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Abstract

MATCH, an Atom-Typing Toolset for Molecular Mechanics Force Fields, was recently developed 

in our lab. Here, we assess the ability of MATCH-generated parameters and partial atomic charges 

to reproduce experimental absolute hydration free energies for a series of 457 small neutral 

molecules in GBMV2, GBSW and FACTS implicit solvent models. The quality of hydration free 

energies associated with small molecule parameters obtained from ParamChem, SwissParam and 

Antechamber are compared. Given optimized surface tension coefficients for scaling the surface 

area term in the nonpolar contribution, these automated parameterization schemes with GBMV2 

and GBSW demonstrate reasonable agreement with experimental hydration free energies (average 

unsigned errors of 0.9–1.5 kcal/mol and R2 of 0.63–0.87). GBMV2 and GBSW consistently 

provide slightly more accurate estimates than FACTS while Antechamber parameters yield 

marginally more accurate estimates than the current generation of MATCH, ParamChem and 

SwissParam parameterization strategies. Modeling with MATCH libraries that are derived from 

different CHARMM topology and parameter files highlights the importance of having sufficient 

coverage of chemical space within the underlying databases of these automated schemes and the 

benefit of targeting specific functional groups for parameterization efforts in order to maximize 

both the breadth and depth of the parameterized space.
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I. INTRODUCTION

In molecular mechanics simulations, ligand parameterization procedures are traditionally 

computationally intensive and can represent a bottleneck in structure-based drug design. 

Thus, it is imperative that information about well-parameterized compounds be leveraged to 

describe novel compounds under investigation and that rapid optimization strategies be 

developed that are transferable across a wide variety of functional groups. Several 

publically-available resources exist that generate topology and parameter files for a 

molecule of interest so that further molecular modeling may be performed in combination 

with established macromolecular force fields.
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Automated ligand parameterization tools assume that the bonded parameters (i.e. force 

constants and equilibrium bond lengths, angles and torsions) and van der Waals parameters 

are relatively independent of the environment and so it is straightforward to assign these 

parameters for a novel compound given an extensive database of parameters for known 

compounds. To devise partial charges for each atom in a novel molecule there are two 

distinct strategies used. The first strategy, employed by the ligand parameterization program 

Antechamber, uses a restrained electrostatic potential to generate charges for the entire 

molecule concurrently, often based on ab initio calculations or parameterized methods that 

mimic these charge distributions. In contrast, tools such as MATCH, ParamChem and 

SwissParam use a fragment-based approach, where charge distributions of a molecule are 

built-up from charges that are assigned to the component fragments of the molecule. 

Halgren, in developing the MMFF94 force field, first proposed bond charge increment 

“rules” in which optimal charges are determined for fragments of molecules and these 

fragments are then pieced together to construct charge distributions for novel compounds1.

All three fragment-based approaches mentioned above have become available recently for 

generating CHARMM-compatible ligand parameters and charge distributions. In our lab, the 

toolset of program libraries collectively titled Multipurpose Atom-Typer for CHARMM 

(MATCH) has been released.2 The MATCH program itself was developed to learn atom-

type definitions and bond charge increment rules from an arbitrary force field and MATCH 

libraries have been constructed by inferring atom-type definitions, parameters and bond 

charge increment rules from the CHARMM Generalized Force Field (CGENFF) topology 

and parameter files.3 MATCH parameters and a topology file for a given ligand can be 

obtained by uploading a small molecule PDB, mol, mol2 or sdf files via a web-interface 

(http://brooks.chem.lsa.umich.edu/software) or, alternatively, the MATCH source code and 

libraries can be downloaded and further customized for local use. In their on-going work to 

develop CGENFF, the Mackerell lab devised ParamChem, using a strategy similar to ours, 

which generates topology and parameter files for novel molecules given general rules based 

on CGENFF. These ParamChem topology and parameter files can be obtained by uploading 

a small molecule mol2 file to the ParamChem web-based facility (http://

www.paramchem.org). The molecular modeling group at the Swiss Institute of 

Bioinformatics recently released SwissParam, a web interface (http://www.swissparam.ch) 

that generates CHARMM or GROMACS-compatible parameter and topology files in which 

the van der Waals parameters are assigned from the closest atom type in CHARMM22 and 

the remaining parameters and partial charges are derived from the Merck Molecular Force 

Field (MMFF).1,4 While it is assumed that there may be some noise present by combining 

information from CHARMM22 and MMFF, this strategy takes advantage of the breadth of 

the chemical space covered by MMFF that is not explicitly represented in CGENFF.

Several studies have investigated the quality of automated parameterization tools by 

generating parameters for a diverse set of small organic molecules and computing their 

hydration free energies.5 Mobley et al. used Antechamber, the AMBER facility that 

generates ligand parameter and topology files using the General Amber Force Field (GAFF). 

Given the GAFF parameters and utilizing implicit solvent simulations, Mobley et al. 

computed the absolute hydration free energies for 499 small organic molecules and found 

that they agreed with those obtained from experiment to within ~2 kcal/mol.6 In a 

Knight et al. Page 2

J Comput Chem. Author manuscript; available in PMC 2015 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://brooks.chem.lsa.umich.edu/software
http://www.paramchem.org
http://www.paramchem.org
http://www.swissparam.ch


subsequent study, Mobley et al. found improved agreement between the calculated and 

experimental hydration free energies using the TIP3P water model in explicit solvent 

simulations for the same database of compounds, with RMS errors of 1.2 kcal/mol.7 In our 

recent study, where we optimized the surface tension coefficients for scaling the surface area 

term in the nonpolar contribution, most implicit solvent models demonstrated reasonable 

agreement with experimental hydration free energies with average unsigned errors=1.1–1.4 

kcal/mol and R2=0.66–0.81.

Shivakumar et al. recently investigated a database of 239 small molecules; all but 18 of 

which were contained in the database that was studied by Mobley et al.6,7 In their study, 

they evaluated the quality of hydration free energies that were computed for different force 

field parameters combined with implicit and explicit solvent.8,9 Originally, calculated 

hydration free energy estimates for these 239 compounds were obtained using GAFF and 

CHARMm-MSI ligand parameters combined with charge assignments from ChelpG, RESP 

or AM1-BCC protocols. Overall, ligands modeled using the GAFF charge strategy in 

explicit TIP3P solvent environment provided the best agreement for the calculated hydration 

free energies compared with experimental values; specifically, GAFF parameters yielded an 

R2 of 0.87 while the CHARMm-MSI/AM1-BCC parameters resulted in an R2 of 0.76.8 In a 

more recent study, Shivakumar et al. computed hydration free energies from explicit solvent 

simulations using the OPLS-AA force field and charge parameterization scheme and 

achieved even better agreement with experiment (R2=0.94).9

In this work, we compare the ability of MATCH, ParamChem, SwissParam and GAFF, to 

generate parameters for a diverse set of small molecules and to reproduce their respective 

experimental absolute hydration free energies. Given MATCH's ability to learn atom-type 

definitions and bond charge increment rules, we also evaluate the quality of alternative 

MATCH libraries that are constructed from non-CGENFF CHARMM topology and 

parameter files. This analysis allows us to assess the value that is associated with enhancing 

the breadth and quality of the parameters that are already included in a given force field in 

terms of its ability to be used to extend to novel chemical contexts.

II. THEORY

Overview of implicit solvent models

The specifics of each implicit solvent model are already fully documented in the original 

papers and, in our recent study, we have highlighted the fundamental differences among the 

implicit solvent models that are investigated here.10 GBMV2 and GBSW models decompose 

the total hydration free energy into an electrostatic component and a nonpolar component 

and they employ variations of the Generalized Born model to approximate the electrostatic 

contribution to the solvation free energy. The GB formalism originally proposed by Still and 

coworkers is described by the equation11:

(1)
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where rij is the distance between the charges qi and qj, εm and) εsolv are the dielectric 

constants assigned to the solute molecule and solvent respectively, N is the number of solute 

atoms, αi is the effective Born radius for atom i and κ has a value of 4 in the work of Still et 

al.11 and typically is set between 2 and 10.12 The effective Born radius of each solute atom 

reflects the degree of its burial within the molecule and becomes the key parameter for the 

calculation of the electrostatic contribution to the solvation free energy. The effective Born 

radius for atom i can be calculated from the atomic electrostatic self-solvation energy in the 

Born equation13 (Eq 1):

(2)

The primary advantage of GB models lies in their ability to estimate the Born radii by 

alternative, computationally-efficient means. Here, we focus primarily on volume-based GB 

models where the Coulomb Field Approximation (CFA), which approximates the electric 

displacement around an atom by the Coulomb field, is used to estimate the magnitude of the 

Born radius:

(3)

where Ri is the intrinsic radius of atom i (the Born radius in the absence of all other atoms) 

which is often set equal to the van der Waals radius and where the second term is the 

Coulomb field integral which is computed over the volume of the solute excluding the 

sphere of radius Ri around atom i. Different flavors of GB models employ alternative 

approaches to calculating and scaling this integral and some include higher order correction 

terms to account for limitations in the CFA that arise from off-center charges and non-

spherical volumes of many systems.

GBMV214,15 is a five-parameter analytical Generalized Born Molecular Volume model in 

which the molecular volume is constructed from a superposition of atomic functions. 

GBMV2 includes an empirical correction term, ΔG1
elec, to the Coulomb field 

approximation, ΔG0elec, based on a measure for the deviation from the ideal spherical shape 

such that:

(4)

where the effective Born radii are estimated from:

(5)

In this formalism, A4 is related to the Coulomb Field term in Eq. 3 and A7 to the correction 

term, such that:
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(6)

and

(7)

The fundamental advantage of this analytical approach over the grid representation is that 

forces are readily expressed.

Generalized Born with a smooth SWitching function model, or GBSW16, alleviates the 

numerical instability of solvent force calculations arising from discontinuities in the 

dielectric boundary by using a simple polynomial switching function to smooth the 

dielectric boundary. In the original GBSW formalism, a van der Waals surface 

representation replaces the more expensive molecular surface representation in GBMV. In 

GBSW, the two parameters C0 and C1 in Eq. 5 (with S=1 and D=0) are obtained for various 

smoothing lengths, 2w, to reproduce the exact self-solvation free energies from Poisson 

theory using a van der Waals definition of the dielectric boundary. With the smooth 

switching function, the Coulomb term is described by:

(8)

and the correction term is described by:

(9)

where V(r,{rα}) is the solute interior volume and is defined by:

(10)

and where the atomic volume exclusion function, Hi(r), is given by:

(11)

where {RPB} are the set of atomic radii that are used to define the dielectric boundary in the 

PB calculations.

The GBMV2 and GBSW implicit solvent models approximate nonpolar contributions to the 

total hydration free energy using a solvent-accessible surface area term. In traditional MM-
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PBSA and MM-GBSA methods, the total molecular solvent-accessible surface area, SASA, 

is used and the nonpolar contribution is described by:

(12)

where γ and β are the surface tension parameter and off-set values respectively.

In this study, we also consider the Fast Analytical Continuum Treatment of Solvation model, 

FACTS17, that was recently developed by Caflisch and coworkers.17,18 This empirical 

strategy is significantly different from the above GB models in that it does not assume the 

Coulomb Field approximation and does not require the dielectric boundary between the 

solvent and solute to be defined. Instead FACTS is based on the analytical evaluation of the 

volume, Ai, and spatial symmetry, Bi, of the solvent that is displaced from around solute 

atom i. These two measures are combined in empirically parameterized equations to 

approximate the self-electrostatic energies:

(13)

where ao and a1 are determined by using the limiting cases of a fully buried and fully 

exposed atom respectively. The other parameters: b1, b2, a2, a3 and Rsphere (which defines 

the solute volume considered in calculating Ai and Bi) are optimized for each van der Waals 

radius. The self-electrostatic energies then provide the effective Born radii via Eq. 2. 

Similarly, the solvent-accessible surface area is approximated by:

(14)

and its corresponding parameters are optimized to reproduce exact SASA values. Since the 

FACTS model only requires the vectors between neighboring atom centers it is significantly 

faster than the corresponding families of GBMV and GBSW calculations and has been 

documented to be only four times slower than vacuum calculations.17

III. METHODS

Small molecule database

A large database of 499 small neutral organic compounds has been studied previously.10 

The original database was made available from Mobley et al.7 which in turn was compiled 

from molecules from Rizzo et al.19, Guthrie20 and their earlier studies.21,22 Five duplicate 

compounds were identified in the original database of 504 compounds and were removed. 

This database contains a wide variety of chemical environments that are commonly 

encountered in drug design applications, including saturated and unsaturated hydrocarbons, 

aromatic and heterocyclic rings, halides and polar functional groups. Checkmol23 was used 

to classify the functional groups that are represented in each molecule.
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Small molecule parameterization

AMBER GAFF5/AM1-BCC24,25 parameters and partial charges for all compounds in the 

database were obtained directly from the supplementary materials provided by Mobley et 

al.7 and the AMBER prmtop files were converted to the corresponding CHARMM topology 

and parameter files using the conversion tool AMBER2CHARMM as described 

previously.10 Sets of ParamChem and SwissParam parameters and partial charges were 

obtained by uploading the 499 mol2 files to the ParamChem (http://www.paramchem.org) 

and SwissParam (http://www.swissparam.ch) interactive websites, respectively. A MATCH 

library designated MATCH(cgenff_c36a) was constructed based on the CGENFF topology 

and parameter files in the c36a release of CHARMM (toppar/all36_cgenff.rtf and toppar/

all36_cgenff.prm respectively). Another MATCH library designated MATCH(cgenff) was 

constructed from the CGENFF topology and parameter files in the c36b release which 

included updated parameters for several compounds. A third MATCH library designated 

MATCH(combined) was constructed from the union of five non-CGENFF CHARMM force 

field topology and parameter files, specifically, the force fields for proteins (toppar/

all22_prot), nucleic acids (toppar/all27_na), carbohydrates (toppar/all35_carb), ethers 

(toppar/all35_ethers) and lipids (toppar/all36_lipid). To construct this MATCH(combined) 

library, a consistent atom type convention had to be developed in order to incorporate 

information from the individual CHARMM topology and parameter files. In most cases, 

individual force fields had the same parameter assignments for a given atom type definition. 

However, in the few cases in which two force fields assigned different parameters for a 

given atom type definition information from the more recently developed force field was 

incorporated into the MATCH(combined) library. Sets of MATCH parameters and partial 

charges for the ligands in the small molecule dataset were subsequently obtained based on 

these MATCH libraries.

Molecular dynamics simulations and analysis

Simulation trajectories were generated for each MATCH(cgenff_c36a) molecule in both 

vacuum and the GBMV2 implicit solvent environment. No cutoffs were used; covalent 

bonds involving hydrogen atoms were constrained using the SHAKE26 algorithm and the 

time step was 1.5 fs. The temperature was maintained near 298 K by coupling all heavy 

atoms to a Langevin heat bath using a frictional coefficient of 10 ps−1. Simulation 

trajectories were 10.5 ns in length. Snapshots were saved every 5 ps throughout the last 10 

ns for subsequent free energy analysis with each combination of parameterization scheme 

and implicit solvent model. Simulation trajectories were generated and energy evaluations 

associated with the GBSW and FACTS implicit solvent models were obtained using the 

CHARMM molecular dynamics package c36b6.27,28 Simulations were analyzed by the 

Bennett Acceptance Ratio method (BAR)29 using a modified version of pyMBAR.30 All 

simulations and calculations were performed on dual 2.66 GHz Intel Quad Core Xeon 

CPUs.

The GBMV2 model used a Lebedev angular integration grid with grid size of 38, geometric 

cross-term in the Still equation and κ=8 in Eq. 1; the multiplicative factor, S, and shift, D, of 

αi in Eq. 5 were 0.9085 and −0.102 respectively. For the GBSW calculations, the half 

smoothing length, w, was 0.3 Å; the grid spacing in the lookup table was 1.5 Å and the 
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optimized default values for the coefficients for the Coulomb Field approximation and 

correction terms were used (i.e. Co and C1 in Eq. 5). The GBMV2 and GBSW intrinsic radii 

were assigned from the van der Waals radii. Default FACTS parameters were employed 

with infinite nonbonded cutoffs. FACTS parameters were used that had been optimized for a 

solute dielectric constant of 1. van der Waals radii which had not been investigated in the 

original FACTS study had their FACTS parameters estimated by interpolation or 

extrapolation from the optimized FACTS parameters using the “tavw” option in CHARMM. 

To be consistent with the FACTS parameterization strategy, polar hydrogens were assigned 

van der Waals radii of 1.0 Å.

The nonpolar contribution was estimated from Eq. 12 in which the surface tension 

parameter, γ, was optimized with β=0. Nonpolar contributions were computed for each value 

of γ between 0.0 and 0.025 kcal/(mol·Å2) in increments of 0.0025 kcal/(mol·Å2) and the 

optimal surface tension coefficient was identified for each combination of parameterization 

scheme and implicit solvent model to be the value of γ that minimized the average unsigned 

error for the compounds that were included in the CHARMM CGENFF topology file. Thus, 

for a given parameterization scheme and implicit solvent model, a single optimized surface 

tension parameter was identified from the analysis of the CGENFF set of compounds and 

was used to compute the total hydration free energy for every compound.

IV. RESULTS & DISCUSSION

Coverage of automated parameter generation schemes

Of the 499 compounds in the full dataset for which GAFF parameters and AM1-BCC 

charges were already available, parameters and atomic charges were successfully generated 

for 491 and 468 compounds by MATCH(cgenff_c36a) and ParamChem, respectively. 

ParamChem successfully generated parameters for eight compounds for which 

MATCH(cgenff_c36a) failed while MATCH(cgenff_c36a) successfully generated 

parameter files for five compounds for which ParamChem failed. In total, 460 compounds 

were successfully processed by both parameterization schemes. SwissParam parameter and 

topology files were generated for all 460 compounds, except for ammonia and methane. 

GAFF parameter and topology files were available for all 460 compounds; however, N,N-

dimethyl-p-nitrobenzamide was removed from the dataset because the energies that were 

calculated for this compound based on the trajectories that were generated from the MATCH 

parameters were extremely large. For ease of comparison across the parameterization 

schemes, this study focuses on the 457 compounds that were successfully processed by these 

four parameterization schemes. This dataset encompasses 82 compounds that are explicitly 

included in the CHARMM CGENFF topology file and 375 compounds for which 

parameters and atomic charges needed to be extrapolated and interpolated from known 

parameters. In essence, the 82 compounds were part of the training set for developing the 

MATCH libraries and ParamChem rules while the 375 compounds can be considered to be a 

test set. During this course of this analysis, an updated version of CGENFF was released 

(CHARMM version c36b), so results are reported for the MATCH libraries constructed 

from the latest version of CGENFF (MATCH(cgenff)).
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For each parameterization scheme and implicit solvent model, the optimal nonpolar surface 

tension parameter, γ, was identified as the value that yielded the lowest average unsigned 

error (AUE) in the absolute hydration free energies among the 82 compounds that are 

included in the CHARMM CGENFF topology file. Given these optimal values for γ, the 

measures of model quality are summarized in Table 1.

Recapitulating charge distributions for CGENFF compounds

The set of 82 molecules found in CGENFF were included in the training sets used by both 

MATCH(cgenff) and ParamChem to devise the underlying bond charge increment (BCI) 

rules in their respective parameterization strategies. Comparing the predicted partial charges 

that are based on these BCI rules with the original charges in the CGENFF topology file 

provides an estimate of the error that is specifically associated with the process of learning 

and re-applying the rules. Of the 1038 atoms in the 82 CGENFF molecules in this dataset, 

MATCH(cgenff) and ParamChem reproduce the CGENFF partial charge assignments within 

0.005 e− for 1022 and 997 atoms, respectively. For the remaining atoms, the partial charge 

differences are quite small and are less than 0.03 e− and 0.06 e− for MATCH(cgenff) and 

ParamChem, respectively. Deviations in the MATCH(cgenff) parameters are primarily due 

to the decision to keep the learned rules more general rather than permit highly specific 

definitions that while they would exactly reproduce the CGENFF charges they would likely 

be less transferable. In most cases, the local environment for atom type definitions was 1–2 

bonds while the refinement rules for assigning bond-charge increments was 2–3 bonds from 

a given atom. The largest deviations between MATCH(cgenff) and the original CGENFF 

topology file arises from the inability of MATCH(cgenff) to reproduce partial charge 

distribution in CGENFF amines. For example, the H41 and H42 atoms in cytosine 

derivatives modeled in CGENFF have identical bond connectivity but different chemical 

environments due to the three-dimensional shape of the molecule. In this case, in CGENFF 

the H41 and H42 atoms are assigned partial charges of 0.37 e− and 0.32 e−, respectively, 

whereas MATCH(cgenff), which is based on bond connectivity alone, assigns partial 

charges of 0.345 e− to both hydrogen atoms, i.e., the average of 0.37 e− and 0.32 e−.

However, while the changes in the partial charge assignments are relatively small, they do 

affect the estimated hydration energies. Figure 1 depicts the partial charge assignments and 

estimated hydration free energies for the three compounds that have deviations in molecular 

dipoles for ParamChem relative to the CGENFF compounds that are greater than 0.1 D. 

Note: there were no MATCH(cgenff) compounds whose dipoles differed from CGENFF by 

more than 0.1 D. The ParamChem partial charge distribution for chloroethane improves the 

quality of the estimated hydration free energy relative to the corresponding CGENFF 

estimate value while the partial charge distributions for pyrrole and fluorobenzene degrade 

the estimate.

Overall quality of absolute hydration free energy estimates for different parameterization 
schemes

The quality of the hydration free energies of the compounds in the small molecule dataset is 

summarized in Table 1 and provides a direct measure of the ability of the automated 

parameterization schemes to characterize the chemical space of a given compound as well as 
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the quality of the parameters in the CGENFF topology file. MATCH(cgenff) and 

ParamChem parameters modeled with GBMV2 and GBSW implicit solvent models 

demonstrate good agreement with experimental hydration free energies across the 82 

CGENFF compounds with AUEs of 0.94 to 0.99 kcal/mol and R2 values between 0.81 and 

0.85. Over half of the CGENFF compounds (57–62%) have hydration free energies that are 

correctly predicted within 1 kcal/mol of their experimental values. Most of the compounds 

(90–93%) have hydration free energies that are correctly predicted within 2 kcal/mol and 

almost all of the compounds (99–100%) have hydration free energies that are correctly 

predicted within 3 kcal/mol. Given that these compounds are the ones from which the 

libraries and databases of atom-typing definitions and bond-charge increment rules are 

derived, these results can be seen as the upper bound of the quality that can currently be 

expected from either MATCH(cgenff) or ParamChem automated parameterization 

strategies.

The overall quality of hydration free energy estimates using the MATCH and ParamChem 

parameterization schemes are comparable to those obtained when the small molecules are 

modeled with AMBER/GAFF parameters and AM1-BCC charges (AUEs of 0.88 to 0.95 

kcal/mol and R2 values of 0.84–0.87) and SwissParam (AUEs of 0.99–1.12 kcal/mol and R2 

values of 0.80–0.82). The percentage of compounds whose hydration free energies were 

correctly predicted within 1 kcal/mol of the experimental values by SwissParam is 

comparable to the other parameterization strategies. However, the results for correct 

predictions within 2 and 3 kcal/mol were slightly degraded to 77–84% and 93–96% 

respectively.

Extending parameterization schemes to novel contexts

For the remaining 375 compounds that are not included in the CHARMM CGENFF 

topology file, the quality of the hydration free energies of these compounds is a more direct 

measure of the ability of MATCH or ParamChem to extend their respective atom-typing and 

parameterization schemes to novel contexts. MATCH(cgenff) and ParamChem parameters 

modeled with GBMV2 and GBSW implicit solvent models demonstrate reasonable 

agreement with experimental hydration free energies across these 375 compounds with 

AUEs between 1.4 and 1.5 kcal/mol and R2 values between 0.63 and 0.69. For this dataset, 

slightly less than half (41–45%) of the compounds have hydration free energies that are 

correctly predicted within 1 kcal/mol of their experimental values. About three-quarters of 

the compounds (71–74%) have hydration free energies that are correctly predicted within 2 

kcal/mol and about ninety percent (89–92%) have hydration free energies that are correctly 

predicted within 3 kcal/mol.

Interestingly, just as the quality of the MATCH(cgenff) and ParamChem estimates of the 

hydration free energies of the compounds in the CGENFF training set was higher by ~0.5 

kcal/mol compared with estimates for the non-CGENFF test set compounds, the quality of 

the estimates based on the GAFF/AM1-BCC parameterization scheme was ~0.4 kcal/mol 

higher for the CGENFF compounds than the non-CGENFF compounds. The AUEs for the 

375 test compounds modeled by GAFF/AM1-BCC are 1.2–1.3 kcal/mol while the R2 values 

are 0.70–0.76. Since AM1 charges are assigned de novo for each molecule and BCC 
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corrections were parameterized with an extensive training set of 2775 compounds that 

spanned the functional space represented in the CGENFF and non-CGENFF sets, the 

CGENFF training set/test set designations should not be applicable for AM1-BCC 

parameterization scheme. Thus, the poorer estimates of the hydration free energies for the 

test compounds over the training set compounds suggest that the compounds in the test set 

are inherently more challenging to model than those in CGENFF. The SwissParam 

parameters also yielded a slight degradation (~0.2–0.4 kcal/mol) in the quality of the 

hydration free estimates for the test set relative to the training set of compounds. The AUEs 

for the 375 compounds modeled with SwissParam are 1.2–1.5 kcal/mol and had the largest 

R2 values of any parameterization scheme of 0.72–0.74.

Targeting chemical classes for further parameter optimization

Across the 82 CGENFF compounds, a subset of the full CGENFF training set, as well as the 

test set of 375 compounds, the AUEs for the majority of the chemical classes are less than 

1.5 kcal/mol. Figure 2 summarizes the AUEs of the compounds within each chemical class 

designation for each of the parameterization schemes with the GBMV2 implicit solvent 

model. Systematic deviations of computed hydration free energies relative to experiment are 

observed for several classes of compounds. Reliably reproducing experimental hydration 

free energies is challenging given the inherent limitations that exist in representing 

molecular charge distributions using a fixed-charge scheme rather than explicitly modeling 

the polarization. Furthermore, approximations that are made in the implicit solvent models 

and especially by representing the nonpolar contributions using a single optimized 

parameter, γ, for the surface tension coefficient may contribute to lower estimates of 

experimental hydration free energies. However, the differences in the quality of the 

hydration free energies that are observed across the chemical groups that are highlighted 

here are likely dominated by the challenges that arise in extending parameterization schemes 

to chemical space that is not well-represented in the training data, Figure 3 focuses on 

specific chemical classes that may be targeted for further parameterization efforts. These 

parameterization efforts can be viewed as increasing the breadth of compounds that are 

reliably covered by these automated rules or increasing the depth of the meaningful 

coverage of a particular region of chemical space.

First, Figure 3A highlights the AUEs for the four chemical classes of compounds that have 

errors in their respective hydration free energy estimates that are more than 1 kcal/mol larger 

for the non-CGENFF compounds relative to the CGENFF compounds: iodo-, carboxylic 

acid amides (ca_amide), chloro-alkyl, ether-aryl compounds. The low AUEs in the context 

of CGENFF compounds and high AUEs in the context of non-CGENFF compounds for 

MATCH(cgenff) and ParamChem suggest that the learned rules in MATCH(cgenff) and 

ParamChem for these contexts are not sufficiently transferable to accurately model the 

chemical space associated with these groups. For example, the rules for iodine-containing 

compounds are severely limited in MATCH(cgenff) because the CGENFF topology file 

only contains iodobenzene. Thus, it is not surprising that the AUE for the iodo- compounds 

is so large when there are exclusively aliphatic iodo- compounds in the non-CGENFF test 

set. While there is extensive coverage of the carboxylic acid amide chemical class in 

CGENFF topology file with examples of primary, secondary and tertiary amides, the three 
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compounds in the ca_amide group that perform particularly poorly are ones in which the 

amide is a substituent on a ring and there are no examples of this type in the CGENFF 

dataset.

The chloro_alkyl group in the CGENFF dataset is limited to three compounds: 

111_trichloroethane, chloroethane and 11_dichloroethane. This coverage is insufficient to 

characterize the bond charge increments of the wide variety of aliphatic halide compounds 

in the nonCGENFF dataset. Unlike compounds in the iodo- and ca_amide groups in which 

both MATCH(cgenff) and ParamChem yield similar errors in their respective hydration free 

energies, several compounds in the chloro_alkyl group are modeled differently by 

MATCH(cgenff) compared with ParamChem. For example, MATCH(cgenff) yields poor 

hydration free energies for molecules that contain chloro groups on opposite sides of the 

molecule (e.g., 1,4-dichlorobutane, bis-2-chloroethylether and 1,1,2,2,-tetrachloroethane) 

whereas the high AUE for the chloro_alkyl group for ParamChem results from molecules 

that have three fluorine atoms bound to the same aliphatic carbon (e.g., isoflurane, 

halothane, 1_chloro_222_trifluoroethane). Thus, the degradation in hydration free energies 

for these latter molecules likely results from a less than ideal bond charge increment for 

fluoride rather than there inherently being a problem with modeling compounds containing 

chlorine. Finally, the degradation observed in the ether-aryl class of compounds is 

dominated by the error in modeling N,N-dimethyl-p-methoxybenzamide which suggests that 

the issue lies in the poor parameterization of the amide (as observed with the ca_amide 

group) rather than the ether functionality itself. Thus, while no specific parameterization 

efforts are required to improve the quality of the ether-aryl group, the larger errors for 

compounds in the iodo-, ca_amide and chloro_alkyl groups clearly suggest that subsequent 

generations of MATCH libraries and ParamChem rules would benefit from a broader 

template of well-parameterized training compounds for these chemical classes.

Second, examining the classes of compounds for which the AUEs differ significantly 

between force fields can be informative for identifying possible strategies for improving the 

parameterization of a particular functional group. Figure 3B highlights the AUEs in the 

chemical classes whose errors deviate by more than 1 kcal/mol between the 

MATCH(cgenff) and the ParamChem parameterization schemes. The AUE for the fluoro 

compounds in the CGENFF set are similar for MATCH(cgenff) and ParamChem. However, 

as depicted in Figure 1, the partial charge distribution for fluorobenzene modeled by 

ParamChem is significantly different from that modeled by MATCH(cgenff) and CGENFF 

itself. The underlying differences in the bond charge increment rules leads to larger 

differences when modeling the non-CGENFF compounds and the average error for 

ParamChem is about 1 kcal/mol larger than for MATCH(cgenff). In fact, ParamChem has 

the most difficulty producing accurate hydration free energies for molecules with multiple 

fluorine atoms bound to the same aliphatic carbon. Thus, it is likely that additional 

refinement rules within the ParamChem parameterization scheme could ameliorate the 

hydration free energies for this class.

Next, given the systematically poorer results for the alcohols, aldehydes, bromo- and ether 

alkyl groups modeled by SwissParam compared to the other force fields (see Figure 3C), 

further parameterization of these specific groups by the SwissParam developers would likely 
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further strengthen SwissParam's performance. In fact, the aldehyde compounds yield the 

highest error for any group modeled by SwissParam with AUEs of 3.12 kcal/mol for 

CGENFF molecules and 2.56 kcal/mol for non-CGENFF molecules. In general, in these 

compounds, the partial charges assigned by SwissParam to the functional groups are 

systematically larger in magnitude than the corresponding charges modeled by 

MATCH(cgenff), ParamChem and GAFF. Schematics for compounds with the largest 

differences and the partial charge assignments across the force fields are presented in the 

Supplementary Materials.

Finally, the ca_ester, alkene and thioether classes of compounds are the only three classes 

that demonstrate a systematic degradation in the AUE for MATCH/ParamChem models 

compared to SwissParam and GAFF/AM1-BCC for the CGENFF molecules (see Figure 

3D). These groups have AUEs of 2.6, 2.2 and 1.8 kcal/mol respectively in MATCH(cgenff) 

and ParamChem. The decrease in the quality of the esters (ca_ester) and alkenes for both 

MATCH(cgenff) and ParamChem is correlated with a systematic increase in the magnitude 

of the CGENFF partial charges of the respective functional groups compared with those 

assigned by SwissParam and GAFF parameterization schemes. For example, 

MATCH(cgenff) and ParamChem assign an average of 0.90 e− to the carboxyl carbon of the 

esters which is ~50% larger than the corresponding partial charges assigned by SwissParam 

and GAFF. Similarly, the hydrogen atoms at the end of conjugated alkenes have partial 

charges of 0.21 e− in MATCH(cgenff) and ParamChem compared with 0.10–0.15 e− in 

SwissParam and GAFF. The thioether class in CGENFF only has one member: 

methylethylsulfide. In this case, the CGENFF assigned partial charge of the sulfur atom is 

−0.1 e− while SwissParam and GAFF assign partial charges of −0.46 and −0.30 e−, 

respectively, which contributes to the increase in the molecular dipole from 0.24 to 0.43 D. 

Thus, the CGENFF parameters for these three chemical classes could be targeted for further 

improvement to more reliably reproduce experimental hydration free energies. Of course, 

given the differences in the parameterization philosophies across these force fields, simply 

adopting the GAFF or SwissParam partial charges for these compounds in order to 

reproduce hydration free energies estimated with an implicit solvent model cannot guarantee 

that these parameters will transfer appropriately to simulations in more realistic 

biomolecular contexts.

FACTS implicit solvent model

FACTS is a recently developed implicit solvent model in which the Born radii are 

parameterized so that the electrostatic component of the hydration free energy is estimated 

from pairwise interactions alone. Specifically, in the FACTS parameterization, the ΔGelec is 

estimated from the density of neighboring atoms and their symmetrical arrangement around 

the atom in question. This parameterization scheme greatly increases the computational 

efficiency of the calculations; in fact, the original study reported that the computational 

expense was only four times that of the corresponding vacuum calculations. However, this 

strategy requires a higher degree of parameterization than other Generalized Born implicit 

solvent models.
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Table 1 also summarizes the measures of model quality for the four parameterization 

schemes when the solvent environment is represented by FACTS. In this study, it is clear 

that regardless of the ligand parameterization scheme, the FACTS implicit solvent model 

exhibits a slight, but systematic, degradation in the quality of the hydration free energies 

relative to either GBMV2 or GBSW implicit solvent models. The AUEs tend to be about 

0.2–0.3 kcal/mol higher for the FACTS models than either GBMV2 or GBSW models while 

the R2 values tend to be lower by 0.1 to 0.15. Thus, these results suggest that modeling with 

FACTS, especially in contexts where computational resources are limited, is a viable 

alternative to the more costly, though more accurate, implicit solvent models. Furthermore, 

many atom types in this work rely on interpolations and extrapolations from the values for 

FACTS parameterized radii; thus, the quality of the FACTS model will also likely improve 

as more van der Waals radii are specifically parameterized and made available to the 

community. These results also suggest that the FACTS implicit solvent model is transferable 

across these CHARMM-compatible force fields.

Combining Force Fields in CHARMM

The development of CGENFF in CHARMM attempts to create general atom types and 

parameters for model compounds and fragments that may be important in biomolecular 

simulations. This philosophy stands in contrast to that for previous CHARMM force fields 

where atom types and parameters were optimized for very specific chemical space within 

the biomolecules that were being simulated, e.g., proteins, nucleic acids, lipids. Using the 

automated approach of MATCH, we explored the ability of the union of the non-CGENFF 

“context-specific” CHARMM force fields to extrapolate their parameters to model the 

chemical diversity in the small molecule dataset.

From the resulting MATCH(combined) libraries, topology and parameter files were 

successfully generated for 73 of the CGENFF compounds and 277 of the non-CGENFF 

compounds in the dataset. It was not clear, though, how meaningful subsequent hydration 

free energy calculations would be for this parameterization scheme. Since each of these 

CHARMM force fields was optimized individually, there was the potential that combining 

them might produce non-physical results, particularly for compounds that would encompass 

chemical space that overlapped with two or more CHARMM force fields, i.e., where rules 

were learned from different force fields. Table 2 summarizes the measures of model quality 

obtained for these compounds in each of the implicit solvent models and shows that, for the 

compounds that it could parameterize from the MATCH(combined) libraries, that the 

compounds are modeled at a comparable level of quality to that observed from the 

MATCH(cgenff) library. For the set of 73 CGENFF molecules the combined force field 

achieved virtually the same quality as MATCH(cgenff) and, interestingly, for the more 

challenging test set of 277 compounds, the MATCH(combined) parameters exhibited a 

slight but systematic improvement over the MATCH(cgenff) parameters with AUEs of 1.3–

1.7 kcal/mol and R2 values of 0.55 to 0.73. Thus, even though the non-CGENFF CHARMM 

force field parameters are optimized for specific chemical environments, the high quality of 

results is likely a product of the consistency of the overall philosophy governing the 

developing of CHARMM force fields and the coherence of the optimization procedures.
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Examining the differences in hydration free energy estimates by chemical class may again 

be useful to determine if there is any chemical space that could be optimized in CGENFF. 

The comparison between AUEs by chemical class for MATCH(cgenff) and 

MATCH(combined) is summarized in Figure 4. The three chemical groups with the largest 

improvement in hydration free energy estimates compared to those produced using the 

charges from MATCH(cgenff) are the amines, aldehydes and thiols with improvements on 

average of 1.1, 0.8 and 0.7 kcal/mol respectively. For the amines, increases in the partial 

charge on the nitrogen were responsible for the cases where the combined MATCH force 

field significantly outperformed the MATCH(cgenff) force field. For example, in 

triethylamine the partial charge on the amine nitrogen atom changes from −0.63 e− in 

MATCH(cgenff) to −0.84 e− in MATCH(combined) and is compensated by increases in the 

partial charges assigned to the adjacent carbon atoms from 0.03 e− to 0.10 e− and, thus, an 

increase in the N-C dipole. By contrast, the differences in the partial charge distributions of 

the thiol compounds results in a reduction in the S-C dipole and an improvement in the 

hydration free energy estimates. Similarly, the difference in the performance for the 

aldehyde group is dominated by three compounds, i.e., E-but-2-enal, E-hex-2-enal, and E-

oct-2-enal in which the C=O dipole is systematically smaller in the MATCH(combined) 

parameterization. Thus, these three chemical classes that could be revisited in the CGENFF 

force field development and/or the MATCH(cgenff) libraries could be modified to 

incorporate the amine, aldehyde and thiol parameters and charge assignment rules.

V. CONCLUSION

We have recently developed MATCH, an Atom-Typing Toolset for Molecular Mechanics 

Force Fields, in our lab. This toolset is designed to construct force field-specific libraries 

containing parameters and bond charge increment rules that can be learned from the 

topology and parameter file for a given force field. Once constructed, the MATCH library 

can be used to assign parameters for an arbitrary compound provided that the chemical 

space represented in the compound was covered in the original force field.

We present a comparison of absolute hydration free energies that have been calculated for 

an extensive database of small neutral molecules using MATCH libraries constructed from 

CGENFF (MATCH(cgenff)) and a variety of CHARMM-compatible force fields in 

GBMV2, GBSW, and FACTS implicit solvent models. Of the 499 small molecules, 

topology and parameter files for 460 compounds were successfully generated from the 

ParamChem webserver and from the MATCH toolset libraries MATCH(cgenff), which were 

constructed from CGENFF. MATCH(cgenff) and ParamChem reproduce the partial charge 

distributions for most of the compounds in the dataset that were part of CGENFF.

Given optimized surface tension coefficients for scaling the surface area term in the 

nonpolar contribution, these automated parameterization schemes and GBMV2 and GBSW 

demonstrate reasonable agreement with experimental hydration free energies (average 

unsigned errors=0.9–1.5 kcal/mol and R2=0.63–0.87). The FACTS parameterization yielded 

hydration free energies that were slightly poorer than the GBMV2 and GBSW estimates, 

though at a fraction of the computational expense. Antechamber parameters (GAFF with 
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AM1-BCC partial charges) resulted in marginally more accurate estimates than the current 

generation of MATCH, ParamChem and SwissParam parameterization strategies.

This study highlights the importance of having sufficient coverage of chemical space within 

the underlying databases of these automated schemes and the benefit of targeting specific 

functional groups for parameterization efforts in order to maximize both the breadth and 

depth of the parameterized space. By analyzing the quality of hydration free energies 

associated with different chemical classes, it was clear that (i) MATCH(cgenff) and 

ParamChem would benefit from further specificity in their learned rules associated with the 

iodo-, amides attached to rings, and chloro-alkyl groups; (ii) ParamChem accuracy would 

improve with additional refinement rules for modeling fluorine-containing compounds; (iii) 

SwissParam could leverage parameters from other force fields to improve how alcohols, 

aldehydes, bromo- and ether alkyls are modeled to better reproduce experimental hydration 

free energies; (iv) and parameters in CGENFF for esters, thioethers and alkenes would need 

to be revisited to reproduce the quality of hydration free energy estimates that are observed 

with GAFF/AM1-BCC and SwissParam. Finally, modeling with MATCH libraries that were 

derived from the non-CGENFF CHARMM topology and parameter files indicates that 

amine, aldehyde, and thiol parameters in MATCH(cgenff) could be improved by 

incorporating parameters from the context-specific force fields in CHARMM.

The overall success of these automated strategies for parameterizing arbitrary compounds 

indicates that a critical step forward has been taken towards making biomolecular 

simulations more readily accessible for a wide range of applications involving small 

molecules. The quality of the hydration free energies given these CHARMM-compatible 

force fields and implicit solvent models is promising and sets the stage for a systematic 

evaluation of the quality of protein-ligand binding affinities.
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Figure 1. 
Schematic of the compounds whose partial charge distributions in ParamChem resulted in a 

molecular dipole difference of more than 0.01 Debye compared to the partial charge 

assignments in CGENFF. For clarity, only atoms whose ParamChem charges were more 

than 0.01 e− from CGENFF are labeled. Note: MATCH(cgenff) charges essentially 

reproduce the CGENFF charges for these compounds so are not labeled.
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Figure 2. 
Average unsigned errors of hydration free energies by chemical class for four different 

parameterization schemes in the GBMV2 implicit solvent model for the A) 82 molecules 

that are in CGENFF and B) the 375 compounds that are not included in CGENFF.
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Figure 3. 
Average unsigned errors of hydration free energies for specific chemical classes for (top 

panel) CGENFF molecules and (bottom panel) non-CGENFF compounds. Classes in which 

A) both MATCH(cgenff) and ParamChem have AUEs for the non-CGENFF set more than 1 

kcal/mol worse than the CGENFF set; B) MATCH(cgenff) performs 1 kcal/mol better or 

worse than ParamChem; C) SwissParam performs more than 1 kcal/mol poorer than the 

other force fields; and D) both MATCH(cgenff) and ParamChem perform more than 1 

kcal/mol poorer than either SwissParam or GAFF/AM1-BCC.
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Figure 4. 
Average unsigned errors of hydration free energies by chemical class for the 

MATCH(cgenff) and MATCH(combined) parameterization schemes in the GBMV2 

implicit solvent model for the A) 73 molecules that are in CGENFF and B) the 277 

compounds that are not included in CGENFF.
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Table 2

Overall measures of model quality (in kcal/mol) for absolute hydration free energy predictions for trajectories 

analyzed using the GBMV2, GBSW and FACTS implicit solvent models for the MATCH(cgenff) and 

MATCH(combined) libraries for the 73 CGENFF and 277 non-CGENFF compounds for which 

MATCH(combined) libraries successfully generated topology and parameter files.

Parameterization scheme: MATCH(cgenff) MATCH(combined)

Implicit solvent model: GBMV2 GBSW FACTS GBMV2 GBSW FACTS

CGENFF

Opt γ 0.0075 0.0075 0.0025 0.005 0.005 0.000

<|Error|> 1.00 0.94 1.24 1.00 1.00 1.24

<Error> −0.06 −0.21 0.14 −0.25 −0.06 −0.11

R2 0.835 0.805 0.660 0.820 0.752 0.645

% |Error|:

<3 kcal/mol 100 99 96 95 97 90

<2 kcal/mol 89 89 85 90 88 85

<1 kcal/mol 56 62 49 59 60 47

non-CGENFF

<|Error|> 1.52 1.46 1.71 1.34 1.29 1.57

<Error> 0.17 −0.19 0.36 −0.39 −0.15 −0.16

R2 0.665 0.671 0.547 0.715 0.730 0.593

% |Error|:

<3 kcal/mol 92 90 86 91 95 91

<2 kcal/mol 73 74 67 81 82 72

<1 kcal/mol 40 35 38 49 43 37
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