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Perceptual decisions occur after the evaluation and integration of momentary sensory inputs, and dividing attention between spatially
disparate sources of information impairs decision performance. However, it remains unknown whether dividing attention degrades the
precision of sensory signals, precludes their conversion into decision signals, or dampens the integration of decision information toward
an appropriate response. Here we recorded human electroencephalographic (EEG) activity while participants categorized one of two
simultaneous and independent streams of visual gratings according to their average tilt. By analyzing trial-by-trial correlations between
EEG activity and the information offered by each sample, we obtained converging behavioral and neural evidence that dividing attention
between left and right visual fields does not dampen the encoding of sensory or decision information. Under divided attention, momen-
tary decision information from both visual streams was encoded in slow parietal signals without interference but was lost downstream
during their integration as reflected in motor mu- and beta-band (10 –30 Hz) signals, resulting in a “leaky” accumulation process that
conferred greater behavioral influence to more recent samples. By contrast, sensory inputs that were explicitly cued as irrelevant were not
converted into decision signals. These findings reveal that a late cognitive bottleneck on information integration limits decision perfor-
mance under divided attention, and places new capacity constraints on decision-theoretic models of information integration under
cognitive load.
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Introduction
Decisions based on noisy information can be optimized by re-
peated sampling and integration over space and time (Wald and
Wolfowitz, 1949; Bogacz et al., 2006). In the primate, parietal and
prefrontal neurons with long time constants of integration con-
tribute to near-optimal discrimination of psychophysical stimuli,
such as the random dot kinematogram, by accumulating reli-
ability-weighted momentary inputs from sensory regions up to
a decision threshold (Roitman and Shadlen, 2002; Gold and
Shadlen, 2007; Beck et al., 2008). However, cognitive psycholo-
gists have traditionally argued that decisions are limited not just
by noise but by capacity, a constraint that emerges most clearly
when a target (to-be-judged) item is presented alongside one or

more distracters (Posner et al., 1980; Carrasco, 2011; Summer-
field and Egner, 2014). Traditional models attribute such capac-
ity limits to an information bottleneck that gates entry into
central decision systems, either at an early or a late perceptual
stage (Cherry, 1953; Broadbent, 1958; Treisman, 1969; Duncan,
1980; Pashler, 1984; Lavie and Tsal, 1994). More recent accounts
have emphasized the dynamic biasing of resource allocation ac-
cording to the number of items or tasks that occur in parallel
(Desimone and Duncan, 1995; Reynolds and Chelazzi, 2004), but
have continued to debate the stage (or stages) at which filtering
occurs (Lachter et al., 2004; Benoni and Tsal, 2013).

A standard tool for investigating capacity limits in perception
involves presenting two or more potential targets at different
spatial locations and varying advance information about which
will be probed (Posner et al., 1980; Carrasco, 2011). Focusing
attention on one spatial location enhances contralateral neural
responses at early sensory stages (Hillyard and Mangun, 1987;
Hopfinger et al., 2000), so resulting performance advantages have
been primarily attributed to top-down biasing mechanisms that
divert limited cognitive resources to the cued item at the expense
of its competitors (Desimone and Duncan, 1995; Reynolds and
Chelazzi, 2004). Performance suffers substantially when advance
cues are unavailable or ambiguous, but it is unknown how divid-
ing attention impacts the decision mechanisms that promote ac-
curate discrimination of noisy sensory inputs. For example,
dividing attention across spatial locations could impair decision
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making by the following means: (1) limiting the precision (i.e.,
the signal-to-noise ratio) of sensory processing; (2) precluding
the conversion of sensory inputs into decision signals; or (3)
attenuating the accumulation of decision information toward an
appropriate response.

Here, we arbitrated among these possibilities using computa-
tional modeling and human electroencephalographic (EEG) re-
cordings, in combination with a visual spatial attention task in
which two streams of information needed to be integrated simul-
taneously and independently over time before making a category
judgment about one of them. Building on recent findings ob-
tained in a single-stream version of the task (Wyart et al., 2012),
we asked specifically whether dividing attention leads informa-
tion to be lost during (1) perceptual encoding in sensory signals,
(2) conversion to associative decision signals, or (3) accumula-
tion toward a motor response.

Materials and Methods
Participants. Seventeen students were recruited from the University of
Oxford (age range, 19 –29 years; nine females). All had normal or
corrected-to-normal vision, and reported no history of neurologic or
psychiatric disorders. They provided written consent before the experi-
ment and received £30 in compensation for their participation, in addi-
tion to bonuses depending on their categorization performance
(approximately £6). The experiment followed local ethics guidelines.

Stimuli. Visual stimulation was delivered using the Psychophysics-3
Toolbox (Brainard, 1997; Pelli, 1997) and additional custom scripts writ-
ten in MATLAB (MathWorks). The display CRT monitor had a resolu-
tion of 1024 � 768 pixels and a refresh rate of 60 Hz, and was gamma
corrected using a decoding exponent of 2.2. Participants viewed the stim-
uli from a distance of �80 cm, their head placed on a chin rest in a
darkened, quiet room.

Each trial comprised two streams of eight Gabor patterns presented
every 333 ms (i.e., 3 Hz) at �4° of visual angle to the left and right of a
fixation point, preceded by two visual masks and followed by one visual
mask presented at the same presentation rate. All Gabor patterns had
identical parameters (contrast, 50%; diameter, 4° of visual angle; spatial
frequency, two cycles per degree of visual angle; Gaussian envelope with
an SD of 1° of visual angle), except for their angular tilt. Premasks and
postmasks were created from the linear superposition of the four proto-
typical cardinal and diagonal Gabor patterns. Each stimulus was pre-
sented on the screen for 317 ms (19 frames) and followed by a blank
period of 17 ms (1 frame) to avoid visual “tearing” artifacts across suc-
cessive elements, thus resulting in a stimulus onset asynchrony of 333 ms.

Experimental design. In all trials, participants were asked to make a
binary category judgment about one of two streams of oriented Gabor
patterns; whether the tilt of the patterns in the stream fell closer to the
cardinal or diagonal axes. Each pattern, located at position k in the
stream, could thus be described by the following two quantities: its “per-
ceptual update” (PUk), corresponding to its angular distance from sam-
ple k � 1, and its “decision update” (DUk), corresponding to its
projection on the cardinal– diagonal decision axis, which mapped non-
monotonically onto tilt, following a w-shaped profile depicted in Figure
1c. Positive or negative feedback was provided as a function of whether
the given response (cardinal or diagonal) matched the sign of the sum of
presented decision updates (DU1�8). In half of the trials (the “focused
attention” condition), participants were attending to one stream and
ignoring the other stream according to a fully predictive cue, correspond-
ing to a transient color change in the fixation point chosen among the
following three highly discernable colors: pink, blue, or orange (e.g., pink
for the left stream, blue for the right stream for participant 1), occurring
1333 ms before the onset of the first element (i.e., 667 ms before the onset
of the first premask). In the focused attention condition, each trial ended
with a second, identical color flash in the fixation point 667 ms after the
postmask, probing the stream that participants should respond to. In the
other half of the trials (the “divided attention” condition), participants
were provided with an uninformative color change in the fixation point

before the onset of the first element (orange for participant 1), and the
stream that participants should respond to was revealed only at probe
onset, using the same color-side mapping as in the focused attention
condition (i.e., pink for the left stream, blue for the right stream for
participant 1). Therefore, the only difference between the two conditions
was that the color cue was fully predictive of which stream would be later
probed in the focused attention condition and fully uninformative in the
divided attention condition. The meaning of the three color changes was
counterbalanced across participants.

In each trial, the tilt of each Gabor pattern (sample) was drawn ran-
domly from a probability density function whose generating parameters
were titrated for each participant before the experiment (see below).
Importantly, the generative categories of the left and right streams were
manipulated orthogonally, such that participants could not infer the
category of one stream by attending to the other stream. This was made
explicit to the participants before the experiment. Across trials, the tilt of
each Gabor pattern followed a circular uniform distribution. Partici-
pants responded by pressing either of two response buttons with the left
or right index finger (DirectIN high-speed button box, Empirisoft), us-
ing a cardinal/diagonal response mapping (e.g., cardinal, left hand; diag-
onal, right hand) fully counterbalanced across participants. Auditory
feedback was given at the end of each trial, 250 ms following each re-
sponse, depending on the agreement between the response and the sign
of the decision value across the eight samples. Increasing pairs of tones
(440 – 880 Hz) followed correct responses, whereas decreasing ones
(880 – 440 Hz) followed errors.

Each participant took part in two experimental sessions, taking place
on different days. Both sessions were identical in terms of instructions
and task (except that they used different pseudorandom sequences), but
the first one served as a training session without EEG recordings, whereas
the second one corresponds to the test session whose behavioral and EEG
data are described here. At the beginning of each session, each participant
undertook a short practice block followed by a titration block, during
which his or her psychophysical threshold (i.e., the absolute decision
value corresponding to a categorization accuracy of 75%) was estimated
using an adaptive staircase procedure (Kaernbach, 1991), resulting in a
category sensitivity of 1.48 � 0.05 (group-level mean � SEM). The ex-
periment consisted of 400 trials, delivered in eight blocks of 50 trials (25
trials in the focused attention condition, 25 trials in the divided attention
condition). After each block, participants were presented with a wheel of
fortune that randomly selected one trial from the block. Participants won
an additional £1 bonus if their response on that trial was correct. The
titration procedure targeting 75% accuracy ensured that participants
typically won £6 in additional bonuses across the eight experimental
blocks.

Computational modeling of human choice. We performed model-based
analyses of choice behavior to (1) identify a model that predicts choice
and (2) characterize the observed difference between focused and divided
attention conditions via selective changes in model parameters. All anal-
yses rely on a multivariate logistic regression of choice from a linear
combination of the decision information provided by the eight succes-
sive samples (Wyart et al., 2012). More precisely, this regression esti-
mates the eight decision weights (wks) associated with each sample k,
defined as the multiplicative contribution of the corresponding decision
update DUk to the subsequent binary (cardinal– diagonal) choice, as
follows:

p �cardinal� � ��b � �
k	1

8

wk � DUk�,

where P (cardinal) corresponds to the probability of judging the stream
as cardinal, � to the cumulative normal function, and b to an idiosyn-
cratic bias toward one of the two responses.

This first model, including nine free parameters, was outperformed
during Bayesian model selection by the following leaky accumulator
model, which includes only three free parameters by postulating that the
successive decision weights are not independent but are related by an
exponential function parameterized by a single free parameter or “leak”
�, as follows:
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p �cardinal� � ��b � �
k	1

8

w � �8�k � DUk�.

This leaky accumulator model provided the most parsimonious fit to the
human data. The two key parameters in the model are the sensitivity to
decision updates, parameterized by w, and the leak on the accumulated
decision value following each new sample, parameterized by �. The
model was fitted to the human choice data separately in the focused and
divided attention conditions using maximum likelihood estimation—
implemented in practice by minimizing its negative value using the
interior-point algorithm of the fmincon function in MATLAB.

Bayesian model selection was based on the model evidence (approxi-
mated by the Bayesian information criterion) using both fixed-effects
and random-effects approaches previously described in the literature.

The model evidence adequately takes into account the model complexity
by penalizing models with an overly large number of parameters. The
fixed-effects comparison assumes all participants to have used the same
underlying model to generate their behavior, such that the overall model
evidence for a given model is proportional to the product of model
evidence for the model for all participants. Based on this model evidence,
we compared different models by computing their Bayes factor as the
ratio of model evidence of the compared model (Jeffreys, 1961; Kass and
Raftery, 1995). The random-effects comparison is more conservative in
allowing different participants to use different models to generate their
behavior, and aims at inferring the distribution over models that partic-
ipants draw from (Penny et al., 2010). For this comparison, we computed
support for the leaky accumulator model by the exceedance probability
( pexc), which is the (second-order) probability that participants were

Figure 1. Experimental design. Human participants viewed streams of eight visual gratings presented simultaneously at 3 Hz in their left and right visual fields, before being probed to make a
category judgment about one of the two streams. a, In the focused attention condition, participants were cued (left) as to which stream would be probed. b, In the divided attention condition, which
stream would be probed was revealed only after offset of the final sample (right). c, Folded decision-mapping rule relating the tilt of sample k (perceptual variable, x-axis) to the cardinal– diagonal
decision axis (decision variable, y-axis). Left, The decision-mapping rule follows a w-shaped profile (thick black line) and crosses four category boundaries (dashed lines) in [0, �]. Right, Geometric
representation of PUk and DUk. PUk is defined as the absolute angular difference between sample k and the previous sample k � 1, shown as the thick horizontal line. By contrast, DUk is defined by
the amount of category evidence provided by sample k, shown as the thick vertical line.
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more likely to choose this model to generate behavior than any alterna-
tive model.

EEG acquisition and preprocessing. A Compumedics Neuroscan EEG
system with NuAmps digital amplifiers was used to record EEG signals
from 35 Ag/AgCl electrodes, located at FP1, FP2, F7, F3, Fz, F4, F8, FT7,
FC3, FCz, FC4, FT8, T7, C3, Cz, C4, T8, TP7, CP3, CPz, CP4, TP8, P7, P3,
Pz, P4, P8, PO7, PO3, POz, PO4, PO8, O1, Oz, and O2; plus four addi-
tional electrodes used in a bipolar montage as horizontal and vertical
electro-oculograms (EOGs), and two electrodes located at the mastoids
used as a reference. All electrode impedances were kept below 5 k
. EEG
signals were recorded at a sampling rate of 1 kHz and high-pass filtered
on-line at 0.1 Hz. Fixation at the center of the screen was monitored
on-line using an EyeLink-1000 system sampling binocularly at 500 Hz to
ensure that participants did not make overt saccades toward the cued
stream in the focused attention condition, or toward either stream in the
divided attention condition.

Preprocessing was performed using the EEGLAB toolbox for MATLAB
(Delorme and Makeig, 2004). The data were down-sampled to 250 Hz,
bandpass filtered between 1 and 40 Hz, and then epoched from 500 ms
before the onset of the color cue to 1 s following the offset of the probe.
We visually inspected these epochs (1) to remove trials containing non-
stereotypical artifacts (such as transient muscular activity) and (2) to
identify visually “bad” electrodes showing frequent amplifier “jumps” or
other electrical artifacts (e.g., spikes), which were interpolated to the
weighted average of neighboring electrodes (maximum, one bad elec-
trode per participant). Independent component analysis (ICA) was then
performed on the epoched data— excluding the EOG, reference, and
interpolated electrodes from the analysis—and ICA components were
visually inspected to reject the ones capturing stereotypical artifacts (in
particular, eye blinks and sustained high-frequency noise). Last, single
epochs were reinspected visually to ensure that no artifact remained. The
simultaneously acquired eye-tracking data from the second (test) ses-
sion was epoched and screened off-line to ensure that none of our
subjects made overt saccades (�2° of visual angle) toward the direc-
tion of the cued stream in the focused condition, or toward either
stream in the divided condition. Rejected trials were excluded from all
further analyses, resulting in an average of 370 � 5 trials per partici-
pant (mean � SEM).

The 1 Hz high-pass cutoff was applied as an “implicit” baseline to
correct for slow drifts in the single-trial EEG data, which are particularly
detrimental for the correlation-based approach adopted throughout the
study. Importantly, while slow drifts in single-trial EEG data do not affect
the shape of the average (i.e., the event-related potentials), they destroy
the correlations between the same single-trial signals and stimulus-
dependent quantities due to the 1/f property of the EEG spectrum. This
implicit baselining approach has the advantage of not requiring to
baseline explicitly the data, which would have required the definition
of an extra baselining window before each sample—something that is
difficult in the context of the present task due to the large amount of
overlap between event-related responses to successive samples as a
result of the rapid serial visual presentation procedure used (Capilla
et al., 2011).

Spectral analyses were performed using the FieldTrip toolbox for
MATLAB (Oostenveld et al., 2011). The spectral power of band-limited
EEG oscillations between 8 and 32 Hz was estimated using a “multita-
pering” time–frequency transform (Mitra and Pesaran, 1999; Pesaran et
al., 2002; Slepian tapers; frequency range, 8 –32 Hz; five cycles; and three
tapers per window). The purpose of this multitapering approach is to
obtain more precise power estimates by smoothing across frequencies.
Note that this time–frequency transform uses a constant number of cy-
cles per window across frequencies, hence a time window whose duration
decreases inversely with increasing frequency. When averaged, the
alpha frequency band used to measure focusing-related lateralization
at occipital electrodes corresponds to 8 –16 Hz. For the lateralized
choice preparatory signals recorded at central electrodes, the mu fre-
quency band corresponds to 8 –16 Hz, whereas the beta frequency
band corresponds to 16 –32 Hz. In most cases, both the mu and beta
bands showed similar patterns and profiles, and were subsequently
pooled.

For simplicity, we report statistical tests on EEG data averaged across
electrode sites. Lateral occipital electrodes correspond to electrodes O1,
PO7, and P7 in left hemisphere, and electrodes O2, PO8 and P8 in right
hemisphere. Lateral parietal electrodes correspond to electrodes PO3, P3
and CP3 in left hemisphere, and electrodes PO4, P4, and CP4 in right
hemisphere. Centroparietal midline electrodes correspond to electrodes
PO3, POz, PO4, P3, Pz, P4, CP3, CPz, CP4, C3, Cz, and C4. Central/
motor electrodes correspond to electrodes C3 and CP3 in left hemi-
sphere, and electrodes C4 and CP4 in right hemisphere, which were
analyzed for their difference in calculating an interhemispheric asymme-
try (or lateralization) index in log-power decibel units.

EEG analyses— encoding of parametric information. We regressed
single-trial EEG signals against several parametric quantities associated
with individual samples at successive time points following correspond-
ing onsets (Wyart et al., 2012). These analyses were performed separately
for each of the eight samples in the streams, averaged across samples per
participant, and finally averaged across participants to produce a group-
level, second-level grand average. For each sample k, a general linear
regression model was used in which we included the perceptual updates
PUk (i.e., the tilt between sample k and k � 1) and the unsigned (abso-
lute) value of decision updates DUk (i.e., the amount of decision-relevant
information provided by sample k) for the left and right streams (or,
similarly, for the later probed and unprobed streams) as four parametric
regressors to predict the trial-to-trial, z-scored variability in EEG signals
at a given time t following sample k. This parametric regression was
performed separately at successive time points from 0 to 800 ms follow-
ing sample k. The time course of the corresponding parameter estimates
(i.e., the normalized best-fitting regression coefficients) measured the
sensitivity of single-trial EEG signals to perceptual and decision updates
for each stream, under both focused and divided attention. Because these
time courses are time series of the between-trial correlation between the
EEG and sample k, we refer to them as describing the “encoding” of
perceptual and decision updates provided by sample k. No baselining was
applied to the EEG data before the regression. We used this single-trial
parametric approach in a previous publication in which participants
performed the cardinal– diagonal task on a single stream of gratings
(Wyart et al., 2012).

A comparable approach was adopted to assess how signed decision
updates were encoded in interhemispheric mu- and beta-band activity at
lateral central electrodes. For each participant, we subtracted the spectral
log-power between these electrodes, C3 � CP3 � C4 � CP4 or vice versa,
depending on the cardinal– diagonal response mapping used for each
participant. The hemisphere associated with “cardinal” responses (right
if the participant responded cardinal with his or her left index finger, or
left otherwise) was counted positively, whereas the motor electrode as-
sociated with “diagonal” responses was counted negatively.

EEG analyses— decoding of decision parameters. We used an analytic
approach analogous to a psychophysiological interaction analysis (Fris-
ton et al., 1997) to assess the following: (1) the relationship between the
encoding of the absolute DUk and the wk assigned to that sample in the
subsequent categorical choice; and (2) the time course of choice prepa-
ratory signals in the last hundreds of milliseconds preceding response
execution. We refer to this analysis scheme as a “decoding” approach,
because it quantifies the following: (1) how trial-to-trial variability in the
encoding of sample k in the EEG (i.e., residuals from the encoding re-
gression described above) covaried with its contribution to choice across
trials; and (2) how trial-to-trial variability in choice preparatory signals
predicted choice behavior over and above extrinsic fluctuations in deci-
sion value (Wyart et al., 2012).

To do so, we quantified whether and how much trial-to-trial fluctua-
tions in EEG signals exerted a modulatory influence on the relationship
between the eight decision updates and choice via multivariate paramet-
ric regression. In other words, we determined whether EEG-informed
regressions of choice led to a significant increase in prediction accuracy.
This type of approach is often called “psychophysiological,” because it
assesses how trial-to-trial variability in the EEG (i.e., a physiological vari-
able) influences (i.e., interacts with) the subsequent categorical choice
(i.e., a psychological variable). Here we contrasted the following two
forms of psychophysiological influences: (1) an additive influence,
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whereby trial-to-trial EEG variability biases the subsequent choice; or (2)
a multiplicative influence, whereby the same neural variability modulates
the weight assigned to the sample evidence in the subsequent choice. In
practice, we estimated the parameters bk,t and wk,t of these psychophysi-
ological terms at each time point following each sample k via an EEG-
informed regression of choice for which the neural residuals rk,t from the
regression against each DUk were entered either alone (additive influ-
ence, parameter bk,t) or as their interaction with the corresponding deci-
sion update (multiplicative influence, parameter wk,t) as an additional
predictor of the subsequent categorical choice, as follows:

p �cardinal� � ��b � �
k	1

8

wk � DUk

� �
k	1

8

bk,t � rk,t � �
k	1

8

wk,t � DUk � rk,t.

More details about this procedure are found in the study by Wyart et al.
(2012), where it was applied to a single-stream version of the task. In
contrast to conventional “choice probability” measures (Britten et al.,
1996), this general procedure allows the determination of not only
whether, but also how trial-to-trial fluctuations in brain signals predict
variability in the subsequent choice behavior. Here we replicated the
qualitative dissociation between the influence of the following two types
of neural residuals on choice (Wyart et al., 2012): (1) slow parietal EEG
signals at 500 – 600 ms following each sample; and (2) lateralized motor
mu- and beta-band activity in the last 500 ms preceding choice onset. For
slow parietal residual and across-attention conditions, Bayesian model
selection among additive and multiplicative influences gave a fixed-
effects Bayes factor of 10 5.6, and a random-effects pexc of 0.98 in favor of
the multiplicative (weight modulation) account. The same result was
obtained separately under focused attention (Bayes factor 
 10 4.5, pexc 	
0.96) and divided attention (Bayes factor 
 10 3.1, pexc 	 0.88). By con-
trast, lateralized motor mu- and beta-band residuals yielded a fixed-
effects Bayes factor of 10 17.0, and a random-effects pexc of 0.999 in favor
of the additive (bias) account. As for slow parietal residuals, this pattern
held separately for the two attention conditions (focused attention: Bayes
factor 
 10 11.9, pexc 	 0.995; divided attention: Bayes factor 
 10 3.7, pexc

	 0.92). These control analyses confirm that residuals in slow parietal
signals predict the strength of sample-by-sample weighting, whereas re-
siduals in motor mu- and beta-band lateralization predict fluctuations in
response bias in favor of either response (Wyart et al., 2012).

Statistical procedures. The EEG encoding and decoding analyses de-
scribed above were performed separately for each participant and each
sample. At the population (group) level, we used standard parametric
tests (e.g., paired t tests and repeated-measures ANOVA) to assess the
statistical significance of observed effects across the group. The type 1
error rate arising from multiple comparisons was appropriately con-
trolled for using nonparametric cluster-level statistics (Maris and Oost-
enveld, 2007) computed across electrodes, time points, and frequencies.

When reporting nonsignificant differences, we complemented stan-
dard “frequentist” tests with Bayes factors to distinguish between an
insensitive test (not providing evidence in favor or against the null hy-
pothesis) and a genuine absence of difference (Dienes, 2011). For this
purpose, we compute a group-level, random-effects Bayes factor under
the exact same assumptions as a standard t test: that the distribution of
the observed effect across individuals can be approximated by a normal
distribution of the mean (�) and SD (�). To compute the Bayes factor,
we computed the maximum log-likelihood of the following two models:
the “null” hypothesis, which assumes that � 	 0 and has therefore one
less parameter than the “effect” hypothesis, for which both � and � can
be adjusted freely to the observed data. We then used the Bayesian infor-
mation criterion to compare the two models and compute the corre-
sponding Bayes factor. Note that the maximum attainable evidence in
favor of the “null” hypothesis grows with the degrees of freedom of the
test (here, the number of participants). While Bayesian statistics are usu-
ally not considered in terms of thresholds, it is generally assumed that a
Bayes factor below 1 of 3 corresponds to substantial evidence in favor of
the null hypothesis, whereas a Bayes factor �3 corresponds to substantial

evidence in favor of the effect hypothesis (Jeffreys, 1961; Kass and Raf-
tery, 1995).

Results
Scalp EEG activity was recorded from 17 healthy human partici-
pants while they viewed streams of eight visual gratings presented
simultaneously at 3 Hz in their left and right visual fields, before
being probed to make a category judgment about one of the two
streams. In the focused attention condition, participants were
cued in advance as to which stream would be probed (Fig. 1a). In
the divided attention condition, which stream would be probed
was revealed only after offset of the final sample (Fig. 1b). Partic-
ipants were required to respond with their left or right index
finger according to whether the tilt of the gratings in the probed
stream fell closer, on average, to the cardinal or diagonal axes.
Each grating pattern or “sample,” located at position k in the
stream, could thus be described by the following two scalar quan-
tities: its PUk value, reflecting its angular distance from sample
k � 1; and its DUk value, corresponding to its projection on the
cardinal– diagonal decision axis, which mapped nonmonotoni-
cally onto sample tilt (Fig. 1c; see Materials and Methods). Deci-
sions were made according to whether the sum of DUs 1– 8
(DU1�8) for the probed, “target” stream favored the cardinal or
diagonal category, regardless of the information available in the
competing “distractor” stream.

Behavior
Categorization performance suffered in the divided relative to the
focused attention condition (focused attention, 76.1 � 0.8%;
divided attention, 67.7 � 1.0%; F(1,16) 	 49.2, p � 0.001). We
used multivariate logistic regression to estimate the impact
(weight) that each sample carried over the subsequent choice (see
Materials and Methods). Regression coefficients indexing the
eight sample weights for the probed and unprobed streams are
depicted in Figure 2a. As can be seen, sample weights for the
unprobed stream were not significantly greater than zero, indi-
cating that participants based their decisions solely on the rele-
vant (probed) information, even in the divided attention
condition (focused: t(16) 	 0.9, p � 0.2, divided: t(16) � 0, p �
0.5). For the probed stream, sample weights were smaller in the
divided relative to the focused attention condition (F(1,16) 	 55.9,
p � 0.001), but also smaller for earlier samples 1– 4 than later
samples 5– 8 (F(1,16) 	 28.2, p � 0.001).

This “recency bias” could be captured by a simple leaky accu-
mulator model in which the DUk provided by each sample k is
added to a running sum from which part of the information leaks
away exponentially before sample k � 1 (see Materials and Meth-
ods). This model, which has two free parameters (the sensitivity
to sample information and the magnitude of the integration leak)
provided a more accurate description of human choice behavior
than a leak-free accumulator model in terms of Bayesian infor-
mation criterion (focused: Bayes factor 
 10 52, pexc � 0.999;
divided: Bayes factor 
 10 66, pexc � 0.999), and a more parsimo-
nious description than the full logistic regression model, includ-
ing eight independent samples weights (focused: Bayes factor 

10 91, pexc � 0.999; divided: Bayes factor 
 10 83, pexc � 0.999), in
both attention conditions. Comparing best-fitting parameters
across participants (Fig. 2b) revealed that where the sensitivity to
sample information did not differ between the focused and di-
vided attention conditions (focused attention, 0.66 � 0.07;
divided attention, 0.61 � 0.05; t(16) 	 0.7, p � 0.5, familywise
pexc 	 0.06), the integration leak was significantly greater under
divided attention (focused attention, 0.14 � 0.04; divided atten-
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tion, 0.30 � 0.04; t(16) 	 4.2, p � 0.001, familywise pexc 	 0.95).
Accordingly, a selective increase in integration leak under divided
attention accounted for substantially more choice variability than
a reduced sensitivity to sample information (Bayes factor 
 10 13,
pexc 	 0.92).

We conducted additional behavioral analyses to ensure that
the differences observed between focused and divided condi-
tions—in particular the increased integration leak under divided
attention— could not be driven indirectly by the congruence or
incongruence between decision information provided by the two
streams. First, we observed no effect of between-stream congru-
ency on categorization performance under divided attention
(t(16) 	 0.5, p � 0.5). We also refitted our computational model
separately for trials in which the two streams were congruent and
incongruent, and found that neither the sensitivity to sample
information nor the integration leak depended on between-
stream congruency (sensitivity: F(1,16) 	 1.8, p � 0.2; integration
leak: F(1,16) 	 2.6, p 	 0.12). Moreover, congruency did not
modulate the effect of attention (F(1,16) 	 13.8, p 	 0.001) on the
integration leak (interaction, F(1,16) 	 0.9, p � 0.2). Even taken in
isolation, the best-fitting integration leak did not differ signifi-
cantly between congruent and incongruent streams under di-
vided attention (t(16) 	 1.7, p � 0.1). Together, these control
analyses support the observation that it is the dividing of atten-
tion which increases the integration leak, not the congruence or
incongruence between the decision information provided by the
two streams.

EEG data
Encoding of perceptual updates
Next, we investigated how perceptual information in both
streams modulated electrical brain activity. Instead of computing
event-related averages, we used a parametric single-trial ap-
proach (Philiastides and Sajda, 2006; Philiastides et al., 2006; Rat-
cliff et al., 2009; Wyart et al., 2012) in which the momentary PUk

value was regressed against EEG data at each electrode and time
point following the onset of sample k (see Materials and Meth-
ods), separately for the left and right streams. Plotting the time
course of the resulting regression coefficients under focused and
divided attention revealed contralateral encoding of perceptual
information at occipital electrodes in both conditions (Fig. 3a,
top), with a first positive deflection peaking at 120 ms followed by
a second negative deflection at �260 ms (both clusterwise p �
0.001; see Materials and Methods). In the focused attention
condition, contralateral encoding of perceptual information
for the target (cued) stream at 120 ms (Fig. 3b, top) was stron-
ger than the distractor (uncued) stream (F(1,16) 	 7.2, p 	
0.01). However, contralateral encoding of perceptual infor-
mation for both streams in the divided attention condition
was also stronger than that for the distractor stream (F(1,16) 	
6.5, p 	 0.02) and was not attenuated relative to the target
stream (F(1,16) � 1, p � 0.2). Here (and in subsequent analy-
ses), we tested whether an absence of significant difference is
due to a genuine absence of effect (rather than a lack of sensi-
tivity) by computing Bayes factors under the same parametric

Figure 2. Human behavior. a, Decision weighting profiles across the eight samples, sorted by their position in the stream, for target (large dots) and distractor (small dots) streams in the focused
(left) and divided (right) attention conditions. Dots and attached error bars indicate the human data (mean � SEM). Lines and shaded error bars indicate the predictions of the best-fitting model.
b, Best-fitting model parameters in the focused (left bar) and divided (right bar) attention conditions. Left, Integration leak. Right, Sensitivity to sample information. Conventions are the same as
in a. **p � 0.01, ***p � 0.001. ns, Nonsignificant effect.
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assumptions as conventional statistics (see Materials and
Methods). For the current comparison, we obtained a Bayes
factor of 0.32, suggesting no loss in the precision of sensory
processing under divided attention (Fig. 3c). Interestingly, en-
coding of perceptual information at ipsilateral occipital elec-
trodes was significant only for the target stream in the focused
attention condition (Fig. 3a,b, bottom panels), with a 30 ms
delay in peak correlation relative to the contralateral hemi-
sphere (ipsilateral, 157 ms; contralateral, 123 ms; boot-
strapped t(16) 	 4.8, p � 0.001), as if additional cortical
territory was being flexibly recruited to facilitate the percep-
tual encoding of information unambiguously cued as relevant.

Encoding of decision updates
We then turned to the encoding of momentary decision informa-
tion provided by individual samples in both streams. For this
purpose, we measured the extent to which EEG signals covaried
with the “diagnosticity” of each sample (i.e., the absolute value of
DUk, at each electrode and time point following the onset of
sample k). Previously, we have demonstrated that decision infor-
mation in this task is encoded by slow parietal signals with a
characteristic profile peaking negatively at 300 ms and followed
by a second positive deflection peaking at �500 ms (Wyart et al.,
2012). Beginning with the focused attention condition (Fig. 4a,
left), we replicated this encoding profile for the target stream

Figure 3. Encoding of perceptual updates. a, Neural encoding of PUk in lateral occipital EEG signals, expressed as parameter estimate in z-units. Top, Encoding time courses at contralateral
occipital electrodes for target (green) and distractor (red) streams in the focused attention condition, and neutral (blue) streams in the divided attention condition. Bottom, Encoding time courses
at ipsilateral occipital electrodes for the same streams. Shaded error bars indicate SEM. b, Differences in encoding strength among target (T), neutral (N), and distractor (D) streams at the first peak
of �120 ms. Top, Contralateral occipital electrodes. Bottom, Ipsilateral occipital electrodes. *p � 0.05. c, Encoding scalp topographies at 120 ms following sample k in the focused (left) and divided
(right) attention conditions. LVF, Left visual field; RVF, right visual field. Topographies were flipped across the midline in the focused attention condition such that the target stream appears in the
left visual field, and the distractor stream appears in the right visual field. Thick dots indicate the lateral occipital electrodes of interest.
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(both clusterwise p � 0.01; note that data from the target stream
are also reported in the supplementary materials in the article by
Wyart et al., 2012). However, no such profile was observed for the
distractor stream (i.e., no significant cluster was identified at p �
0.05). This suggests that under focused attention, although dis-
tracting perceptual information explicitly cued as irrelevant is
encoded in early occipital signals (Fig. 3a), the corresponding
decision information has been fully filtered out in late parietal
signals 200 ms later. Interestingly, while the first negative com-
ponent peaked contralaterally to the corresponding stream (Fig.
4b, left; F(1,16) 	 5.8, p 	 0.02) and concomitantly with the sec-
ond perceptual component (Fig. 3a), the second positive compo-
nent was symmetrical over midline centroparietal electrodes
(F(1,16) 	 1.1, p � 0.2, Bayes factor 	 0.44), which is consistent

with the idea of a gradual transition from spatially selective sen-
sory representations to a supramodal, associative decision code
(O’Connell et al., 2012; Kelly and O’Connell, 2013).

In the light of this, we next tested whether the decision infor-
mation encoded transiently by late parietal signals at 500 – 600 ms
corresponded with (1) the absolute value of the momentary de-
cision update provided by the latest sample (in other words, the
size of the current evidence accumulation step; Wyart et al., 2012)
or (2) the absolute value of the cumulative sum of decision up-
dates up to the latest sample (i.e., the amount of accumulated
evidence; O’Connell et al., 2012). For this purpose, we compared
the log-likelihood of the following two regression models: (1) a
model in which late parietal signals were regressed against mo-
mentary decision updates; and (2) a model in which the same

Figure 4. Encoding of decision updates and decoding of decision weights. a, Neural encoding of DUk in bilateral centroparietal signals, expressed as parameter estimate in z-units, in the focused
(left) and divided (right) attention conditions. Conventions are the same as in Figure 3. b, Encoding scalp topographies at 300 and 550 ms following sample k for target (left) and neutral (right)
streams. Topographies were flipped horizontally across the midline such that the corresponding stream appears in the left visual field. Conventions are the same as in Figure 3. c, Neural decoding of
decision weight assigned to sample k in bilateral centroparietal signals following its onset, expressed as modulation strength in z-units, in the focused (left) and divided (right) attention conditions.
Lighter curves indicate decoding strength for earlier samples 1– 4, whereas darker curves indicate decoding strength for later samples 5– 8. Conventions are the same as in a.
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neural signals were regressed against the cumulative sum of de-
cision updates. Bayesian model selection confirmed that late pa-
rietal signals in our discrete multisample categorization task
covaried more tightly with momentary decision updates than
their cumulative sum (Bayes factor 
 10 7.6, pexc 	 0.90).

Next, we turned to our key question of how the encoding of
decision information was modulated by dividing attention. In the
divided attention condition (Fig. 4a, right), decision information
from both “neutral” streams (that were subsequently probed or
unprobed with equal probability) at 500 – 600 ms was encoded
with equal strength (F(1,16) � 1, p � 0.5, Bayes factor 	 0.25) and
thus differed from the pattern observed in the focused attention
condition (interaction, F(1,16) 	 6.9, p 	 0.01). Remarkably, the
encoding of decision signals under divided attention was as
strong as for the target stream under focused attention (F(1,16) 	
1.7, p � 0.2, Bayes factor 	 0.57). Using the distractor stream in
the focused attention condition as the baseline, decision encod-
ing was significantly stronger for both streams in the divided
attention condition (F(1,16) 	 7.4, p 	 0.01). Furthermore, the
encoding profile measured under divided attention showed the
same early lateralization and late symmetry as the profile for
the target stream under focused attention (Fig. 4b, right; early
negative component: F(1,16) 	 8.2, p 	 0.01; late positive compo-
nent: F(1,16) � 1, p � 0.5; Bayes factor 	 0.26). Together, these
findings indicate that momentary decision information can be
encoded in parallel in slow parietal signals for two spatially dis-
tinct sources of information. This is particularly surprising given
that the cardinal-diagonal judgment was rendered highly de-
manding by the use of a nonmonotonic mapping from features
(i.e., the orientations of individual samples) to categories (cardi-
nal or diagonal; Fig. 1c).

Decoding of decision weights
Behavioral data clearly demonstrate a performance loss in the
divided attention condition, and computational modeling sug-
gests that this results from an increased integration leak occurring
over successive samples, not from a reduced sensitivity to sample
information (Fig. 2). Consistently with this account, the preced-
ing analysis indicates that slow parietal signals can encode mo-
mentary decision information from two simultaneous streams
without significant loss (Fig. 4a,b). It follows that the behavioral
impairment observed under divided attention should be reflected
not in the encoding of decision information per se, but in the
relationship between the strength of encoding and the impact
that the corresponding sample wielded over the subsequent
choice (decision “weight”). To test this prediction, we extracted
residual fluctuations in slow parietal signals from their paramet-
ric regression against the decision update triggered by each sam-
ple k, and estimated the extent to which these fluctuations
covaried with the wk value assigned to sample k using logistic
regression (Wyart et al., 2012; see Materials and Methods). Plot-
ting the strength of this psychophysiological interaction for the
probed stream in the focused and divided attention conditions
(Fig. 4c), we observed that the decoding of decision weights in
slow parietal signals was indeed dampened at 500 – 600 ms under
divided attention (F(1,16) 	 6.8, p 	 0.01).

Our computational model further predicted that the attenu-
ated decoding of decision weights in the divided attention condi-
tion should be selectively driven by earlier samples (i.e., those
from which more information leaks away). In other words, the
encoding strength of decision information under divided atten-
tion should predict its subsequent influence on choice for later
samples 5– 8, not for earlier samples 1– 4. This prediction was also

confirmed by the neural data (Fig. 4c, right), at 500 – 600 ms in the
divided attention condition (samples 5– 8: t(16) 	 3.6, p 	 0.002;
samples 1– 4: t(16) 	 0.4, p � 0.5; Bayes factor 	 0.27). The
decoding of decision weights for earlier samples under divided
attention was dampened compared with both later samples from
the same trials (F(1,16) 	 4.8, p � 0.05), and earlier samples under
focused attention (F(1,16) 	 4.6, p � 0.05). This finding converges
with behavioral modeling analyses suggesting that the impaired
decision performance observed under divided attention results
from a leak of information during sequential integration.

Focusing of spatial attention
Building on previous work (Wyart et al., 2012), these findings
demonstrate that momentary decision information can be en-
coded simultaneously with no sign of interference in slow parietal
signals for two streams of evidence, unless one of them is explic-
itly cued as irrelevant. This result suggests that the impairment
observed under divided attention is not due to rapid switches of a
single focus of attention between the two spatial locations. To
further substantiate this claim, we analyzed specific spectral
bands of EEG signals that have been assigned unique functional
significance in attention and decision making. Specifically, the
orientation of covert attention to a given spatial location has been
associated with a contralateral suppression of EEG signals in the
alpha (8 –12 Hz) frequency band over the visual cortex (Thut et
al., 2006; Siegel et al., 2008; Foxe and Snyder, 2011). By contrast,
the integration of decision information up to a hand response has
been associated with a progressive lateralization of EEG signals in
the mu and beta (8–32 Hz) frequency bands over the motor cortex
(Donner et al., 2009; Gould et al., 2012). Our subsequent analyses
thus targeted these two frequency bands to pinpoint the stage at
which decision information is lost under divided attention.

We began by plotting lateralized alpha-band activity (with
respect to the cue) at lateral occipital electrodes in the focused
attention condition (Fig. 5a). Consistent with previous findings,
alpha-band activity was strongly suppressed contralaterally to the
target stream in the focused attention condition, and this effect
was sustained across the integration period (F(1,16) 	 29.3, p �
0.001). Importantly, the strength of alpha-band lateralization did
not differ according to whether the subsequent choice was suc-
cessful or not (Fig. 5b) in either attention condition (focused:
F(1,16) � 1, p � 0.2, Bayes factor 	 0.32; divided: F(1,16) � 1, p �
0.5, Bayes factor 	 0.26). In other words, successful choices were
not accompanied by stronger alpha-band suppression toward the
stream that was later identified as being relevant. Consistent with
this finding, logistic regression of categorization accuracy on the
basis of the sum of decision updates and the lateralization of
occipital alpha-band activity toward the stream subsequently
probed did not reveal any significant cluster at p � 0.1, from the
onset of the cue until choice onset. These observations are in
agreement with the view that performance under divided atten-
tion is limited by information integration and not by rapid
switches in the focus of attention between the two streams. The
fact that the bilateral desynchronization of alpha-band activity
under divided attention was as strong as the contralateral de-
synchronization observed under focused attention (F(1,16) �
1, p � 0.5, Bayes factor 	 0.24), and was stronger than the
ipsilateral desynchronization (F(1,16) 	 27.4, p � 0.001), fur-
ther supports the absence of spatial competition for sensory
processing resources between the two streams in the divided
attention condition.
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Decoding of choice preparatory signals
Previous findings, including those obtained using a single-stream
version of this task (Wyart et al., 2012), have shown that lateralized
beta-band activity at central electrodes encodes the integrated tally of
information during the last hundreds of milliseconds preceding
choice (Donner et al., 2009; Gould et al., 2012). Under focused at-
tention, we observed that the DUk value covaried with the strength of
mu- and beta-band lateralization at lateral central electrodes overly-
ing the motor cortex (Fig. 6a, top left), from 500 ms following the
onset of sample k (mu band: t(16) 	 3.4, p 	 0.003; beta band: t(16) 	
3.8, p	0.001). By contrast, this correlation was entirely absent in the
divided attention condition (mu band: t(16) 	 0.1, p � 0.5, Bayes
factor 	 0.24; beta band: t(16) 	 0.8, p � 0.2, Bayes factor 	 0.32), up
until the onset of the probe (Fig. 6a, bottom left).

Even in the last 200 ms preceding choice onset (Fig. 6a, right
panels), the encoding of the summed decision information in
response preparation signals was attenuated under divided atten-
tion (F(1,16) 	 6.9, p 	 0.01). To investigate whether this effect
was the result of an integration leak, we regressed separately the
earliest samples 1–2 and the latest samples 7– 8 against mu- and
beta-band lateralization signals (Fig. 6b), allowing us to estimate
the contribution of these samples to choice preparatory signals.
Note that we included reaction times (signed by choice) as a
nuisance covariate to partial out the main effect of response vigor
on response preparation (although comparable results were ob-
tained without this extra regressor). In addition to a main effect
of attention (F(1,16) 	 5.9, p � 0.03), a factorial analysis revealed
a significant interaction between attention and sample position

(F(1,16) 	 5.8, p � 0.03), indicating that early samples did not
influence choice preparation under divided attention. This neural
“leak” parallels the recency effect observed in the behavioral data
(Fig. 2) and the attenuated decoding of decision weights for earlier
samples (Fig. 4c) observed under divided attention.

Reaction times were not a focus of interest in this study, be-
cause responses could be prepared during information integra-
tion only in the focused attention condition, resulting in faster
correct responses (focused attention, 353 � 24 ms; divided atten-
tion, 625 � 31 ms; F(1,16) 	 141.5, p � 0.001). Accordingly,
responses could be decoded significantly earlier from residual
fluctuations in response preparation signals under focused atten-
tion (Fig. 6c; focused attention, 815 ms; divided attention, 320
ms; bootstrapped t(16) 	 5.7, p � 0.001; see Materials and Meth-
ods). Behaviorally, the delaying of response preparation until
probe onset under divided attention resulted in a modulation of
response times by the aggregate level of conflict between the de-
cision information provided by the two streams, congruent if the
two streams favored the same category, and incongruent other-
wise (divided attention: F(1,16) 	 26.8, p � 0.001; focused atten-
tion: F(1,16) 	 0.1, p � 0.5; interaction: F(1,16) 	 19.4, p � 0.001).
Within the divided attention condition, however, responses
could not be decoded significantly earlier from fluctuations in
motor mu- and beta-band lateralization when the two streams
were congruent rather than incongruent (congruent, 325 ms;
incongruent, 275 ms; bootstrapped t(16) 	 0.3, p � 0.5). In both
cases, responses could not be decoded in the last 200 ms preced-

Figure 5. Focusing of spatial attention. a, Lateralization of alpha-band activity (8 –16 Hz) with respect to the cued location at lateral occipital electrodes throughout stream presentation in the
focused attention condition. Gray vertical lines indicate the onsets of the premask and postmasks, and black vertical lines indicate the onsets of the eight evidence samples. b, Temporal profile of
orienting-related alpha-band lateralization in the focused (green lines) and divided (gray lines) attention conditions, separately for correct choices (left) and errors (right). Conventions are the same
as in a. Shaded error bars indicate SEM.
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ing the onset of the probe (congruent: t(16) 	 1.1, p � 0.2; incon-
gruent: t(16) 	 1.6, p 	 0.12). This pattern of results further
indicates that, although decision information was encoded in
parallel and independently under divided attention, resolving the
interference between conflicting information provided by the
two streams following probe onset contributed to the slowing of
response times observed in this condition.

Discussion
The neural and computational mechanisms underpinning atten-
tion and decision making have been extensively investigated in
isolation. However, a theoretical framework for understanding
their interaction has yet to be firmly established. Here, we built

upon previous work that has dissociated distinct sensory (visual),
decision (parietal), and response (premotor) processing stages
that occur en route to a binary category judgment about sequen-
tially occurring information (Smith et al., 2004; de Lafuente and
Romo, 2006; Gold and Shadlen, 2007; O’Connell et al., 2012;
Wyart et al., 2012). Our findings reveal two distinct attentional
filters during decision formation. The first filter occurs as infor-
mation is passed from feature-selective sensory cortices to a cen-
troparietal signal (O’Connell et al., 2012), at which time it is
incorporated into the frame of reference of the category judg-
ment (here, cardinal– diagonal). At this stage, evidence that is
unequivocally cued as decision irrelevant (i.e., the uncued stream

Figure 6. Decoding of choice preparatory signals. a, Neural encoding of DUk in lateralized mu- and beta-band activity (8 –32 Hz) at lateral central electrodes, expressed as parameter estimate in
z-units, in the focused (top) and divided (bottom) attention conditions. Left, Neural encoding locked to the onset of sample k. Right, Neural encoding locked to response. b, Encoding strength for
earliest samples 1–2 (lighter bars) and latest samples 7– 8 (darker bars), in the focused (left) and divided (right) attention conditions. Conventions are the same as in Figure 2. c, Neural decoding of
response from lateralized choice preparatory signals in the last second preceding response execution. The thick bars under the curves indicate cluster-level significance for the focused (green) and
divided (gray) attention conditions, and their difference (black). Shaded error bars indicate SEM.
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in the focused attention condition) is eliminated. However, when
multiple sources of information need to be integrated simultane-
ously and independently, a second filter allows only a subset of
information to flow from parietal decision signals to effector-
selective cortices where it is integrated into a response. This sec-
ond filter results in an integration leak whereby information
proximal to a decision carries greater sway over choices. These
two attentional filters map respectively onto the two major ex-
perimental manipulations that are typically (and often, inter-
changeably) used to understand the capacity limits of human
information processing, namely directing and dividing attention.
Together, these results imply that information can be selected at
both an early or a late processing stage, and, as previously hypoth-
esized, that the balance between early and late selection may de-
pend on the level of resources available to perform the task (Lavie
and Tsal, 1994).

The facilitatory influence of spatial precueing on the precision
of sensory signals has been known for several decades (Hillyard
and Mangun, 1987; Hopfinger et al., 2000). However, by dissoci-
ating the perceptual and decision information provided by dis-
crete evidence samples, we were able to pinpoint the precise
computational stage at which this selection occurs. Perceptual
information (i.e., the angular tilt between current and previous
samples) was encoded for both cued and uncued streams in con-
tralateral visual cortex, albeit with lower precision for the uncued,
distractor stream. However, the most substantial filtering oc-
curred as perceptual information was transformed into the frame
of reference of the decision: no reliable encoding of decision up-
dates was observed for the uncued stream in slow parietal signals,
as previously reported for gradually changing signals (O’Connell
et al., 2012; Kelly and O’Connell, 2013). Interestingly, cued per-
ceptual information was also encoded in ipsilateral visual cortex
(Di Russo et al., 2003; Ester et al., 2009), as if additional cortical
tissue was recruited to facilitate the processing of decision-
relevant locations of space. This is in accord with the view that
processing capacity is limited by the cortical territory that can be
devoted to the competing contents of perception (Franconeri et
al., 2013). However, we note that this additional recruitment of
ipsilateral visual cortex observed for the attended stream did not
appear critical for performance, in terms of later encoding of
decision information in parietal signals. We can only speculate
that this ipsilateral encoding of perceptual information would be
beneficial to task performance under tight perceptual con-
straints, using either low-contrast or noisy stimuli. Together,
these findings are consistent with theories emphasizing the early
filtering of sensory signals under focused attention, but further
indicate that selection occurs during the conversion of sensory
signals into associative decision signals.

Category judgments can be described by decision-theoretical
models in which information is sampled sequentially, but the
mathematical formulation that best describes information inte-
gration still remains controversial (Wald and Wolfowitz, 1949;
Usher and McClelland, 2001; Rouder and Ratcliff, 2004; Ratcliff
and McKoon, 2008; Teodorescu and Usher, 2013). Normative
models, such as the serial probability ratio test (Wald and Wol-
fowitz, 1949) and the drift-diffusion model (Ratcliff and McK-
oon, 2008), assume that integration occurs without loss, whereas
other models incorporate a leak parameter that allows informa-
tion to decay back exponentially to baseline across time (Usher
and McClelland, 2001; Ossmy et al., 2013). Leaky integration may
describe performance particularly well in extended judgment
tasks such as the one used here, where decisions follow evidence

provided in discrete samples (Smith and Vickers, 1989). In such
tasks, human decisions are often better predicted by information
that occurs closer in time to the choice, termed a recency bias.
Our behavioral data suggest that the integration leak increases
substantially when attention is spread over multiple potentially
relevant sources of information. Neurally, this effect is expressed
in a muted relationship between the neural processing of early
samples and their contribution to choice, and later by a failure to
encode early samples in response preparation signals overlying
motor cortex in the last hundreds of milliseconds preceding uni-
lateral manual responses (Donner et al., 2009; de Lange et al.,
2013). In our study, where the information remains stationary
over the course of the trial, this integration leak should be seen as
a suboptimal constraint on information processing, not an adap-
tive process. In other words, an ideal observer performing our
task would exhibit no leak, as human participants in the single-
stream version of the task (Wyart et al., 2012), unlike in condi-
tions where the state of the environment (here, the category of the
stream) can change unexpectedly within each trial (Ossmy et al.,
2013).

Our finding that a late processing bottleneck impairs informa-
tion integration under divided attention might at first glance
appear to contradict the findings reported in earlier studies (Luck
et al., 1994; Müller et al., 2003), where dividing attention leads to
a global dampening of early sensory signals. Moreover, other
studies (Thut et al., 2006; Kelly et al., 2009) have reported that
attention modulates the link between hemispheric alpha-band
lateralization and performance, an effect that we failed to ob-
serve. However, some crucial differences exist between the cur-
rent study and earlier work. First, previous studies manipulated
task difficulty at an early sensory or perceptual level, by present-
ing stimuli at low contrast, or asking participants to perform
fine-grained visual discriminations. This manipulation makes it
hard to separate the influences of uncertainty at the perceptual
and decision stages on performance, or to isolate whether divid-
ing attention operates by attenuating sensory processing, or pre-
cluding the conversion of sensory information into a decision
signal. By contrast, our task allows us to measure the neural en-
coding of perceptual and decision information in a dissociable
fashion, and to assess how they are respectively influenced by
attention. Second, our analyses did not focus on the global influ-
ence of attention on the average amplitude of event-related po-
tentials, but instead on the degree of correlation between brain
activity and perceptual or decision information at the single-trial
level. This provides a more nuanced estimate of how the brain
processes each sample during sequential integration.

Nevertheless, considering our work alongside these earlier
studies offers some more general insights into the influence of
dividing attention on perceptual choice. Notably, whereas the
main source of uncertainty in previous studies was at the level of
detecting or discriminating the stimuli, in our task the major
difficulty faced by participants was in integrating decision infor-
mation across samples. Together with our findings, these obser-
vations might suggest that dividing attention impairs the stage of
processing that is the most demanding in the context of the task at
hand. However, our paradigm and approach differ in a number
of ways from those used previously; it will thus be important for
future work to validate our findings and interpretation using
other paradigms that can distinguish between perceptual and
decision stages of processing.

We reported previously that during serial integration, deci-
sion information is weighted according to slow fluctuations in
parietal signals with a characteristic time constant of 500 ms (Wy-
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art et al., 2012). When two salient events occur in close proximity
(e.g., within half a second), then the second may be under-
weighted or even “blinked.” This occurs because it falls in a
trough of excitability that is maximal at �250 ms following the
first salient event, and thereby fails to enter the integration pro-
cess that ultimately leads to choice. Here we extend these initial
findings by showing that this serial constraint on momentary
information processing occurs upstream from a second capacity
constraint on information integration when attention is divided
between multiple competing sources of information in space.
This highlights the dissociation between the serial processing of
decision-relevant evidence (which can occur in parallel at two
spatial locations) and integration toward an appropriate re-
sponse (which breaks down selectively under divided attention),
and suggests a general capacity limit on human decision making
under cognitive load.
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