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SUMMARY

Human herpesvirus 6 (HHV-6) is a widespread betaherpesvirus
which is genetically related to human cytomegalovirus (HCMV)
and now encompasses two different species: HHV-6A and HHV-
6B. HHV-6 exhibits a wide cell tropism in vivo and, like other
herpesviruses, induces a lifelong latent infection in humans. As a
noticeable difference with respect to other human herpesviruses,
genomic HHV-6 DNA is covalently integrated into the subtelo-
meric region of cell chromosomes (ciHHV-6) in about 1% of the
general population. Although it is infrequent, this may be a con-
founding factor for the diagnosis of active viral infection. The
diagnosis of HHV-6 infection is performed by both serologic and
direct methods. The most prominent technique is the quantifica-
tion of viral DNA in blood, other body fluids, and organs by
means of real-time PCR. Many active HHV-6 infections, corre-
sponding to primary infections, reactivations, or exogenous rein-

fections, are asymptomatic. However, the virus may be the cause
of serious diseases, particularly in immunocompromised individ-
uals. As emblematic examples of HHV-6 pathogenicity, exan-
thema subitum, a benign disease of infancy, is associated with
primary infection, whereas further virus reactivations can induce
severe encephalitis cases, particularly in hematopoietic stem cell
transplant recipients. Generally speaking, the formal demonstra-

Published 11 March 2015

Citation Agut H, Bonnafous P, Gautheret-Dejean A. 11 March 2015. Laboratory
and clinical aspects of human herpesvirus 6 infections. Clin Microbiol Rev
doi:10.1128/CMR.00122-14.

Address correspondence to Henri Agut, henri.agut@psl.aphp.fr.

Copyright © 2015, American Society for Microbiology. All Rights Reserved.

doi:10.1128/CMR.00122-14

crossmark

April 2015 Volume 28 Number 2 cmr.asm.org 313Clinical Microbiology Reviews

http://dx.doi.org/10.1128/CMR.00122-14
http://dx.doi.org/10.1128/CMR.00122-14
http://crossmark.crossref.org/dialog/?doi=10.1128/CMR.00122-14&domain=pdf&date_stamp=2015-3-11
http://cmr.asm.org


tion of the causative role of HHV-6 in many acute and chronic
human diseases is difficult due to the ubiquitous nature of the
virus, chronicity of infection, existence of two distinct species, and
limitations of current investigational tools. The antiviral com-
pounds ganciclovir, foscarnet, and cidofovir are effective against
active HHV-6 infections, but the indications for treatment, as well
as the conditions of drug administration, are not formally ap-
proved to date. There are still numerous pending questions about
HHV-6 which should stimulate future research works on the
pathophysiology, diagnosis, and therapy of this remarkable hu-
man virus.

INTRODUCTION

In 1986, the discovery of a novel human herpesvirus was reported
in the journal Science (1). The importance of the finding was

amplified by the fact that this virus, finally designated human her-
pesvirus 6 (HHV-6), was initially isolated from patients with lym-
phoproliferative disorders and AIDS, raising the key question of
its pathogenicity. Since that time, the knowledge about this virus
and associated diseases has considerably improved, as extensively
reported in previously published overviews and books which re-
main relevant references (2–10). However, many questions on
those domains are still pending and constitute true challenges for
present and future research. How current tools of medical virol-
ogy and clinical studies may help researchers to investigate the
pathophysiology of HHV-6 infection and consider the means of
its control constitutes the core subject of the present review.

(Some of the data and concepts reviewed in the present text
have been discussed previously in part in an article referenced
herein [11] and in oral communications at the 7th and 8th Inter-
national Conferences on HHV-6 and HHV-7, which took place in
Reston, VA, in 2011 and in Paris, France, in 2013, respectively.)

VIRUS PROPERTIES

Discovery and Classification

HHV-6 was first isolated from the peripheral blood mononuclear
cells of patients with lymphoproliferative disorders in attempts to
characterize novel lymphotropic human viruses (1). A cytopathic
effect made of short-lived large refractile cells was observed in the
primary cell cultures and was shown to be transmissible to novel
cultures of phytohemagglutinin (PHA)-stimulated human leuko-
cytes. Electron microscopy confirmed virus production and re-
vealed a morphology of virus particles similar to that of herpesvi-
ruses. This included a capsid of icosahedral symmetry surrounded
by a tegument within an enveloped particle of about 200 nm in
diameter (12). The genomic DNA did not cross-hybridize with the
genomes of the five other known human herpesviruses, unambig-
uously demonstrating that the newly isolated virus was different
from them (13). HHV-6 was initially characterized as a human
B-lymphotropic virus, but it soon appeared that it was essentially
a T-lymphotropic virus, and it acquired its definite name (14).
Finally, based on both biological properties and genetic analyses,
HHV-6 was officially classified as a member of the Herpesvirales
order, Herpesviridae family, Betaherpesvirinae subfamily (the type
species of which is human cytomegalovirus [HMCV]), and Rose-
olovirus genus, together with human herpesvirus 7 (HHV-7), a
closely related herpesvirus discovered in 1990 (15). Following the
description of the initial HHV-6 strain, named GS, other proto-
typic HHV-6 strains, designated U1102, SIE, LHV, Z29, and HST,

were obtained in other laboratories, from HIV-infected patients,
mostly of African origin, but also from Japanese patients with exan-
thema subitum (16–20). Those isolates and the HHV-6 isolates ob-
tained subsequently were stratified into two well-defined, nonover-
lapping groups differing by specific genetic changes and phenotypic
properties. These two groups were designated variants A and B
(HHV-6A and HHV-6B) of the unique HHV-6 species (21). Twenty
years later, the differences between the two variants have been con-
sidered important enough to recommend the classification of
HHV-6A and HHV-6B as two distinct species (22). The term HHV-6
remains in usage and collectively refers to the two species.

Genome and Genetic Variability

The genome of HHV-6 is a linear double-stranded DNA consist-
ing of a unique (U), 143- to 145-kb region flanked by identical
terminal direct repeats (DRL and DRR) and having an overall ap-
proximate length of 162 to 170 kb (Fig. 1). The U region also
contains internal repeat arrays designated R1, R2, and R3. DRL

and DRR each contain short unique sequences, the conserved
cleavage-packaging motifs pac-1 and pac-2, and two stretches of
sequences related to the telomere repeat sequences (TRS) of ver-
tebrate chromosomes (5). The one near the left end of each DR
contains reiterations of the hexanucleotide GGGTTA interspersed
by related but different sequences, constituting the heterogeneous
telomeric-like region het(GGGTTA)n. The right end of each DR
contains perfect repeats of GGGTTA. These repeated sequences
likely play a major role in the process of chromosomal integration
of the HHV-6 genome (ciHHV-6) (see below). This integration
has been reported to occur through a junction between host chro-
mosomes and the perfect telomeric repeats at the right end of DRR

(23–25). The overall number of protein-encoding open reading
frames (ORFs) is about 110 to 120 according to the different pub-
lished nucleotide sequences (26–28). Most of them are located
within the U region, on both genomic strands. This unique region
presents strong similarities with that of HHV-7 DNA and the
unique long region of the HCMV genome. The core genes coding
for the virion proteins and enzymes involved in the virus replica-
tion cycle regroup into seven clusters, with each block being com-
posed of two to eight ORFs which are conserved among all her-
pesviruses and overlay the central part of the U region. In
addition, a betaherpesvirus-specific gene cluster and a roseolovi-
rus-specific set of genes are present at the left end of the core genes.
Several genes, such as U83 and U94, are unique to HHV-6.

FIG 1 Schematic representation of the HHV-6 genome. The genome is rep-
resented as a double-stranded DNA containing specific elements which are
described in the text. The repeat elements, shown as green and blue boxes,
include the identical terminal repeat sequences DRL and DRR, the internal
repeat arrays R1, R2, and R3, and the stretches containing repeat hexanucle-
otide sequences [(GGGTTA)n] within the DR regions. Purple straight lines
indicate the positions of the different sets of ORFs.
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The genetic variability of HHV-6 DNA is limited, with the nu-
cleotide identity among all published sequences exceeding 90% as
a whole. However, this identity rate differs according to the genes
considered, ranging from about 70% for the right part of the ge-
nome to about 95% for the central core genes. This genetic poly-
morphism can be analyzed at three different levels of complexity.
As mentioned above, HHV-6A and HHV-6B DNAs exhibit clear
specific differences which are scattered throughout the genome
and permit their easy recognition, without any ambiguity. These
specific signatures concern the rather variable genes of imme-
diate early region 1 (IE1) as well as the highly conserved genes
for glycoproteins B (gB) and H (gH) and the U94 product
(29–31). Some of the HHV-6A ORFs are thought to have no
HHV-6B counterpart and vice versa, although the prediction of
functional ORFs often remains debatable in the absence of rel-
evant experimental investigations. Taken as a whole, the differ-
ences between HHV-6A and HHV-6B are believed to induce no-
ticeable dissimilarities in the virus replication cycle, in particular
regarding splicing patterns and the temporal regulation of gene
transcription. Those differences may also affect the binding of
viral proteins to their cellular targets, which in turn may alter cell
tropism, interactions with the microenvironment, host immune
responses, and, ultimately, pathogenesis (4, 22). Note that no re-
combinant virus originating from a mixed infection with
HHV-6A and HHV-6B has ever been identified, although recent
results provide some evidence of recombination between
ciHHV-6A and ciHHV-6B (32). At an intermediate level of vari-
ability, the segregation of strains into distinct subgroups charac-
terized by specific genetic signatures has been reported for
HHV-6B isolates but not HHV-6A ones, based on the analysis of
IE1, gB, and gH genes (29, 33). However, this segregation is not
fully congruent, since it may differ according to the selected gene:
the subgroups derived from the phylogenetic analysis of gB gene
sequences did not exactly fit those derived from gH gene se-
quences. Conversely, the study of gB gene polymorphisms pro-
vided indirect evidence for genetic recombination among
HHV-6B subgroups, suggesting that this genetic process may con-
tribute to creating novel allelic combinations among these puta-
tive subgroups. The question remains as to whether the segrega-
tion into subgroups is not simply a misinterpretation of basic
interstrain polymorphism, which constitutes the lowest level of
variability. Overall, this genetic variability is low in terms of nu-
cleotide sequence, and even lower in terms of amino acid sequence
(34). However, despite its modest magnitude, the interstrain vari-
ability may provide useful markers for differentiating viruses in
molecular epidemiology studies (35). A particular aspect concerns
the number of TRS in the DR region, which does not depend
on the classification as HHV-6A or HHV-6B: it varies widely
among the different strains studied but remains stable for a given
isolate, even after numerous serial passages in cell culture, and that
property can be used to track specific HHV-6 strains in human
infections (36, 37). Nevertheless, previous reports mentioned that
the length of the DR region changed on viral passage in cell culture
in the case of HHV-6B strain Z29 (27, 38).

Cell, Tissue, and Host Tropism

HHV-6 infects a wide range of human cells in vitro, but it prefer-
entially replicates in activated CD4� T lymphocytes (3, 5). At least
one component of the cell receptor permitting virus anchorage to
the cell surface differs according to HHV-6 species: HHV-6A uses

CD46, a regulator of complement activation expressed on all nu-
cleated cells, while CD134 (also called OX40), a member of the
tumor necrosis factor (TNF) receptor superfamily present only on
activated T lymphocytes, functions as a specific entry receptor for
HHV-6B (39, 40). Note that CD46 is a receptor for other human
pathogens, including the vaccine strains of measles virus and Neis-
seria gonorrhoeae, behaving as a pathogen magnet (41). In addi-
tion to CD4� T lymphocytes, HHV-6 can infect in vitro CD8� T
lymphocytes (only with HHV-6A), human fibroblasts, natural
killer cells, liver cells, epithelial cells, endothelial cells, astrocytes,
oligodendrocytes, and microglial cells. However, its capacity to
infect continuous T cell lines is limited, and in many cases, it can
be obtained only through an adaptation process consisting of se-
rial blind passages of a primary isolate on the target cells. The
capability to infect different cell lines is generally higher for
HHV-6A than for HHV-6B and appears to be a phenotypic char-
acter for discriminating both species. As a whole, no continuous
cell line can be recommended for isolation of the virus. The pri-
mary isolation of HHV-6 from a human specimen usually re-
quires cocultivation with primary highly susceptible cells consist-
ing of peripheral blood mononuclear cells (PBMCs) or umbilical
cord blood lymphocytes.

As for HCMV, the host tissue range of HHV-6 in vivo appears to
be broader than might be expected from in vitro studies and in-
cludes the brain, tonsils, salivary glands, kidneys, liver, lymph
nodes, endothelial cells, and monocytes/macrophages (3, 42–48).
The latter cell types are suspected to be preferential sites for virus
latency, in parallel with bone marrow progenitors and central ner-
vous system (CNS) cells (49–51). Although HHV-6 infection is
naturally restricted to human cells and tissues, simian cells and
monkeys can be infected experimentally, but the availability of
this model is extremely low (52, 53). In transgenic mice expressing
human CD46 and infected with HHV-6A, the virus persisted in
the brain for months, and a significant inflammatory response
developed, opening the possibility of a rodent model for virus-
induced neuroinflammatory diseases (54, 55).

Replication Cycle

HHV-6 attaches to its cell receptor by means of a tetrameric viral
ligand complex made up of the glycoproteins H (gH), L (gL), Q1
(gQ1), and Q2 (gQ2) (8). Following attachment, HHV-6 entry
into cell occurs through a fusion between the viral envelope and
the cell membrane by a mechanism which involves gB and gH
functions but remains poorly understood. The nucleocapsid is
then transported through the cytoplasm to the nucleus, likely us-
ing the pathway of the microtubule network. HHV-6 DNA is re-
leased into the nucleoplasm. Viral genes are expressed in a tem-
porally ordered manner, starting with immediate early (IE) genes
from the IE-A locus, which is constituted of two genetic units, IE1
and IE2 (56–58). Those genes are transcribed in the absence of de
novo protein synthesis, and this step is followed by the transcrip-
tion/expression of early (E) and late (L) genes. The replication of
the genome occurs after the synthesis of E proteins, which have
enzymatic activities dedicated to nucleotide metabolism and DNA
synthesis, i.e., phosphotransferase, ribonucleotide reductase, ura-
cil-DNA glycosylase, origin-binding protein, DNA polymerase,
polymerase processivity factor, major DNA-binding protein, and
helicase-primase complex activities. Viral DNA is assumed to be
replicated through a rolling circle process. Progeny DNA is yielded
in the form of concatemeric strands, which are cleaved and pack-
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aged into capsid precursors thanks to specific cleavage-packaging
signals present in the DRL and DRR regions (8). The capsids exit
the nucleus, acquiring an intermediate envelope by budding
through the inner part of the nuclear membrane, are deenveloped
by fusion with the external part of this membrane, and appear as
tegumentary forms in the cytoplasm. The acquisition of the final
envelope carrying viral glycoproteins occurs in the trans-Golgi
network, and mature virions are released by exocytosis. The oc-
currence of a complete replication cycle, which lasts about 3 days,
has a major impact on host cell functions and morphology. In-
fected cells engaged in this virus-producing process ultimately die
by apoptosis and/or necrosis.

Latency and Reactivation

Like other human herpesviruses, HHV-6 persists indefinitely in its
host and is capable of reactivation, meaning the active production
of detectable mature virions in some body compartments follow-
ing a phase of apparently complete clearance. These properties
rely on the putative capacity of its genome to be maintained in a
nuclear latent form or to drive a low-level productive infection in
some cells while inducing a fully lytic infection in other cells. For
other human herpesviruses, such as herpes simplex virus, the la-
tent DNA genome has the form of a covalently closed circular
episome associated with cellular nuclear proteins. The existence of
such a latent nuclear form has not been demonstrated formally for
HHV-6, although an episomal state was shown after experimental
infection of cervical carcinoma cell lines (59).The viral gene U94,
which is expressed during latent infection, is assumed to play a
major role in the establishment and maintenance of intracellular
latency (60). Other latency-associated transcripts have also been
described (61). Reactivation occurs through the transcription of
IE genes in the IE1 and IE2 regions following the likely transacti-
vation effect of cellular and/or viral factors whose nature is still
unknown. This reactivation process results in the induction of a
replication cycle and the possible appearance of a cytopathic effect
(48).

Chromosomal Integration

The integration of the HHV-6 genome into human chromosomes
(ciHHV-6) was initially described for transformed cell lines (62,
63). This phenomenon was further reported to be present in hu-
man cells in vivo, including cells which can be transmitted as ger-
minal cells to offspring and hematopoietic stem cells transferred
to a transplant recipient (64, 65). It appears to be a unique feature
among human herpesviruses and raises numerous novel ques-
tions regarding both pathophysiology and diagnosis (25, 66). The
covalent linkage between viral and cellular DNAs occurs within
the subtelomeric region of chromosomes, likely by a mechanism
of homologous recombination between telomeric repeat se-
quences of viral and cellular origins. The phenomenon has been
described for both HHV-6A and HHV-6B and occurs in 0.2 to 1%
of the general population in developed countries. It might be gen-
erated in the context of de novo infection and is considered by
some authors to be the default pathway of HHV-6 latency, includ-
ing in non-germ line cells and before persistence of viral DNA as
an episome (23). Although there is no in vivo evidence for that
assumption, it must be kept in mind knowing that HHV-6 has the
ability to infect sperm cells (67, 68). Thus, de novo HHV-6 infec-
tion of germinal cells might result in individuals harboring the
integrated virus in their germ line and transmitting it to their

offspring (25). Moreover, ciHHV-6 might lead directly to reacti-
vation, as reflected by the production of viral transcripts, proteins,
and even transmissible virions (23, 35, 69). This emphasizes the
tight relationship between ciHHV-6, latency, and reactivation. In
that context, it is worth recalling the homology between HHV-6
U94 and the human adeno-associated virus (AAV) type 2 rep gene
(70). rep gene products are involved in the site-specific integration
of AAV DNA into host cells. Therefore, U94 products might have
a pivotal role both in the establishment of latency and in ciHHV-6.

Impacts of Viral Gene Expression on Cell Functions

As previously mentioned, the occurrence of a complete replica-
tion cycle has profound effects on cell functions and viability in
the context of either de novo infection or reactivation. In addition,
independently of any complete virus-producing process, the ex-
pression of certain HHV-6 genes might occur from persisting ep-
isomal or ciHHV-6 forms of viral DNA. Many publications have
reviewed the formally demonstrated or putative effects of virally
encoded gene products on the regulation and modification of cell
functions (3, 4, 8). As an example, considering the gene products
of the IE-A region, IE2 might behave as a general transcriptional
activator of many viral and cellular genes, while IE1 interacts with
PML bodies (71, 72). The proteins encoded by the IE-B region
have also been shown to transactivate heterologous promoters,
such as the HIV-1 long terminal repeat (LTR) (30). The products
of the DR7 gene appear to demonstrate a cell-transforming activ-
ity, presumably through an interaction with p53 (73). Regarding
the U94 gene, which is analogous to the AAV rep gene, it can bind
to the human TATA-binding protein, and its expression in endo-
thelial cells decreases cell migration and angiogenesis (74, 75). The
U95 gene product interacts with the mitochondrial GRIM-19 pro-
tein, a component of the oxidative phosphorylation system in-
volved in apoptotic processes (76). As indicated below, several
proteins encoded by the HHV-6 genome have immunomodula-
tory functions. Taken together, all these features provide molecu-
lar bases for understanding the pathological processes associated
with acute and chronic HHV-6 infections.

HUMAN INFECTION

Epidemiology

HHV-6A and HHV-6B are ubiquitous viruses that are detected in
all human populations around the world, as reviewed elsewhere
(3, 5, 8). Current serologic assays do not permit discrimination of
HHV-6A and HHV-6B infections (77). Consequently, a precise
view of their respective seroprevalences in different human pop-
ulations is not available at present. As a whole, HHV-6 infection is
detected in more than 90% of adult populations in developed
countries, although the data on seroprevalence may reveal signif-
icant differences according to geographic location, age of subjects,
and sensitivity and specificity of serologic assays. Standardized
species-specific serologic tests will help to clarify the meaning of
these differences and to determine whether the circulation of
HHV-6A and HHV-6B truly differs in different ethnic groups,
countries, or continents.

HHV-6 infection is usually acquired very early in life, between 6
months and 2 years of age, following the loss of protective mater-
nal antibodies (78). At an even earlier period of life, congenital
infection following intrauterine transmission has been reported
for about 1% of children, a frequency close to that observed with
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HCMV, and cases of perinatal transmission have been described
(79–82). As described below, congenital infection is mainly linked
with ciHHV-6 in mothers (78). Primary infection can also happen
later, in adults, as reported in a few cases (83). Saliva is assumed to
be the main vehicle for virus transmission, as supported by the
frequent detection of HHV-6 in saliva and salivary glands. Virus
transmission through organ transplantation has been described
infrequently, while blood transfusion and breast feeding have
never been reported to be origins of primary infections (84, 85).
To date, a clear view of the respective temporality of HHV-6A and
HHV-6B infections is missing. It is generally believed that in the
majority of countries, primary HHV-6B infection occurs first, in
many cases associated with clinical symptoms, whereas HHV-6A
is acquired later, through asymptomatic infection (see below).
Ultimately, the concomitant detection of HHV-6A and HHV-6B
in blood or tissues from adults indicates that the two viruses
chronically infect many, if not most, individuals (86, 87).

Physiology

No experimental in vivo model of human infection is currently
available. Several monkey species are infected with HHV-6-re-
lated viruses, but their capability to provide a relevant model re-
garding HHV-6 pathophysiology is still unknown (88, 89). Mon-
keys as well as transgenic mice expressing human CD46 could be
infected with HHV-6A and developed a specific antiviral immune
response; in some cases, neurologic symptoms and neuropatho-
logical lesions were observed (54, 55, 90, 91). However, to date,
none of these animal models has given a conveniently workable
picture of the course of human infection. This course can only be
hypothesized from clinical and biological findings observed dur-
ing the natural process (92). Clinical symptoms as well as virolog-
ical data reported for primary infection cases suggest that follow-
ing its entry into the body by the oral route, the virus replicates in
the salivary glands and satellite lymphoid tissues of the orophar-
ynx, probably the tonsils and cervical lymph nodes. Systemic dif-
fusion of infection would occur by the blood route, taking advan-
tage of the virus tropism for PBMCs and vascular endothelial cells,
as reflected by the isolation of infectious virus from blood during
the acute phase of infection. A spreading of virus and infected cells
via lymphatic vessels is also possible. This spreading leads to the
active, abortive, or latent infection of susceptible cells in other
organs, including T lymphocytes and monocytic cells in lymphoid
tissue and the liver, kidney and skin epithelial cells, hematopoietic
stem cells in bone marrow, and neuroglial cells in the CNS. The
entry of HHV-6 into the CNS might occur by crossing of the
blood-brain barrier through the olfactory pathway (93). In most
cases, this primary infection is self-limiting while a specific im-
mune response develops (see below), and the viremia finally de-
creases to undetectable levels as measured by conventional diag-
nostic assays.

The establishment of HHV-6 latency in the body raises numer-
ous questions regarding chronology, cell location, gene expression
level, and potential differences between HHV-6A and HHV-6B.
HHV-6 DNA is detected, in particular, in saliva, blood monocytes,
endothelial cells, and bone marrow progenitors (48, 50, 94). As
mentioned previously, latency-associated transcripts from U94
and the IE region have been detected in PBMCs (8). Currently, it
is not known whether the transcription of other genes, synthesis of
proteins, and even production of virions can occur at low levels in
particular cells, tissues, or organs during the latency stage of infec-

tion, which would make the putative frontier between latent and
active infections even narrower (95). Some authors have sug-
gested that HHV-6A does not exhibit the same capability to estab-
lish latency in target cells as that of HHV-6B. However, this hy-
pothesis has to be modulated by the fact that regardless of
infection stage, and for still unknown reasons, HHV-6B is de-
tected much more frequently than HHV-6A in PBMCs and cere-
brospinal fluid (CSF) (8). As mentioned above, ciHHV-6, present
in about 1% of the adult population, is another form of virus
quiescence in which each cell in the body contains one copy of the
viral genome.

Reactivation can be defined as the reappearance of replication
cycle transcripts and yield of infectious virus in peripheral blood
or in a specific tissue or organ from an individual who has expe-
rienced a primary infection. This may lead to extended reinfection
of bodily tissues and cause disease. The initial cellular events can
be induced experimentally in cultures of latently infected cells
following exposure to a phorbol ester, such as tetradecanoyl-
phorbol-13-acetate (TPA), or superinfection with HHV-7 (48,
96). Note that stimulation using TPA or trichostatin A has been
shown to promote virus activation from ciHHV-6 in PBMCs as
well as in cell lines (23). In vivo, the recognition of reactivation
may reveal more complexity due to heterogeneity of patient pre-
sentations and limitations of virological methods used to address
this issue (see below). In particular, endogenous reactivation has
to be distinguished from reinfection of exogenous origin with a
novel strain of HHV-6 (11). Exogenous reinfection in an individ-
ual who is already seropositive with respect to the same virus spe-
cies, either HHV-6A or HHV-6B, is assumed to occur, as reflected
by the concomitant detection of distinct viral strains by molecular
epidemiology approaches (36). However, the frequency of that
phenomenon, as well as its pathophysiological consequences, is
still unknown.

Interactions with the Immune System

A specific immune response to HHV-6 was recognized very soon
after its discovery (8, 97–99). For patients experiencing primary
infection, serologic studies have shown the appearance of specific
IgM antibodies during the first week and their subsequent disap-
pearance after 1 month, while IgG antibodies are detected later
than IgM but persist indefinitely. These antibodies react with a
wide range of virally encoded proteins, some of which are consid-
ered major antigens by immunoblot studies, such as the U11 gene
product. Some of these antibodies have a virus-neutralizing activ-
ity, but their activity in the control of active infection is not well
understood. Cellular immunity is believed to play the major role
in this control, as reflected by the deleterious effects of T cell im-
mune response suppression. Recent publications reported the
proliferation of CD4� and CD8� T cells in response to HHV-6A
and HHV-6B antigens in most healthy adults (100–102). Those
studies permitted the fine characterization of a significant number
of HHV-6 T cell epitopes but showed the following two important
limitations for future investigations: the low frequency of circu-
lating HHV-6-specific T cells, requiring in vitro expansion prior to
any functional characterization; and the high degree of cross-re-
activity between HHV-6A and HHV-6B epitopes. Prior to the
emergence of adaptive immunity, HHV-6 infection has the capac-
ity to stimulate the effectors of innate immunity: an increased
secretion of proinflammatory cytokines, such as interleukin-1�
(IL-1�), TNF-�, and alpha interferon (IFN-�), is observed in
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PBMCs, while NK cell activity associated with IL-15 synthesis is
elevated in HHV-6A infection (103, 104).

Like other herpesviruses, HHV-6 exhibits a wide range of bio-
logical properties which might explain its ability to both stimulate
and modulate immune responses (3, 4, 8). This modulation, in
turn, would permit evasion of the HHV-6-specific immune re-
sponse and improve the microenvironmental conditions for pro-
moting virus persistence. As an example, the upregulation of
proinflammatory cytokines in PBMCs is associated with a down-
regulation of IL-2 synthesis and a subsequent decrease of T cell
activation. Accordingly, HHV-6 has been shown to promote the
shift of the T-helper cell profile from Th1 to Th2 by upregulating
IL-10 and downregulating IL-12. HHV-6A infection has been
shown to downregulate the expression of HLA class I expression
on dendritic cells. In parallel, HHV-6 infection has strong sup-
pressor effects on the growth and differentiation of bone marrow
progenitors, which may affect the differentiation of macrophages
and the population of thymocyte precursors. Many of these effects
are specifically mediated by HHV-6-encoded proteins which act
as analogues of cell chemokines and are believed to promote viral
growth, viral dissemination, and/or escape from the immune re-
sponse. The U21 protein has been shown to reduce the expression
of HLA class I expression as mentioned above. As other examples,
the U83 gene encodes a chemotactic protein which is an agonist
for several human CC chemokine receptors (CCRs) and the U12
and U51 genes encode chemokine receptors which presumably
activate and recruit host cells (105, 106). The U24 gene product
induces the internalization of the T cell receptor/CD3 complex,
which may alter the patterns of T cell activation. In vitro studies
have often provided conflicting evidence concerning the effects of
these proteins, depending on the type of cells and the HHV-6
species investigated. However, it seems clear that the virus has the
capacity to perform a fine-tuning regulation of cell functions. This
capacity is likely extended to the modulation of other viral infec-
tions affecting the same target cells and organs. The role of HHV-6
as a cofactor of HIV in AIDS remains a matter of discussion. It is
substantiated by several in vitro findings relying on interactions
between both viruses, i.e., the common tropism of HHV-6
and HIV for CD4� T cells, transactivation of the HIV-1 LTR by
HHV-6 proteins, and induction of CD4 expression on CD8� T
cells and NK cells by HHV-6 making these cells susceptible to HIV
infection (107). HHV-6 infection has also been shown to stimu-
late the activation of Epstein-Barr virus (EBV) from latency and,
more recently, the expression of the human endogenous retrovi-
rus K-18 (108, 109).

VIROLOGICAL DIAGNOSIS

Objectives and Means

The aim of virological diagnosis is first to provide proof of
HHV-6A or HHV-6B infection, i.e., the presence of the virus(es)
in an investigated subject. Second, it is necessary to define the
status of this infection as latent, active (which can also be termed
productive or acute), or ciHHV-6 related. Third, the viral load
and, if possible, the expression of viral genes have to be quantified
in peripheral blood and specific body compartments in order to
determine the possible causative relationship with the concomi-
tant clinical symptoms. Fourth, the question of treating the infec-
tion with antiviral drugs active against HHV-6 has to be consid-
ered. Consequently, diagnostic procedures are implemented for

the monitoring of infection following initial diagnosis and ther-
apy, if started. This includes the serial quantification of virus rep-
lication and the detection of putative resistance to antivirals in
case of therapeutic failure (110).

Additional objectives refer to the study of interhuman trans-
mission cases and the phylogenic relationships between viral
strains and viral subpopulations in the context of a mixed infec-
tion within the same individual. These require the implementa-
tion of molecular studies based on gene amplification and nucle-
otide sequencing. Since HHV-6A and HHV-6B are now defined as
distinct viral species, it is essential that differentiation between
them be obtained at an early step of any HHV-6 infection diag-
nostic procedure, and this is also required for publication of
HHV-6-related scientific articles (22).

Diagnostic procedures performed for either the management of
a sole patient or the planned study of a human cohort are basically
similar (Table 1). A wide range of human specimens can support
these procedures, with the most common ones being whole blood,
plasma, and serum. Cerebrospinal fluid is essential for the diag-
nosis of central nervous system infections, while bronchoalveolar
lavage permits investigation of lung infections. The relevance of
saliva samples for diagnosis needs to be clarified, as is the case for
any cell fraction or extract obtained from a body fluid, cell smear,
or tissue biopsy specimen (111). However, the frequent detection
of HHV-6 in saliva and the capacity of saliva to contaminate lower
respiratory tract specimens have to be taken into account in the
interpretation of results.

Two general complementary approaches can be used (110). Di-
rect diagnosis is based on the detection and characterization of
whole virions or some of their specific components, the most con-
venient of which currently are nucleic acids. These components
may come from either cell-free virions or infected cells. Infected
cells contain not only the components of released viral particles
but also transcripts and additional virus-encoded proteins, which
provides an even larger set of viral targets. The indirect approach,
also known as serology, is based on the detection and character-
ization of virus-specific antibodies in a body fluid, usually serum,
using reference viral antigens. Due to the stability of antibodies
even after prolonged storage of samples, serologic assays provide
reproducible results and are very convenient for retrospective
studies. However, the interpretation of serologic results may be
equivocal for many reasons that can be summarized as follows.
HHV-6A and HHV-6B infections are widespread and lifelong in
the general population, making seropositivity highly prevalent
and poorly discriminant. Rapid increases in IgG responses and the
presence of IgM antibodies are not highly specific for acute pri-
mary infections, since these phenomena may also be associated
with virus reactivations. The serologic profile may be atypical in
the case of immune suppression or ciHHV-6. Cross-reactivity has
been reported between antibodies to the four human betaherpes-
viruses, i.e., HHV-6A, HHV-6B, HHV-7, and HCMV. Lastly,
commercially available serologic assays targeting HHV-6 antibod-
ies cannot differentiate HHV-6A from HHV-6B infections to
date.

Serology

Serologic methods are mainly founded on indirect immunofluo-
rescence assays (IFA). In such assays, HHV-6-infected cells are
fixed on glass slides, incubated with serum, and observed with an
optical microscope. The readout of the reaction relies on both the

Agut et al.

318 cmr.asm.org April 2015 Volume 28 Number 2Clinical Microbiology Reviews

http://cmr.asm.org


number of fluorescent foci and characteristic patterns of cell stain-
ing, also taking into account the intensity of nonspecific back-
ground fluorescence signals. The search for neutralizing antibod-
ies is motivated by their specificity and their putative correlation
with protective immunity, but this technique is cumbersome and
expensive (112). A few enzyme-linked immunosorbent assays
(ELISAs) have been developed and commercialized, using either a
crude lysate of infected cells or purified virus obtained from cell
culture supernatant as the antigen (113), but the question of their
specificity has been raised repeatedly. The use of synthetic pep-
tides as antigens is expected to improve their quality in the future,
as well as the extension of the use of immunoblot assays or mea-
surements of antibody avidity (114, 115). However, it is not cer-
tain that this evolution can circumvent some of the shortcomings
mentioned above, in particular the difficulty in interpreting the
presence of IgM and the cross-reactivity sometimes observed be-
tween distinct betaherpesviruses (116). Clearly, a better knowl-
edge of the humoral immune response against HHV-6 at different
stages of infection (primary production, latency, and ciHHV-6) is
required to permit significant advances in this domain. The main
indications of serologic assays currently remain the diagnosis of
primary infection, identification of HHV-6-naive subjects, and
use for seroprevalence studies. Consequently, HHV-6 serology
has limited usefulness in the management of adult infections (77).

Direct Diagnosis

The isolation of HHV-6A, HHV-6B, and HHV-7 in cell cultures
is a reference method and unambiguously demonstrates the pres-
ence of infectious viral particles in a sample. However, this
method is poorly sensitive, time-consuming, and expensive. It
cannot be used for routine diagnosis and is not available in most
centers. All HHV-6 isolates theoretically grow on PBMCs or cord
blood lymphocytes, leading to a cytopathic effect made of en-

larged and refractive cells, which might be missing in some cases.
Isolation on other cell types, such as fibroblasts, and growth ad-
aptation on cell lines are possible in some cases but even more
difficult than culture on primary permissive cells.

The detection of HHV-6 antigens in PBMCs and tissue biopsy
specimens enables observation of viral proteins expressed at dif-
ferent stages of infection and even provides an approximate quan-
tification of this process (117, 118). This is particularly useful for
showing active viral infection at the site of tissue lesions by use of
immunohistochemistry techniques. However, the panel of avail-
able reference antibodies that can be used to develop such assays is
limited, and the sensitivity of detection is considered low with
current reagents. This explains why current antigen detection
studies and histological investigations are performed mainly for
research objectives rather than diagnostic procedures.

The detection, quantification, and sequencing of HHV-6 nu-
cleic acids have been combined to become the gold standard of
diagnostic procedures applied to HHV-6A and HHV-6B. By
means of numerous assays based on real-time PCR, HHV-6 DNA
can be detected and reproducibly quantified in a broad range of
clinical specimens, including whole blood, cerebrospinal fluid,
and any other bodily fluid or tissue (110, 119, 120). The methods
are financially accessible, quick, safe, and currently widespread.
Most of the previous problems related to the nonspecific inhibi-
tion of DNA amplification and carryover inside labs have now
been solved. In addition, these approaches also readily permit
differentiation of the two species of HHV-6, even in cases of
mixed infection (121). However, there is an obvious need for
standardization of the various molecular assays in use in order
to permit the unambiguous comparison and interpretation of
results obtained in different laboratories; in that context, the
introduction of a reference international standard would con-

TABLE 1 Overview of diagnostic procedures for HHV-6 infection

Diagnostic approach Method Advantages and usefulness Disadvantages and limitationsb

Indirect (serology) Assays for IgG and IgM
detection (IFA, ELISA)a

and avidity assays

Easy collection and storage of serum samples,
readily accessible techniques, diagnosis of
primary infection, seroprevalence studies

Lack of interpretation for diagnosis of
reactivations, no discrimination between
HHV-6A and HHV-B, delayed/altered
response if immune deficiency is present,
cross-reactivity with other betaherpesviruses

Direct Virus isolation in cell culture Reference method in virology, evidence of
infectious virus, precise investigations of
virus strains

Labor-intensive method, high cost, limited
sensitivity

Antigen detection Uses conventional equipment, gives evidence
of virus gene expression, discrimination
between HHV-6A and HHV-6B

Need for standardization, limited sensitivity
with current reagents, difficulties of readout
in some cases

Qualitative viral DNA PCR High sensitivity and specificity, discrimination
between HHV-6A and HHV-6B

No distinction between active infection,
latency, and ciHHV-6

Quantitative viral DNA real-
time PCR

High sensitivity and specificity, discrimination
between HHV-6A and HHV-6B,
longitudinal follow-up studies, comparison
of viral loads in blood versus organs

Need for international standardization, need
for specific thresholds for active infections
and ciHHV-6

Detection of viral transcripts
by RT-PCR

Distinction between active and latent
infections, recognition of active infection in
ciHHV-6 subjects

Limited sensitivity (to be evaluated), need for
standardization

Droplet digital PCR Precise method for measuring nucleic acid
amounts, identification of ciHHV-6

Limited sensitivity (to be evaluated), adaptation
to clinical specimen diversity

a IFA, immunofluorescence assay; ELISA, enzyme-linked immunosorbent assay; RT-PCR, reverse transcriptase PCR; ciHHV-6, chromosomally integrated human herpesvirus 6.
b The availability of the mentioned tests may be restricted in some medical centers.

Human Herpesvirus 6 Infection

April 2015 Volume 28 Number 2 cmr.asm.org 319Clinical Microbiology Reviews

http://cmr.asm.org


stitute a significant advance, as observed recently for HCMV
diagnosis (122).

The detection and quantification of viral transcripts appear to
comprise a valuable complementary approach, with the theoreti-
cal possibility of recognizing the different steps of the virus cycle.
With that purpose, the detection of late gene transcripts would
help to identify productive infections, whereas the finding of a
remotely detectable amount of U94 transcripts would reveal a
predominantly latent phase of infection. The detection of tran-
scripts is facilitated by targeting of spliced mRNAs, with the am-
plimers obtained from transcripts thus being distinctly shorter
than those amplified from genes containing introns. However, the
knowledge of the different transcription patterns of HHV-6 is
currently far from complete, and the methods of mRNA quanti-
fication are not yet properly standardized.

The need for a precise molecular characterization of HHV-6
DNA and transcripts has emerged from recent questions address-
ing the epidemiology and physiology of HHV-6 infections. These
questions concern the classification of HHV-6A and HHV-6B
into two different species, as well as the understanding of trans-
placentally acquired congenital infection and reactivation from
the ciHHV-6 stage (29, 35, 69). The general strategy is the combi-
nation of gene amplification, nucleotide sequencing, and phylo-
genic study of selected loci of HHV-6 DNA. This also allows the
genetic recognition of resistance to antivirals by targeting the
search for specific mutations known to confer a decreased suscep-
tibility to drugs (123, 124). The most recent developments of mo-
lecular techniques, namely, droplet digital PCR and next-genera-
tion sequencing, will offer novel opportunities for the accurate
investigation of infection pathophysiology. In particular, these de-
velopments will permit us to address complex molecular phenom-
ena, such as coinfections of HHV-6A and HHV-B, ciHHV-6, and
modulation of gene expression (125–127). In addition, they might
help to map chromosomal integration sites in ciHHV-6 subjects
in parallel with the classical cytogenetic approach, which uses flu-
orescence in situ hybridization.

INTERPRETING VIROLOGICAL RESULTS

Active Infection

One goal of virological investigations is the distinction between
active (or acute) and latent infections, although this distinction is
made difficult by the absence of a neat frontier between the two
stages of infection. In terms of pathophysiology, active infections
correspond to primary infections, endogenous reactivations, and
exogenous reinfections (11). They tend to attract a great deal of
attention because they are more accessible to current direct diag-
nosis procedures, are potential targets for specific antiviral ther-
apy, which so far is directed mainly against HHV-6 DNA replica-
tion, and can be correlated more convincingly with concomitant
disease.

Detectable viremia is generally considered the hallmark of a
systemic active infection (4). According to several authors, whole
blood is the most valuable specimen for detecting such viremia
by means of real-time PCR (120, 128). Alternatively, the use of
PBMCs for such detection is justified, since HHV-6 remains
mostly cell associated during active infection. In contrast, the use
of plasma, albeit more convenient, raises controversy regarding
the origin of viral DNA present in this blood compartment, cor-
responding to either a true virus production from lymphoid tissue

or an incidental DNA release from the lysis of circulating cells. The
high sensitivity of real-time PCR and ubiquitous presence of latent
HHV-6 infection in adults lead to a high frequency of positive
qualitative detection of viral DNA. Therefore, for a proper inter-
pretation, the HHV-6 DNA load in blood has to be computed
precisely. So far, no threshold has formally been defined as the
frontier between latent and active infections. As a preliminary
approximation, the threshold of 1,000 genome-equivalent copies
per ml of whole blood delineates a fluctuating gray zone separat-
ing the two stages of HHV-6 infection (129–131). This broadly
corresponds to 1,000 copies per million PBMCs when the white
blood cell count is within the normal range. Viral loads corre-
sponding to active infections are thus located within a wide range,
from 1,000 up to several hundreds of thousands of copies per ml of
whole blood. These values may be confused with those resulting
from ciHHV-6. Indeed, in the few individuals who have ciHHV-6,
HHV-6 DNA is present in every nucleated cell, in particular cells
from hair follicles, the CNS, and peripheral blood. In ciHHV-6
subjects, HHV-6 DNAemia in whole blood usually exceeds 1 mil-
lion copies per ml, which is far beyond the values observed in most
active infections (120, 132). However, when the white blood cell
count is significantly decreased, as observed in hematopoietic
stem cell transplant (HSCT) recipients, the results for absolute
viral loads in blood may be ambiguous. In this case, the expression
of results as numbers of copies per cell, with values of 1 or more,
may help to distinguish ciHHV-6 from most active infections, in
which the average viral load per cell is usually much lower (133).
The use of droplet digital PCR may also be valuable for the iden-
tification of ciHHV-6 by precisely determining the ratio of
HHV-6 DNA to cellular DNA without the use of a standard curve
(126, 134).

In the case of active infection limited to a specific body com-
partment, viral loads in whole blood and in the concerned com-
partment (bodily fluid, cell fraction, or organ biopsy specimen)
have to be compared with each other in order to estimate the
respective contributions of blood input and in situ virus multipli-
cation. In this situation, it is admitted that the value of viremia
does not need to be significantly high to establish the diagnosis of
active infection. Accordingly, due to the sensitivity and specificity
of current PCR techniques, the detection of HHV-6 DNA in CSF
is considered sufficient for the diagnosis of an active infection of
the CNS, regardless of the level of viremia (135, 136). This raises
the question of possible restricted local reactivations in the CNS,
as suggested in some cases for HHV-6 encephalitis after HSCT
(137, 138). In this context, the quantification of HHV-6 DNA in
CSF, instead of its simple qualitative detection, may be worthy,
particularly in cases of longitudinal follow-up. In ciHHV-6 pa-
tients, unusually large numbers of HHV-6 DNA copies are ob-
served in body fluids, which may be interpreted falsely as acute
infection in these body compartments: this has been described in
particular for CSF, with the risk of misdiagnosing CNS infections
(139).

The detection and/or quantification of transcripts specific to a
productive viral cycle, for instance, late gene transcripts, would be
another way to characterize active infections. Several require-
ments have to be satisfied for that purpose, namely, the specificity
of target mRNAs as markers of active infection in any cell or tissue,
the definition of clear cutoff values for quantitative analyses, and
the standardization of quantification procedures. For now, these
criteria are not fulfilled. The same comment can be made regard-
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ing the detection of specific virus-encoded proteins by means of
their antigenic properties or by mass spectrometry techniques
(140). Moreover, detection procedures based on proteins raise the
additional challenge of a reduced sensitivity compared with that of
studies of nucleic acids.

Latent Infection

Latent HHV-6 infection corresponds to the widespread chronic
infection classically described for all human herpesviruses, al-
though its molecular definition at the cellular level is far from clear
and cannot be restricted solely to episomal persistence in the ab-
sence of any gene expression (see above). It also corresponds to the
existence of ciHHV-6, which is present in only a minority of the
general population. In the latter case, the potential pathogenic
effects of HHV-6 may affect any tissue and organ, far beyond the
usual main locations of community-acquired infection, which
particularly involves lymphoid tissue and the CNS. Concerning
the clinical syndromes possibly related to latent infection, our
current understanding of the disease mechanism is extremely lim-
ited, but it hypothetically tends to invoke discrete expression of
viral genes, an inflammatory response, and immune dysfunction
rather than a modest but present HHV-6 multiplication.

Seropositivity for HHV-6 in the absence of active infection
markers thus may appear to be a convenient marker for latent
infection. However, there are limitations of serologic assays, as
mentioned above. In addition, the production of serum antibod-
ies in some ciHHV-6 individuals is affected, presumably through a
phenomenon of immune tolerance, which constitutes an addi-
tional challenge for diagnosis (66). As indicated previously, the
presence and amount of U94 transcripts might reflect episomal
latency and, in some cases, ciHHV-6. Moreover, a recombinant
U94 protein has been used to create an ELISA that would be suit-
able for exploring the antiviral immune response in HHV-6-re-
lated chronic diseases (141). However, the relevance of U94-re-
lated markers remains to be demonstrated formally.

The spectrum of other virological findings observed during in
vivo latent infection is theoretically wide but practically unknown.
Except for the detection of HHV-6 DNA in ciHHV-6 subjects, the
major hindrance for the detection of direct viral markers is their
intrinsically low level of expression. In that context, indirect
markers related to HHV-6-related immune responses may reveal
interesting features, provided that studies are founded on relevant
pathophysiological hypotheses, large human populations, and
numerous controls. Accordingly, particular attention has been
paid to viral factors potentially involved either directly or indi-
rectly in chronic diseases, in particular those presumably stimu-
lating inflammation, cell transformation, and autoimmunity pro-
cesses.

The association of HHV-6 with cell transformation and cancer
has been a debated question since the early times of virus discovery
(142). HHV-6 has direct transforming capacities in vitro, which
have been mapped to the DR7 gene, also designated ORF1 (73,
143). As mentioned previously, the virus can transactivate the
expression of other viruses, such as EBV and human herpesvirus 8
(HHV-8), which are truly oncogenic viruses (144, 145). In addi-
tion, the special context of ciHHV-6 may offer the opportunity to
express specific HHV-6 genes in particular cells which do not ex-
press virus receptors and usually escape from exogenous infection.
However, to date, no report has mentioned an increased fre-
quency of malignancies in ciHHV-6 subject populations. Finally,

the ability of HHV-6 to promote oncogenesis even in the absence
of direct transforming activity may rely on its inflammatory prop-
erties, as discussed above. This provides an incredibly large num-
ber of cellular signaling pathways to explore. Similarly, concern-
ing autoimmunity, multiple mechanisms involving HHV-6 either
directly or indirectly have been hypothesized (142). A molecular
mimicry which might result in cross-reactivity between self and
viral epitopes has been found between the sequences of the U24
protein and myelin basic protein (146). The reactivity of HHV-6-
specific T cells against infected cells, as investigated in vitro by
lymphoproliferative responses to viral antigens, may induce a by-
stander activation or damage of uninfected cells present within the
same microenvironment. The interaction of HHV-6A with its
CD46 receptor, which is a regulator of complement activation,
may cause an upregulation of this process, including deleterious
lytic cell effects and an increase of the soluble form of CD46 (147).
The dysfunction of HHV-6-induced immune responses leading to
autoimmune processes would involve not only specific T cell re-
sponses but also NK cell-mediated activation and killing (148). All
these phenomena would converge to promote release of self anti-
gens and polyclonal activation.

HHV-6 Species

It is now highly recommended to identify the causative HHV-6
species as HHV-6A, HHV-6B, or a mixture of both when a diag-
nosis of HHV-6 infection is made (22). Knowing the causative
HHV-6 species precisely has no impact on diagnosis or manage-
ment at present. Nevertheless, this information will prove valu-
able in defining the spectrum of diseases associated with each of
the viruses and in the event that virus-specific therapeutic options
become available. Any HHV-6 isolate can be classified unambig-
uously as HHV-6A or HHV-6B by using diverse methods based
mainly on PCR and/or nucleotide sequencing. Over 2 decades,
many publications concerning in vivo studies have neglected this
differentiation step, which is still not possible using conventional
serologic assays. As a result, our knowledge of the specific epide-
miology and pathophysiology of each HHV-6 species is far from
complete. Concomitant or sequential infections with the two spe-
cies can occur, as well as simultaneous infection with two different
strains of the same species, which increases the complexity of this
analysis. As a whole, HHV-6B is by far the most frequently de-
tected species in peripheral blood, saliva, and CSF, both for
asymptomatic infections and for diseases potentially associated
with HHV-6 (3, 9, 121, 149). In most populations studied,
HHV-6B also appears to be the first species acquired early in life
and the quasi-exclusive agent of exanthema subitum, the proto-
typic disease associated with HHV-6 primary infection (see be-
low) (3, 9). Whether that predominance of HHV-6B detection is
due to technical and physiological constraints or reflects a real
higher involvement of HHV-6B over HHV-6A within human
HHV-6 infections remains an enigma.

Other Favoring and Confounding Factors

Immunosuppression is the major factor promoting endogenous
HHV-6 reactivations, so this virus is a true opportunistic patho-
gen (3, 135, 150). Such pathogenicity has been observed most
frequently in situations in which the functions of cell immunity
are impaired, in particular in HSCT and solid organ transplant
(SOT) recipients as well as HIV-infected individuals. Except for
the physiological loss of maternal immunity, which opens the way
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to primary infection during infancy, no other circumstances, in-
cluding pregnancy and long-term corticosteroid therapy, have
been reported to favor active HHV-6 infection. Conversely, it is
worth mentioning that HHV-6 reactivations can be detected in
immunocompetent healthy individuals, as evidenced by elevated
HHV-6 DNA loads in blood and saliva in the absence of any
ciHHV-6 (9, 151, 152).

As mentioned previously, HHV-6 itself is presumably an im-
munomodulatory virus that is capable of complex interactions
with the immune system and other pathogens, particularly
HCMV (150). These intricate interactions may induce immune
dysfunctions, which may be translated into specific diseases ap-
pearing, at least in part, to be indirect effects of HHV-6 infection
(Table 2). As examples, HHV-6 reactivations boost the activity of
the immune system, which may lead to graft rejection in trans-

plant recipients, hypersensitivity syndrome in the context of ex-
posure to particular drugs, or, in contrast, enhancement of
HCMV disease (150).

In addition to sequential infections of most subjects by
HHV-6B and HHV-6A, the existence of exogenous HHV-6 rein-
fections can be speculated from reports of intraspecies recombi-
nation and dual infection with two distinct strains of the same
species (3, 29, 36). However, it is not known whether these exog-
enous reinfections are characterized by a particular pattern re-
garding replication dynamics, serologic responses, establishment
of latency, and putative interactions with ciHHV-6 compared
with endogenous reactivations. In order to clarify these questions,
the design of future investigations of active infections may include
not only the identification of the causative HHV-6 species but also
the precise characterization of the involved strain by means of
molecular epidemiology techniques.

CLINICAL IMPACTS OF HHV-6 INFECTIONS

Primary Infections

Since the initial report in 1988, converging data have proven that
HHV-6 primary infections cause acute febrile diseases in young
children of 6 months to 3 years of age, with the most emblematic
one being exanthema subitum (also known as roseola infantum or
sixth disease) (20, 78, 153). Other, less typical combinations of
fever, seizures, skin rash, and gastrointestinal and respiratory tract
symptoms have been reported, with most of them leading to a
quick, favorable outcome (Table 2). As a whole, HHV-6 primary
infections account for 10 to 20% of febrile illnesses at this age, and
the majority of these infections are associated with clinical symp-
toms, in disagreement with the previous assumption that the ma-
jority of these infections are asymptomatic (9, 80). The causative
relationship between active HHV-6 infection and disease has been
established from the temporal association between the following
clinical and virological findings: evidence of viremia, demon-
strated first by means of virus isolation and next by PCR, at the
acute phase of illness; presence of HHV-6 DNA in the CSF of
children with seizures, pointing to direct infection of the CNS; and
seroconversion observed after recovery (3). For still unknown rea-
sons, the clinical symptoms might differ slightly according to
country: the rate of exanthema subitum associated with primary
infection seems to be higher in Japan than in the United States
(153). As mentioned above, the responsible variant was found to
be HHV-6B in most cases. Primary infections with HHV-6A have
been reported much less frequently, and it is generally assumed
that HHV-6A is acquired after HHV-6B, through an asymptom-
atic infection. However, symptomatic primary infections with
HHV-6A have been described for children in the United States as
well as in sub-Saharan Africa (154–156).

Infrequently, primary infection is associated with a more
severe disease, such as hepatitis, including fulminant forms in
some cases, thrombocytopenia, infectious mononucleosis-like
syndrome, hemophagocytic syndrome, gastroenteritis, colitis,
or myocarditis (3, 9, 153).

Neurological complications include meningoencephalitis and
encephalitis, which represent ultimate stages of CNS involvement
during primary infection and whose outcomes remain uncertain
(6, 9, 78). A nationwide survey in Japan showed an unexpectedly
poor prognosis for exanthema subitum-associated encephalitis
(157). In addition, two ultimately fatal cases of encephalopathy

TABLE 2 Clinical syndromes consistently (C) or hypothetically (H)
associated with HHV-6 infections

Stage of HHV-6 infection Disease or symptoma

Primary infection
(congenital)

Abnormalities at birth and during immediate
postnatal period (H)

CNS developmental defects (H)

Primary infection
(postnatal)

Exanthema subitum (roseola infantum, sixth
disease) (C)

Fever, seizures (C)
Mild gastrointestinal and respiratory tract

symptoms (C)
Thrombocytopenia, infectious

mononucleosis-like syndrome (C)
Hepatitis, gastroenteritis, colitis (C)
Meningoencephalitis and encephalitis (C)
Hemophagocytic syndrome (H)
Temporal lobe epilepsy (H)

Reactivation (and possible
reinfection)

Fever (C)
Rash (C)
Thrombocytopenia, leukopenia, anemia,

bone marrow suppression (C)
Hepatitis (C)
Encephalitis, neurocognitive dysfunction (C)
Retinitis (C)
Pneumonitis (C)
Drug-induced hypersensitivity syndrome (C)
Gastroenteritis, colitis (H)
Temporal lobe epilepsy (H)
Allograft rejection (H)
Graft-versus-host disease (H)
Thrombotic microangiopathy (H)
Higher incidence and severity of infections

with HCMV, fungi, and other
opportunistic pathogens (H)

Chronic latent infection
(with possible
sporadic
reactivations)

Multiple sclerosis (H)
Hashimoto’s thyroiditis (H)
Myocarditis, cardiomyopathy (H)
Chronic fatigue syndrome (H)
Acceleration of evolution to AIDS in HIV-

positive individuals (H)
Hodgkin’s disease (H)

a HCMV, human cytomegalovirus; C or H, consistent or hypothetical association with
HHV-6 (keeping in mind that robust large-scale studies are lacking in most cases,
which makes this classification prone to frequent changes and subject to personal
interpretation).
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following acute HHV-6 infection were recently reported for two
children with underlying genetic mitochondrial disorders (158).
As in benign forms of CNS involvement, the recognition of a
concomitant active infection permits the etiological diagnosis and
is founded on a combination of virological parameters which in-
clude the finding of HHV-6 DNA in blood, saliva, and CSF, as well
as specific seroconversion and IgM detection (3, 136). The ques-
tion of active virus replication has been more difficult to address in
considering cases of mesial temporal lobe epilepsy which have
been related to HHV-6B in children: there was no evidence of
systemic viral infection, but high levels of HHV-6 DNA were de-
tected in the hippocampal regions following temporal lobectomy,
suggesting an active local multiplication of the virus, possibly fo-
cused in astrocytes (6, 42). The role of HHV-6 in febrile status
epilepticus, putatively related to encephalitis, was addressed
among 169 children in the context of a multicenter prospective
study: 54 children (32%) were found to have HHV-6B viremia,
while none had HHV-6A infection, and no HHV-6 DNA was
detected in any CSF specimen, keeping the question of subsequent
development of hippocampal sclerosis and temporal lobe epilepsy
under investigation (78, 159). HHV-6 primary infections seem
infrequent among adults due to the nearly universal occurrence of
this event in early childhood. The question is whether clinical
manifestations are usually as benign as those observed in most
children. The diagnosis of encephalitis associated with primary
infection is less likely to be suspected in this context, whereas at
least one case of mononucleosis-like syndrome has been reported
for an adult (83, 160).

Congenital HHV-6 infection following primary infection of the
embryo or fetus during pregnancy has been found to occur in
about 1% of children, a frequency close to that observed for
HCMV. In contrast with the case for HCMV, few data are avail-
able concerning associated diseases. No symptomatic early infec-
tion has been reported, even for children who exhibit detectable
active infection at birth (9, 82). However, it was recently reported
that HHV-6 congenital infection was associated with lower scores
on the Bayley scale of infant development II MDI at 12 months of
age, which requires further confirmation (161). Congenital infec-
tion results from either the germ line transmission of ciHHV-6
(i.e., congenital ciHHV-6) or transplacental passage of the virus
following endogenous reactivation (or putative exogenous rein-
fection) in the mother. Unexpectedly, in view of its low frequency
in adults, ciHHV-6 has been found to be the predominant context
associated with congenital HHV-6 infection (162, 163). In addi-
tion, HHV-6A was detected significantly more frequently in con-
genital infection than in postnatally acquired infection, and in a
study limited to 6 children with transplacentally acquired infec-
tion, all the mothers had ciHHV-6. These data have led to a picture
of congenital infection which appears to be far more complex than
that of HCMV and in which ciHHV-6 plays a prominent role
(162, 163). These results also raise numerous questions, which
mainly refer to the capability of ciHHV-6 to feed virus reactiva-
tion, tolerate exogenous HHV-6 reinfection, induce protective
immunity, and enhance potential developmental deficits, partic-
ularly in the CNS.

Reactivations and Reinfections

Active HHV-6 infections often remain totally asymptomatic. To-
gether with the fact that HHV-6 infections are ubiquitous and
highly prevalent, this explains the difficulty in unambiguously es-

tablishing the causative role of the virus in clinical manifestations
concomitant with active infections. However, the following ele-
ments may help to demonstrate or at least cause one to suspect the
responsibility of HHV-6 in a given disease: a favoring condition,
such as a defect of cellular immunity; the temporal convergence
between the clinical events and dynamics of viral replication; the
correspondence between the nature of symptoms and virus tissue
tropism; the absence of any other pathogen known to be a cause of
the disease; and the consistency of association between active in-
fection and disease in a similar context.

The clinical symptoms associated with HHV-6 reactivations in
transplant recipients appear to occur in a minority of patients but
are involved in a wide spectrum of syndromes (164–166). Some
symptoms may be considered nonspecific, such as fever, rash, and
transiently decreased numbers of circulating blood cells belonging
to the granulocyte/macrophage, erythroid, and megakaryocytic
lineages (Table 2). In contrast, subacute limbic encephalitis and
delayed engraftment are now recognized as typical opportunistic
diseases due to HHV-6 reactivation in HSCT recipients (135, 150,
160). These patients, particularly those receiving allogeneic trans-
plants, are at high risk of developing a reactivation within the first
4 weeks after cell transfer and, subsequently, suffering a life-
threatening illness concerning the CNS and/or bone marrow, two
well-known sites of HHV-6 latency. However, encephalitis devel-
ops in only a small proportion of patients experiencing HHV-6
reactivation. HHV-6 encephalitis is usually diagnosed by the de-
tection of viral DNA in CSF, HHV-6 viremia, and abnormal mag-
netic resonance imaging findings in temporal lobes, with the onset
of symptoms occurring at the end of the first month after trans-
plant, on average. The majority of cases are due to HHV-6B. Ad-
ditional evidence for the direct effect of HHV-6 on the CNS came
from a study which showed a strong correlation between HHV-6
reactivation and CNS dysfunction as measured by delirium and
neurocognitive decline in HSCT patients (167). Bone marrow
suppression in HSCT patients is the other major complication
associated with HHV-6 reactivation, which may evolve to second-
ary graft failure. Other serious illnesses, such as graft-versus-host
disease, thrombotic microangiopathy, HCMV reactivation, and
gastrointestinal disease, have been found to be associated with
HHV-6 reactivation, but the causative relationship is less clear and
warrants further investigations.

HHV-6 reactivations have also been detected frequently in SOT
patients, but with different rates according to the characteristics of
the transplanted organ, the nature of immunosuppressive ther-
apy, and the administration of prophylactic anti-HCMV treat-
ment, which is presumably also active against HHV-6 (3, 150,
168). HHV-6B again remains the main species detected. Concom-
itant febrile episodes and other nonspecific symptoms, such as
leukopenia and thrombocytopenia, have often been observed
(164). Specific severe diseases have been reported for SOT pa-
tients, but the causative relationship with HHV-6 does not appear
to be as convincing as that for HSCT patients. In renal transplant
recipients, the spectrum of clinical manifestations seems limited,
whereas hepatitis, pneumonitis, bone marrow suppression, and
encephalitis have been reported for liver, lung, and heart trans-
plant patients (168, 169). However, a synergistic pathogenic role
of HCMV could not be ruled out in all cases. The role of HHV-6 in
graft rejection remains a debated question, as is the facilitation of
superinfections with fungi and other opportunistic pathogens (7,
164).
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For HIV-positive patients, the clinical impact of HHV-6 reac-
tivation was considered an important question before the devel-
opment of antiretroviral therapy, in parallel with the major patho-
genic role observed for HCMV in this context. An increased
frequency of active infections was observed in late stages of the
course of AIDS but was questioned for earlier stages (170, 171). As
a whole, the capability of HHV-6 to accelerate the progression to
AIDS remains controversial, while its opportunistic role among
AIDS-associated infections was convincingly demonstrated by re-
ports of cases of encephalitis, pneumonitis, and retinitis (172–
175).

Drug-induced hypersensitivity syndrome (also known as drug
rash with eosinophilia and systemic symptoms [DRESS]) appears
to often be associated with active HHV-6 infection (176–178). The
disease is constituted of severe adverse drug reactions associated
to various degrees with skin rash, fever, lymph node enlargement,
liver dysfunction, and blood leukocyte abnormalities. The
strength of the association between virus and disease has been
recognized by authors from Japan, who have included HHV-6
active infection in the list of criteria used for the diagnosis of this
syndrome, a proposal which is not yet universally accepted (179).
The point is to understand how active viral infection interacts with
drug exposure and immune dysfunction to generate the disease.
The possible role of EBV, another human herpesvirus, in this syn-
drome has also been suggested, which enables the proposal of a
scenario founded on herpesvirus reactivation (179, 180). The
starting event would be the triggering of virus multiplication by
the drug, thus resulting in immune activation by viral antigens
and extensive antiviral T cell responses at the origin of the disease.
Therefore, it is tempting to speculate that a similar mechanism is
possible for HHV-6, a hypothesis supported by the finding that
drugs inducing the syndrome, such as amoxicillin and sodium
valproate, are capable of directly stimulating HHV-6 replication
(4, 181, 182).

Chronic Infections

Numerous challenges arise in considering the chronic clinical
manifestations that can be related either directly or indirectly to
the persistence of HHV-6 in the body, apart from or independent
of clear-cut episodes of active viral infection. This definition
makes the demonstration of HHV-6 as the cause of these diseases
extremely difficult. Again, the main obstacle comes from the fact
that HHV-6 infection occurs early in life, is nearly universal, and is
lifelong. Therefore, many of the criteria essential for evaluating
causality are lacking, in particular the specificity and temporality
of associations between the virus and symptoms. In addition, the
current limitations of investigational tools concern the interpre-
tation of results regarding viral loads, transcripts, and immune
markers, as well as the low level of viral expression during latent
infection, the existence of two HHV-6 species, and the lack of
relevant animal models.

The role of HHV-6 as a possible trigger for multiple sclerosis
(MS), an inflammatory demyelinating disease of the CNS, has
been debated for a long time (6, 183, 184). MS is an autoimmune
condition whose pathogenesis seems to be multifactorial, with
numerous environmental factors being suspected to act in the
genesis, development, and relapses of the disease. Among them,
HHV-6 appears to be one of the most serious candidates in the
category of infectious triggers, on the basis of immunological, vi-
rological, and experimental data (6). These data include the isola-

tion of this virus from diseased CNS tissues of MS patients, sero-
logic studies of HHV-6 antibody reactivity in their sera and CSF,
and in situ detection of HHV-6 DNA transcripts (141, 183, 185–
188). This hypothesis also results from general considerations
founded on the neurotropism of the virus combined with its the-
oretical capacity to induce both neuroinflammation and autoim-
munity. However, to date, no definite proof of this causative role
has been provided (184). Such a proof would open the way to
novel MS therapies based on specific antiviral effectors.

Hashimoto’s thyroiditis, also known as chronic lymphocytic
thyroiditis, is another autoimmune disease in which viral infec-
tions are suspected to act as environmental triggers (10). A recent
study suggested the putative role of HHV-6A infection (148). The
virus was detected more frequently in thyroid cells of patients
suffering from Hashimoto’s thyroiditis than in those of control
patients, such as patients with Graves’ disease or multinodular
goiter. This study also provided evidence that HHV-6-infected
thyroid cells were susceptible to NK cell-mediated cell killing, sug-
gesting a possible mechanism for autoimmunity induction.

The association of HHV-6 with cardiac and vascular diseases
has been suggested by several authors. HHV-6 has been listed
among the viruses which can cause myocarditis and subsequent
chronic cardiomyopathy, as reflected by the frequent detection of
the virus in heart muscle biopsy specimens (7, 189–191). HHV-6
is capable of infecting vascular endothelium both in vivo and in
vitro, which might support a role in the genesis of diseases affect-
ing coronary and peripheral arteries (47, 192). These effects might
be strengthened by the inhibition of angiogenesis induced by U94
gene expression (75).

Chronic fatigue syndrome is a chronic illness causing a major
functional impairment whose pathogenesis is incompletely un-
derstood (193). The underlying biological abnormalities include
markers of chronic immune activation as well as neuroendocrine
dysfunction. The possible role of HHV-6 in this syndrome is sup-
ported by many studies demonstrating an increased rate of viral
reactivation events, as shown by PCR studies of plasma, serum,
and CSF (194–196). As expected, the data referring to HHV-6
immune responses are more conflicting. Again, the neurotropism
of the virus and its capacity to dysregulate inflammatory responses
are indirect arguments for considering its role in the disease but do
not appear to be sufficient to recommend HHV-6 therapy in this
context.

Regarding malignancies, a putative role of HHV-6 has been
discussed for Hodgkin’s disease in parallel with the accumulation
of data which incriminate EBV (5, 7). This particularly concerns
the nodular sclerosis form of the disease in young adults (143,
197). Note that recent results found no association between
ciHHV-6 and classical Hodgkin’s disease (198). As far as other
lymphoproliferative diseases are concerned, a hypothetical role of
HHV-6 in the pathogenesis and progression of angioimmuno-
blastic T cell lymphoma is supported by a higher detection fre-
quency and load of HHV-6 DNA in tumor tissue than those in
other lymphomas (199, 200).

TREATMENT OF HHV-6 INFECTIONS

Antiviral Agents

Three drugs initially developed to target HCMV infection have
been shown to be efficient against HHV-6 infection both in vitro
and in vivo: ganciclovir, foscarnet, and cidofovir (Table 3). Acy-
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clovir, the emblematic antiviral drug against herpes simplex virus
and varicella-zoster virus infections, is active against HHV-6 in
vitro, but only at very high concentrations. These concentrations
cannot readily be obtained in body fluids in vivo, which explains
why HHV-6 has to be considered naturally resistant to this agent
(201). The three efficient anti-HHV-6 compounds exhibit the
same inhibition activity against both HHV-6A and HHV-6B in
vitro (3, 202–204). The mechanisms of this antiviral activity are
similar for both HCMV and HHV-6: the viral DNA polymerase is
specifically inhibited by the triphosphorylated form of ganciclo-
vir, the diphosphorylated form of cidofovir, and foscarnet, in the
latter case without any chemical modification.

The first phosphorylation step of ganciclovir is catalyzed by a
protein kinase, encoded by the HCMV UL97 or HHV-6 U69 gene,
while the further phosphorylation steps of ganciclovir and the two
phosphorylation steps of cidofovir are dependent upon the activ-
ity of cellular kinases. In agreement with this mechanism of action,
acquired virus resistance to these drugs has been related to muta-
tions of target viral genes involved in drug susceptibility for both
HCMV and HHV-6: protein kinase and DNA polymerase genes in
the case of resistance to ganciclovir and the DNA polymerase gene
only in the case of resistance to foscarnet and cidofovir (123, 205–
208). Accordingly, the risk of simultaneous resistance of different
herpesvirus species to the same drug from the concomitant selec-
tion of mutations in homologous genes has to be considered. This
was illustrated by a report of HHV-6 resistance to ganciclovir fol-
lowing prolonged treatment of HCMV infection with this drug
(205). HHV-6 and HCMV do not express any thymidine kinase,
the enzyme which performs the first phosphorylation step for
other antiherpetic drugs, such as acyclovir, penciclovir, and brivu-
din. This explains in part the low activities of those drugs against
HCMV and HHV-6.

In addition to their cost and the possibility of selecting drug-
resistant viruses, efficient anti-HHV-6 drugs exhibit another
drawback which may restrict their use in patients: despite their
selectivity with respect to viral enzymes, they exhibit a certain
degree of toxicity for human cells and organs, i.e., bone marrow in
the case of ganciclovir and the kidneys in the case of foscarnet and
cidofovir. The usefulness of these antivirals against diseases
thought to be caused by HHV-6 has been reported for humans,
but only in the context of uncontrolled studies (5). Therefore, the
assumed efficacy of these drugs in vivo is not formally demon-

strated, and none is officially approved for treatment of HHV-6
infection. Similarly, the possible synergistic activity of these com-
pounds administered together, for instance, ganciclovir and fos-
carnet, as previously demonstrated for HCMV, has not yet been
proven for HHV-6.

Other nucleoside or nucleotide analogues are potentially effi-
cient drugs, particularly some phosphonate derivatives which are
currently under preclinical development or in early clinical trials
(203, 209, 210). Brincidofovir, also known as CMX001, is an orally
administered lipid-ester derivative of cidofovir which is active
against numerous DNA viruses, including HHV-6, is detected at
significant levels in CSF from treated patients, and is less toxic for
the kidney than cidofovir (137, 204, 211). Artesunate is a deriva-
tive of artemisinin, a drug used for the treatment of malaria. It has
been proven to inhibit the replication of several human herpesvi-
ruses in vitro, in particular HCMV and HHV-6, and has been
given to treat HCMV infections in vivo as a compassionate use.
Its mechanism of antiviral activity likely involves the modula-
tion of cellular activation pathways involving Sp1 and NF-�B
(212, 213). Valomaciclovir, a drug developed initially against
varicella-zoster virus, has also shown significant activity
against HHV-6 in vitro (214–216). Other antiviral compounds
have demonstrated promising experimental anti-HHV-6 activ-
ity, including the nucleoside/nucleotide analogues SS2242,
A-5021, cyclopropavir, and 3-deaza-HPMPA and the non-
nucleoside inhibitor CMV423 (4, 217–222). These are all still at
a step of preclinical development.

Recently, the complementary use of immunotherapy, particu-
larly in the context of HSCT, has been considered through the
generation of polyclonal cytotoxic T lymphocytes targeted to sev-
eral opportunistic viruses, including HHV-6 (100, 203). The con-
cept of an adoptive therapy based on these T cells is very attractive,
due to the possibility of circumventing drug cytotoxicity and re-
sistance, but requires validation in ongoing clinical trials.

Indications and Management of Clinical HHV-6 Treatments

Independently of any antiviral drug administration, a key factor
for the control of active HHV-6 infection is the reversal of immu-
nosuppression when this favoring factor is present and accessible
to medical modulation. Thus, reducing the dose of immunosup-
pressive drugs is a valuable approach to consider when this option
is available (11, 223).

TABLE 3 Compounds showing effectiveness against HHV-6

Druga Prodrug Chemical structure HHV-6 target EC50
b (�M) Clinical use Reference(s)

Ganciclovir Valganciclovir Nucleoside analogue DNA polymerase 2.0–68.6 Yes (approved for HCMV) 203, 204
Foscarnet None Pyrophosphate

analogue
DNA polymerase 6–86 Yes (approved for HCMV) 203, 204

Cidofovir Brincidofovir Nucleotide analogue DNA polymerase 0.3–46 Yes (approved for HCMV) 203, 204
H2G Valomaciclovir Nucleoside analogue DNA polymerase 36.6 Yes (clinical trials) 214–216
Cyclopropavir 6-Deoxycyclopropavir Nucleoside analogue DNA synthesis step 0.5–7 No (pharmaceutical development) 203, 204,

217–219
S2242 None Nucleoside analogue DNA polymerase 0.02–0.03 No (pharmaceutical development) 216, 220
3-Deaza-HPMPA None Nucleotide analogue DNA polymerase 1.2–1.4 No (discontinued development) 220
CMV423 None Indolizinecarboxamide Tyrosine kinasec 0.017–0.053 No (discontinued development) 203, 204, 222
Artesunate None Semisynthetic derivative

of artemisinin
Sp1/NF-�B activation

pathwaysc

3.8 Yes (approved for malaria) 212, 213

a No drug is officially approved for use on HHV-6.
b EC50, 50% effective dose (range or unique value, according to the data in referenced studies).
c Cellular component target.
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The general strategy of antiviral therapy against HHV-6 may be
inspired by the current practices of anti-HCMV treatment, thus
leading to a choice between prophylactic, preemptive, and cura-
tive approaches (Fig. 2). The essential target is active infection,
since the available drugs are not efficient against the potential
deleterious effects of latent infection. Hence, virological findings
provide valuable information in order to define the most conve-
nient strategy. Prophylactic treatment has the advantage of to-
tally protecting at-risk individuals from the deleterious effects of
active HHV-6 replication by preventing either primary infection
(mainly for children) or reactivation (for most adults). However,
this strategy requires the treatment of a large number of individ-
uals, for instance, virtually all immunocompromised patients; in-
duces high costs; and exposes individuals to numerous side effects
as well as to emergence of resistance. Conversely, curative therapy
is initiated once HHV-6-associated disease has been diagnosed,
which concerns fewer people but exposes them to the risk of ther-
apeutic failure due to late intervention. Preemptive therapy is the
median solution, with the detection of viral replication at a signif-
icant level being the starting signal for therapy prior to any de-
clared disease. Its cost-effectiveness is presumably favorable, but
its indications require a precise analysis of HHV-6 replication dy-
namics. Note that regarding HCMV infection, the early detection
of virus reactivation by use of PCR-based molecular tools has
permitted successful preemptive therapy, particularly in trans-
plant recipients (122).

It is tempting to speculate on the following items as possible
additive criteria for initiating therapy: (i) demonstrated active in-
fection with a significantly elevated viral load in the absence of
ciHHV-6; (ii) immune suppression context; (iii) concomitant
clinical symptoms relating to virus replication on a pathophysio-
logical basis; and (iv) absence of any other causative agent, in
particular HCMV, but keeping in mind that ganciclovir, foscar-
net, and cidofovir are also active against HCMV infection. As in-
dicated previously, to date, the nature of the HHV-6 species, either
HHV-6A or HHV-6B, has not been considered a key feature for
treatment decisions. Taking all available data together, it currently
seems premature to propose a prophylactic therapy in order to

prevent HHV-6 reactivations or a preemptive therapy of virolog-
ically proven active infection in order to prevent clinical manifes-
tations. The spontaneous evolution of HHV-6 reactivations and
their association with disease are not sufficiently understood to
enable such therapeutic strategies. It is obvious that active HHV-6
infections are spontaneously controlled in many circumstances,
which emphasizes the risk of giving a treatment without any need.
Accordingly, the International Herpesvirus Management Forum
and the American Society of Transplantation do not recommend
antiviral prophylaxis for HHV-6 infection but promote the initi-
ation of antiviral therapy in case of HHV-6 encephalitis. Intrave-
nous ganciclovir and foscarnet are proposed as first-line drugs
(164, 223, 224). However, no other recommendation has been
approved internationally for the therapy of active HHV-6 infec-
tions while numerous questions are pending. Those questions re-
fer to the precise timing for therapy initiation, the preferred drug
to be used, and treatment duration. An additional question is that
of maintenance therapy administered in order to prevent relapses
after the acute disease has been controlled.

Indeed, the limbic encephalitis of HSCT patients fulfils most of
the criteria listed above and obviously is a potential target for
antiviral drugs. The severe CNS diseases associated with primary
infection in children might be another priority indication, but the
data supporting this assumption need to be strengthened. As a
general comment, in the case of CNS disease associated with
HHV-6 infection, ganciclovir and foscarnet, either alone or in
combination, might be preferred over cidofovir, as the ability of
the latter drug to penetrate the blood-brain barrier in humans is
controversial (225). No study has yet been performed to define the
specific dosing and duration of antiviral therapy. Therefore, the
patterns of CMV therapy are used in most cases, with an approx-
imate duration of 3 to 4 weeks (165).

Whatever the indication, the effectiveness of antiviral therapy
must be monitored by the concomitant regression of clinical
symptoms and decrease of viral load, as performed to assess the
response to anti-HCMV treatments (122). A divergence between
the evolution of disease and that of viral parameters would lead
one to suspect a causative agent other than HHV-6 or a patho-
genic mechanism distinct from direct effects of active infection. In
addition, a therapeutic failure following the prolonged adminis-
tration of an efficient antiviral drug may lead to suspicion of the
emergence of a resistant virus and should encourage performance
of a drug susceptibility test based on a phenotypic assay or a ge-
netic analysis (226). The resistance of HHV-6 to antiviral drugs is
not currently as crucial a question as it is for HCMV (122). This
weak concern about resistance is correlated with the present lim-
ited use of antivirals against this virus. However, the risk of
HHV-6 resistance resulting from a previous exposure to drugs in
the context of other concomitant herpesvirus infections, notably
HCMV infection, does exist and must be kept in mind (205).

For any indication, the validation of therapeutic options against
HHV-6 infections will require randomized controlled therapeutic
trials, the only valuable strategy for establishing formal treatment
guidelines (203).

PENDING QUESTIONS AND PERSPECTIVES

Deciphering the Clinical Impact of Chromosomal
Integration
In addition to the difficulties in interpreting results for nucleic
acid testing diagnosis, ciHHV-6 raises numerous theoretical clin-

FIG 2 Overview of the three general options for the treatment of HHV-6
infection. The “�” and “�” symbols indicate the presence, absence, and/or
level of the indicated parameter.
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ical concerns related to virus reactivation, dysregulation of im-
mune responses, and instability of the cell genome. If proven,
these phenomena might significantly alter the frequencies of can-
cer and inflammatory, autoimmune, or drug-induced hypersen-
sitivity diseases in ciHHV-6 subjects. They also might modify the
rate of side effects and the overall prognosis of transplantation and
transfusion for patients receiving ciHHV-6 blood cells or organs
(66). Therefore, further research is needed to clarify these points
and to provide clear information for persons carrying ciHHV-6.
This can be done by means of retrospective studies in order to
determine whether ciHHV-6 is significantly more frequent in
some diseases. Alternatively, prospective studies of cohorts of
ciHHV-6 individuals will analyze the occurrences of particular
illnesses compared to those for cohorts of control subjects.

Differential Pathogenic Roles of HHV-6A and HHV-6B

HHV-6A and HHV-6B are now defined as distinct virus species
(22). Their epidemiologies are also suspected to differ from each
other regarding the time of virus acquisition in life, their role in
HHV-6 primary infection according to geographic region, their
distribution in human tissues, and their modes of human-to-hu-
man transmission. Major questions refer to disease associations.
Some reports have suggested an increased severity of HHV-6A
over HHV-6B, particularly in acute and chronic CNS diseases sus-
pected to be linked with HHV-6 infection. However, only
HHV-6B has been found to be associated with mesial temporal
lobe epilepsy and status epilepticus, while only HHV-6A has been
associated with Hashimoto’s thyroiditis (148, 159, 227). It is now
essential to make a clear distinction between both species in all
research projects regarding HHV-6 epidemiology and pathoge-
nicity. This distinction might provide dramatic insights into our
understanding of the various infectious events that are collectively
designated HHV-6 infection. This, in turn, would enable us to
define specific diagnostic and treatment strategies on a more rel-
evant basis.

Causative Role of HHV-6 in Chronic Diseases

The association of HHV-6 with chronic diseases has been sup-
ported by in vivo immunological and molecular findings as well as
experimental data from cell models. However, the convincing
demonstration of a causative role of HHV-6 in diseases such as
MS, Hashimoto’s thyroiditis, and chronic cardiomyopathy, either
as an initial inducer or as a further trigger, is a huge challenge. The
ubiquitous distribution and lifelong duration of HHV-6 infection
create major obstacles for case-control and/or prospective studies.
Clinical studies based on the potential beneficial effects of anti-
HHV-6 drugs or immune effectors in these diseases have very
limited options. These limitations are due to the small number of
available virus inhibitors, the huge number of parameters to be
investigated, and the long duration of experimental therapy,
which may expose treated patients to numerous side effects. In
addition, complex chronic illnesses may rely on multiple patho-
gens which are also sensitive to the administered antiviral treat-
ments, such as HCMV and other herpesviruses. This makes the
interpretation of therapy effects difficult regarding the possible
etiological role of HHV-6.

Algorithms and Priorities for HHV-6 Treatments

Despite the uncertainties regarding HHV-6 pathogenicity and the
limitations of therapeutic options, it would be worth setting up
algorithms with the double purpose of improving the knowledge
about HHV-6 infection and its overall prognosis in patients. The
situation which currently appears to be the most favorable for the
application of such algorithms is that of active severe HHV-6 in-
fections (Fig. 3). There are many reasons for this. Active HHV-6
replication can be diagnosed confidently and quantified by means
of current molecular tools, its dynamics evaluated in sequential
samples can be paralleled with clinical symptoms, it might induce
highly serious diseases, particularly in immunocompromised pa-
tients, and it is a convenient target for inhibitors of viral DNA

FIG 3 Hypothetical algorithm for diagnosis and therapy decisions in a situation of severe disease potentially associated with active HHV-6 infection.
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polymerase. Although no extensive study has been done regarding
the kinetics of viral replication in the human host, it can be spec-
ulated that the dynamics of quantitative viremia, at least to some
extent, may predict HHV-6 disease risk, particularly in immuno-
compromised patients, as is the case for HCMV (122). However,
one must keep in mind that many active HHV-6 infections are
asymptomatic, even in the context of immune deficiency, and can
revert to latency without any therapy. Moreover, if an active
HHV-6 infection is suspected, it is essential to rule out the possi-
bility of ciHHV-6. If the latter case is true, then virus reactivation
may still have occurred and may be a potential source of disease.
However, the patterns of transcription revealing active virus rep-
lication are not completely known, and the quantification of tran-
scripts is not yet standardized, which makes the interpretation of
virological findings ambiguous in many cases.

The development of extensive laboratory support, including the
standardized quantification of viral nucleic acids and in situ detec-
tion of viral antigen expression in bodily tissues, is needed. Com-
bined with the initiation of well-designed therapeutic trials, the
improvement of laboratory approaches will open wide research
perspectives on this pathogenic, albeit ubiquitous, human herpes-
virus.
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