, indicating that ongoing expression of these oncoproteins is required 

(Houben et al., 2010). However, there has been debate in the field. For instance, the 

importance of sT-Ag in MCPyV mediated transformation has been controversial, as one 

research group reported that knockdown of sT-Ag leads to growth arrest of MCC cells 

(Shuda et al., 2014; Shuda et al., 2011) while another group found that sT-Ag is dispensable 

for growth (Angermeyer et al., 2013). Additionally, MCPyV sT-Ag has the ability to 

transform cells independent of LT-Ag, which is not the case for the SV40 polyomavirus 

(Shuda et al., 2011).
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In vitro experiments to understand the molecular mechanisms of carcinogenesis have 

elucidated several transforming pathways (shared among polyomaviruses), but it remains 

unclear why MCPyV is the only polyomavirus known to cause cancer in humans. A 

fascinating and critical finding is that the LT-Ag is invariably truncated in MCC but that the 

precise location and nature of the truncation varies from tumor to tumor (Shuda et al., 2008). 

Importantly however, the truncation event in LT-Ag is always downstream of the Rb 

domain (Fig. 2; this retains Rb inactivating activity and promotes cell cycle progression), 

and upstream of the helicase domain (which renders the viral origin irrelevant, thus 

eliminating virion production which would otherwise be fatal for the cell (Shuda et al., 

2008)).

Perturbing regulatory proteins and circumventing cell cycle progression checkpoints are 

necessary to drive tumorgenesis, and these are commonly mediated by viral or cellular 

oncoproteins. A striking example in MCC is Rb inactivation, which is clearly essential for 

MCC development (Sihto et al., 2011), and this is achieved through different mechanisms in 

MCCs that are MCPyV-positive (via T-antigen binding) compared with those that are 

MCPyV–negative (via mutation of Rb). A simplified version of the relevant cell 

transformation pathways that are affected by MCPyV oncoproteins is shown in Figure 2.

MCPyV has two regions that are not present in other polyomaviruses, MCPyV Unique 

Region 1 and 2 (MUR1 & MUR2). MUR2 is not expressed in MCC due to truncation of the 

LT-Ag, but MUR1 is retained in truncated LT-Ag and thus could mediate some of the 

unique biological properties of this virus. MUR1 contains a domain capable of binding 

hVam6p, a protein involved in lysosomal trafficking. When hVam6p is sequestered in 

HIV-1 infected cells, lysosomal protein degradation is reduced and viral progeny production 

is increased (Molle et al., 2009). Although inhibition of hVam6p can thus be important in 

the lifecycle of a virus, it is uncertain whether this protein plays a role in MCC (Houben et 

al., 2014).

To date, there have been no reports of transgenic mouse models in which MCPyV 

oncoproteins drive carcinogenesis successfully. In contrast, many other polyomaviruses 

readily cause cancer in rodents, helping to explain why this family of viruses was named 

“poly-oma” (many tumors).

At last, an MCPyV oncoprotein mouse model

For decades, the polyomavirus T-Ags (specifically those from SV40) have been powerful 

tools in deciphering the molecular mechanisms of tumorgenesis and mammalian cell 

biology. Indeed, the use of SV40 T-Ag to transform cells led to fundamental discoveries 

such as the roles of the Rb and p53 tumor suppressors (Pipas, 2009). However, the inability 

to generate a MCPyV-driven animal model is surprising and has hindered progress in the 

field.

Verhaegen et al., have now characterized transgenic mice that constitutively express wild 

type sT-Ag under the control of an epidermis-specific promoter (keratin-5). These mice 

expressed sT-Ag within the stratified squamous epithelia and developed striking epithelial 

dysplasia. The authors used amino acid substitution to disrupt several sT-Ag domains in 
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order to probe their relative contributions. When the “LSD” (Large T-antigen Stabilization 

Domain) of sT-Ag was mutagenized, transgenic mice no longer developed epithelial 

dysplasia. The authors showed that this phenotype was likely due to dysregulation of protein 

degradation. Specifically, the LSD binds Fbxw7, an E3 ubiquitin ligase that forms a 

complex responsible for tagging proteins destined for the proteasome. Upon binding Fbxw7, 

sT-Ag inactivates this ubiquitin ligase by sequestering it in the cell nucleus, leading to 

accumulation of oncogenic proteins such as cyclin-E, c-Jun, mTOR, and truncated LT-Ag 

(Verhaegen et al., 2014). These in vivo findings agree with earlier studies that demonstrated 

LSD function to promote cellular transformation and to support survival of MCC cell lines 

(Kwun et al., 2013).

Verhaegen et al., note that they “analyzed pre-term transgenic embryos to circumvent a 

potentially severe phenotype incompatible with postnatal survival”, indicating that 

constitutive expression of the sT-Ag was lethal. The toxicity of this transgene underscores 

the difficulty of studying MCPyV sT-Ag-driven transformation. Accordingly, the authors 

characterized the inducible expression of sT-Ag in adult mice, and they found that this leads 

to a phenotype that strongly resembles squamous cell carcinoma (SCC) in situ. Indeed, 

“collision tumors” between MCC and squamous cell carcinoma (SCC) in situ (Bowen’s 

Disease) have been reported several times in the literature, suggesting that they may arise 

from a common neoplastic precursor lesion. Histological examination of such collision 

tumors often reveals pleomorphic keratinocytes, characteristic of SCC in situ, admixed with 

cells with an MCC phenotype (hyperchromatic nuclei and peri-nuclear CK20 staining) 

(Sirikanjanapong et al., 2010). These lesions frequently occur on sun-exposed skin 

implicating UV damage as the underlying etiology of disease, and interestingly, are almost 

invariably negative for MCPyV. The fact that the inducible MCPyV sT-Ag mouse model of 

Verhaegen et al. develops SCC-like lesions also suggests there are shared pathways between 

virus-and UV-driven carcinogenesis.

While this inducible mouse model does not fully recapitulate MCC, it demonstrates that the 

LSD domain is necessary for sT-Ag-driven transformation of cells in vivo and provides a 

valuable tool to the field for exploring biology and possible therapeutic approaches.

How might recent pathogenic insights help patients?

Small molecule inhibitors that selectively target viral proteins or their cellular targets could 

provide opportunities to disrupt virus-driven carcinogenesis and to “translate” these 

mechanistic findingsdirectly toward clinical benefit. The Chang-Moore group identified a 

potent inhibitor of MCC, YM155 (Arora et al., 2012). YM155 inhibits translation of 

survivin, an oncoprotein that is up-regulated in MCC regardless of MCPyV status, in 

addition to many other cancers. In a xenograft mouse model, YM155 strikingly slowed the 

growth of MCC tumors and induced non-apoptotic cell death in MCC cell lines. 

Accordingly, YM155 has been tested in several phase I/II clinical trials for treatment of 

various cancers but a clinical trial of YM155 in MCC has not yet come to fruition. The 

inducible sT-Ag mouse model developed by Verhaegen et al., could be a useful model to 

perform small-molecule discovery and toxicity studies to expand opportunities for 

therapeutic targets in MCC.
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A characteristic of virus-driven cancers is the expression of non-self, viral proteins that 

should be readily detectable by the immune system. Numerous lines of evidence 

demonstrate that immune function is important for recognizing and eliminating MCC. 

Specifically, solid organ transplant recipients, HIV/AIDS patients, and those with 

hematologic malignancies, are at higher risk for developing MCC, and they have poorer 

outcomes. However, while over 90% of MCC patients have no known immune dysfunction, 

they fail to eliminate these tumors that persistently express MCPyV oncoproteins. How do 

these highly antigenic tumors evade immunological destruction? Indeed, several immune 

evasion mechanisms appear to be active in MCC, and in some cases are reversible. 

Specifically, over 80% of MCC tumors down-regulate the expression of MHC class I 

(Paulson et al., 2014), thereby suppressing immune recognition of MCPyV-derived peptides 

by CD8 T cells. Additionally, vascular E-selectin expression is reduced in many MCC 

tumors, effectively diminishing the ability of lymphocytes to migrate into the tumor 

microenvironment (Afanasiev et al., 2013a). When the cellular immune response is not 

successfully subverted by MCC (as assessed by CD8+ lymphocytes found within the tumor), 

100% disease-specific survival ensues, even in patients presenting with advanced nodal or 

distant metastatic disease (Paulson et al., 2011).

According to Clinicaltrials.gov, there are currently 17 active clinical trials that are 

specifically designed to include MCC patients. Seven of these trials involve 

immunotherapies that aim to augment anti-tumor immune responses. Indeed, MCPyV-

specific T cells have been shown to express elevated levels of multiple markers of 

exhaustion such as PD-1 and TIM-3 (Afanasiev et al., 2013b). Trials are active that target 

the CD8 T cell response to reverse T cell exhaustion via antibodies to PD-1 or PD-L1. The 

focus on immune-based trials in MCC reflects the striking advances in the field of cancer 

immunology, which may be especially relevant for a virus-driven malignancy.

In summary, the past few years have provided remarkable insights into how MCPyV drives 

this cancer and how the immune system should typically control it. These diverse insights 

promise to provide us with a more comprehensive toolbox with which to treat MCC patients 

who currently have limited therapeutic options.
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Pullquote

• We still do not know why MCPyV, among all 12 human polyomaviruses, is the 

only one that causes cancer.
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Figure 1. Clinical and microscopic images of Merkel cell carcinoma
a) Representative MCC on the left hand of a 70-year-old man. Microscopic images with 

magnified insets of a primary MCC tumor with b) Hematoxylin and eosin stain showing salt 

and pepper chromatin pattern, frequent mitotic figures and nuclear molding characteristic of 

MCC; c) MCPyV Large T-Ag immunohistochemistry (CM2B4 antibody) shows viral 

protein expression in tumor cells but not adjacent stroma; d) Cytokeratin 20 (CK20) 

immunohistochemistry demonstrates characteristic dot-like peri-nuclear staining. Scale bar, 

50 μM
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Figure 2. MCPyV T-Antigen oncoprotein functional interactions with cellular pathways
The MCPyV small T-antigen (sT-Ag) and truncated Large T-antigen (tLT-Ag) are depicted 

together with their major known cellular targets. The DnaJ region is present in sT-Ag and 

LT-Ag amino terminal regions and interacts with heat shock protein 70 (Hsp70). Hsp70 

binding by sT-Ag and LT-Ag indirectly inactivates the tumor suppressor protein Rb 

(Houben et al., 2014) thereby promoting progression from G1 to S phase. The MUR1 

domain of truncated LT-Ag binds and inactivates hVam6p. This inactivation leads to 

disruption of lysosome trafficking, allowing accumulation of certain proteins in the host cell 

(Liu et al., 2011), possibly contributing to oncogenesis. The MUR1 domain may have other 

functions not yet characterized that could help explain why MCPyV is carcinogenic in 

humans. Truncated LT-Ag also binds and inactivates Rb through the LxCxE motif, 

preventing it from regulating the cell cycle (Houben et al., 2014) and promoting progression 

from G1 to S phase. sT-Ag prevents the turnover of hyperphosphorylated 4E-BP1, releasing 

activated eIF4E and increasing cap dependent translation which contributes to cell 

transformation (Shuda et al., 2011). The sT-Ag LSD domain binds Fbxw7, inhibits its 

ubiquitin ligase activity and thus promotes the stability of critical oncogenic proteins 

including LT-Ag, c-Myc and cyclin-E (Kwun et al., 2013).
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