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SUMMARY

Autoinduction (AI), the response to self-produced chemical sig-
nals, is widespread in the bacterial world. This process controls
vastly different target functions, such as luminescence, nutrient
acquisition, and biofilm formation, in different ways and inte-
grates additional environmental and physiological cues. This di-
versity raises questions about unifying principles that underlie all
AI systems. Here, we suggest that such core principles exist. We
argue that the general purpose of AI systems is the homeostatic
control of costly cooperative behaviors, including, but not limited
to, secreted public goods. First, costly behaviors require preassess-
ment of their efficiency by cheaper AI signals, which we encapsu-
late in a hybrid “push-pull” model. The “push” factors cell den-
sity, diffusion, and spatial clustering determine when a behavior
becomes effective. The relative importance of each factor depends
on each species’ individual ecological context and life history. In
turn, “pull” factors, often stress cues that reduce the activation
threshold, determine the cellular demand for the target behavior.
Second, control is homeostatic because AI systems, either them-
selves or through accessory mechanisms, not only initiate but also
maintain the efficiency of target behaviors. Third, AI-controlled
behaviors, even seemingly noncooperative ones, are generally co-
operative in nature, when interpreted in the appropriate ecologi-
cal context. The escape of individual cells from biofilms, for ex-
ample, may be viewed as an altruistic behavior that increases the
fitness of the resident population by reducing starvation stress.
The framework proposed here helps appropriately categorize AI-
controlled behaviors and allows for a deeper understanding of
their ecological and evolutionary functions.

INTRODUCTION

Intercellular signaling via small diffusible molecules, usually
termed quorum sensing (QS), represents a common behavior in

bacteria, often of high relevance from a human perspective. QS
regulates a vast array of different target functions. In many sym-
biotic bacteria, these functions constitute life-style switches that

are beneficial or pathogenic for their eukaryotic hosts (1, 2). An
example for pathogenic bacteria is the switch from low to high
virulence. QS is also crucial in environmental processes such as
biofouling, degradation processes in sewage plants or environ-
mental pollutions, and nitrogen cycling (3–6). Biochemically, the
core of a generic system comprises a cytoplasmic signal synthase
(or several involved enzymes), a small, diffusible signal that is
released into the environment, and a signal receptor located in the
cell membrane or in the cytoplasm. The signal-receptor complex
directly or indirectly controls the expression of target genes (Fig.
1). As the same cells produce and respond to the signal molecules,
the signal was originally termed autoinducer (AI). There are var-
ious chemical realizations of this core design (for an overview, see,
e.g., references 7 and 8). The AI may passively diffuse through the
cell membrane or be secreted by the cell and extracellularly mod-
ified or packaged into vesicles for trafficking between cells (9).
Originally, three main types of AI molecules were described: (i)
acyl-homoserine lactones (AHLs), primarily in Gram-negative
proteobacteria but also in some bacteriodetes, cyanobacteria, and
archaea (10–12); (ii) oligopeptide AIs in Gram-positive bacteria;
and (iii) autoinducer-2 (AI-2), a furanosyl borate diester, as a
universal signal for interspecies communication (Fig. 2). Still, an
increasing number of AIs belonging to various chemical classes
are being discovered (see, e.g., reference 13).

The generic systems can be adapted in various ways. For exam-
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ple, several oligopeptide AIs are posttranslationally modified (14),
and AI transfer through the cytoplasmic membrane can be passive
(by diffusion) or active (15). Two properties relevant for ecologi-
cal function have been described for most, but not all, AI systems:
(i) autoregulation, i.e., AIs positively regulate their own activity
via expression of their synthase, and (ii) cooperativity of the AI
effect (Hill coefficient of �1), e.g., via multimerization of recep-
tor-AI complexes. As a consequence, for an appropriate parame-
ter range, mathematical modeling usually predicts bistability (i.e.,
two different phenotypes associated with a locally stable on-state
and off-state) and hysteresis (i.e., dependence of the actual AI
production rate on the past state), which introduces a kind of
memory and a switch-like transition between the on- and off-
states (Fig. 3). This property can support a synchronous all-or-
none behavior of cells in a population. However, the existence of
bistability was reported to depend on the stability of receptor-AI
complexes and has only rarely been confirmed experimentally
(16–18). For other AI systems, a graded response at the population
level has been reported (19). Of note, induction dynamics has
almost exclusively been studied at the population level rather than
in individual cells.

The expression of target genes at high density may be brought
about by direct activation or by derepression. For example, among
the family of LuxR-type regulators that recognize AHL signals,
most members function as transcriptional activators in the pres-
ence of AI, while some function as transcriptional repressors in the
absence of AI, and AI relieves repression (20).

Another aspect that is poorly understood is the dependence of
the AI circuit on other processes. AI activity often depends on the
metabolic state of the cell. Ulitzur (21) showed, for example, that

starvation may enhance QS. The function of these interdependen-
cies of different regulation systems with respect to the homoeos-
tasis of cells and ecological function deserves more attention. The
situation is even more complex if there are several feedback loops
or if several interconnected AI systems coexist in one species. An
appropriate description of the interactions between the AI system
and interconnected regulatory pathways is central to our under-
standing of the ecological function of AIs.

The classical interpretation regards AI regulation as a mecha-
nism to control target gene expression by cell density, limiting the
cooperative behavior of the entire population in a synchronous
all-or-none response to sufficiently high cell densities that gener-
ate a group benefit. This seemingly uniform functional principle
behind all AI systems was challenged subsequently. The integra-
tion of different cellular and environmental factors into AI signal-
ing intensity in different species broadened the interpretation of
QS as a type of regulation system with greatly different ecological
target functions that vary according to the species and its specific
situation. Following this view, there seem to be no principles that
unify all QS systems, possibly with the exception of an influence of
cell density. However, both perspectives may be too extreme.

Here, we try to give an overview of the extent of information
integration in QS, the purpose of the information exchange, and

FIG 1 Minimal AI signaling system in a cell, based on AHL signaling in pro-
teobacteria. AI, autoinducer; R, receptor; S, AI synthase; Su, substrate. Metab-
olites are in green, proteins are in blue, and genes are in red. Black boxes
indicate promoter regions, open squares indicate noncovalent interactions,
and open circles indicate enzymatic conversions. The dashed arrow indicates
optional feedback in some species, which may be positive (often with respect to
synthase expression) or negative. There are variations of this basic scheme. In
Gram-positive bacteria, oligopeptide AIs are secreted by a permease and
sensed by a membrane receptor. A cognate transcriptional regulator is acti-
vated by phosphorylation.

FIG 2 Examples of AI signals. The classes, structures, corresponding names,
and bacterial species are shown.
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the participants in the communication process (who is commu-
nicating with whom). This is done comprehensively, based on
different projections, including biochemical and physical aspects,
ecology, mathematical modeling, and social evolution theory. Our
analysis is guided by the notion that there are principles common
to all AI systems. Before we begin with our analysis, we define
terms that have not always been used consistently in the field.

DEFINITION OF TERMS

First of all, we want to clarify the uses of the terms “signaling,”
“signal,” and “communication,” in the context of QS in this re-
view, as we feel that there is some degree of confusion and dis-
agreement in scientific publications. In agreement with, for exam-
ple, Winzer et al. (22) and Diggle et al. (23), we apply a rather strict
definition of the terms “signal” and “signaling.” We limit them to
systems in which there are direct or indirect evolutionary benefits
for the receiver to respond and the response of the receiver is
beneficial for the sender. Thus, there is a coevolution between
signal and response. Consequently, following the definition of
Diggle et al. (23), we exclude interactions based on coercion (only
the sender benefits) and cues (only the receiver benefits). In eaves-
dropping, for example, a “cue” provides important information to
a recipient, but the cue did not evolve owing to this effect.

The distinction of processes representing coercion and cues
from signaling also makes sense with respect to the consequences
for the development of adequate AI-targeting treatment strate-
gies, which aim to promote or suppress beneficial or adverse (e.g.,
pathogenic) bacteria, respectively. Inhibiting “true” signaling will
impede both the sender and the receiver species, whereas in the
case of coercion or cues, only one bacterial partner will be nega-
tively affected, whereas the other may even benefit. We point out
that the “benefit” can depend on the specific habitat conditions.
Exemplarily, an AI-regulated virulence factor may be beneficial
for bacteria in infections only under certain conditions in some

host organs, whereas it might be redundant in others (24). This
obviously also has consequences for the effect of inhibitors. Evo-
lutionary benefit can thus be interpreted only in long-term anal-
yses including potential habitat switches.

If being released and evoking any kind of effect in a receiver
would be sufficient to be called a signal, i.e., ignoring the coevo-
lutionary aspect, then, principally, all released molecules, includ-
ing products toxic for the sender (e.g., waste) or the receiver (e.g.,
antibiotics), would be “signals,” and all these processes would be
“signaling,” which would dilute the meaning of these terms to a
level that renders them useless, at least for the discussion of QS and
related aspects. We are aware that an unambiguous decision,
whether a molecule is actually a signal in this sense or not, is often
difficult and may depend on the specific situation. For example,
molecules like AI-2 might be intraspecies signals for some spe-
cies, including Vibrio species, but waste products for others (22,
25, 26).

For the term “communication,” the situation is even more
ambiguous, as Diggle et al. (23), among others, use it in a broad
sense, i.e., including cues and coercion, whereas others, such as
Winzer et al. (22), tend to use it in a more strict way. An in-depth
discussion of the semantics is beyond the scope of this paper;
however, “communication” in this text is used synonymously
with “signaling” as defined above.

In cases where the sender and receiver are genetically identical,
i.e., for intraspecies interactions via AIs, receiver or sender cells
may not need to directly benefit from the signaling molecule, as
long as the signal-controlled target activity increases the inclusive
fitness, i.e., the sum of direct and indirect fitness. An example is
the AI-triggered death of a subpopulation of cells that enables
other cells to benefit from competence or released nutrients.

According to the original definition, AIs are intercellular sig-
nals that are identical for sender cells and receiver cells (27, 28).
Note that this does not require the presence of an autoregulation
loop, i.e., the upregulation of AI production induced by AIs. How-
ever, it requires that an AI has to carry a certain degree of self-
information. Unidirectional intraspecies communication, where
sender and receiver cells belong to different subpopulations of
differentiated cells in an isogenic population, would be called
paracrine signaling (29, 30). In reality, to which degree sender and
receiver cells belong to the same subpopulation remains unclear
for most QS systems due to the lack of experimental data. An
alternative term covering both aspects would be “pheromone.”

Finally, for reasons of clarity, we use the term “quorum sens-
ing” in is original, strict definition, i.e., as a system restricted to
measuring cell density, although it is now often used in a broader
sense, including aspects of, e.g., cell distribution patterns and dif-
fusion limitation (31). We term the broader concept “autoinducer
sensing.” We are aware that the broader interpretation of QS has
gained acceptance in the scientific community (31), although it is
prone to misunderstanding.

ECOLOGICAL FUNCTIONALITY OF AI SYSTEMS

A Combination of Factors Determines Spatial AI Patterns

The original QS concept focused on the relevance of cell density
(or quorum) for the regulation of gene expression via AIs. The
later realization that other factors such as spatial cell organization
(including aspects of clustering) and diffusion rates (or, more gen-
erally, mass transfer properties, including flow conditions) also

FIG 3 Dynamics of AI system activation. AI systems show different induction
behaviors. Whether an AI system can display graded or switch-like behavior
with or without hysteresis depends on the architecture of the AI system (160).
Interestingly, it was recently suggested that the same AI-based control circuit
can display both switch-like and graded responses at the population level,
dependent on values of specific parameters (161). As these could change in
response to environmental conditions, the same species could display both
behaviors. Mathematically, bistability is defined as the existence of two stable
states at the same cell density (an “off”-state and an “on”-state), which is often
associated with hysteresis. Although for many AI systems, the existence of
bistability and hysteresis has been predicted by mathematical models, experi-
mental evidence for the presence or absence of hysteresis is poor. Note that,
deviating from the mathematical definition, the dominance of two stable states
at different cell densities without hysteresis is sometimes called “bistable” in
biological papers.
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affect the AI concentration led to the development of other con-
cepts with names related to these factors, e.g., diffusion sensing
(DS), positional sensing, cluster sensing, compartment sensing, or
cumulative gradient sensing (for an overview, see reference 31)
(Fig. 4). Most of these concepts were initially based on theoretical
considerations and partly on modeling, but the relevance of spa-
tial distribution and mass transfer properties has been confirmed
experimentally. Most bacterial populations do not show spatially
homogeneous cell distributions but rather show a more or less
strong clustering of cells, e.g., in attached microcolonies, floating
flocks, or bacterial cell assemblages in hosts. Clustering, which
may be quantified by using, e.g., a radial distribution function
(32), promotes the induction of the clustered cells, potentially
resulting in an induction of rather small colonies consisting of
only a small number of cells (33–37). Flow delays induction and
may affect the spatial induction pattern in biofilms or microcolo-
nies (34, 38, 39). Limited diffusion due to enclosure by solid ma-
terial or gas promotes AI accumulation and thus induction (33,
40–42). The same concept applies to mass transfer limitation by
matrices with decreased diffusion rates, such as mucus (43).

As Platt and Fuqua pointed out (31), the multitude of concepts
and concept names led to unnecessary confusion in the field. In
nature, usually a combination of factors, namely, cell density,
mass transfer, and clustering, determines the local AI concentra-
tion, and there is experimental evidence for this notion (40, 44,
45). Which factor(s) dominates varies depending on the specific
conditions and can hardly be estimated by the cells, although an
independent estimation of environmental (e.g., mass transfer)
properties via multiple signals with different physical characteris-
tics or via other measurement strategies is possible under certain
conditions (46). Note that cell density and cell distribution (or
degree of cell aggregation) are independent physical traits (Fig. 4).

The effects of various influencing factors are incorporated in the
efficiency-sensing (ES) concept, which views the regulation sys-
tem from the perspective of its ecological or evolutionary purpose
(47). The ES concept assumes that the ecologically relevant func-
tion of AI sensing is to preassess the efficiency of producing dif-
fusible extracellular effectors or “public goods,” whose concentra-
tion is influenced by the same combination of factors that
influence the concentration of diffusible extracellular AIs. AI sys-
tems integrate the net influence of these factors, called measure-
ment factors, into one information signal. Relatively cheap AIs
can therefore function as a proxy for the production of more ex-
pensive effectors such as exoenzymes, siderophores, or antibiotics.
AIs can act as significant cost savers by limiting costly target activ-
ities to when they are cost-effective (efficient). ES unifies the con-
cepts of what cells sense and why, including hypotheses about the
fitness benefits derived from AI sensing.

As in all measurement systems, disturbing environmental fac-
tors may falsify the intended measurements of cell density or dif-
fusion limitation or the prediction of efficiency. Examples are the
absorption of AI to components of the environmental matrix, AI
solubility, and abiotic or biotic degradation dependent on the bi-
otic and abiotic environment. All of these factors may additionally
vary in time and space. Note that these environmental factors also
affect released effectors. Differences in the strength of the influ-
ence of the factors between AIs and effectors further limit the
predictive power of AIs for QS, DS, or ES purposes. However, as
long as these disturbing factors are predictable, they may at least
partly be compensated for.

The idea behind the ES concept, which is largely integrated into
a recently broader interpretation of the term “QS” (48), was to
shift perspectives from the question, “What does the cell want to
know (e.g., cell density or mass transfer limitation)?” to “What
information does the cell get, and how can it benefit?” This is in
accordance with the hypothesis that many AIs or their evolution-
ary precursors may have originally been released for other pur-
poses, e.g., as siderophores, as antibiotics, or simply as waste prod-
ucts (22, 49–51). Only in a secondary evolutionary process would
cells have realized the additional value of information contained
in the local concentration of these substances: it allows prediction
of the efficiency (i.e., cost-effectivity) of the release of other effec-
tors (52). Additionally, existing AI systems that evolved in other
bacterial species may have been acquired by horizontal gene trans-
fer and brought the expression of these effectors under their tran-
scriptional control (53). Interestingly, some AIs, including certain
AHLs and bacteriocins, still also function as antibiotics or sidero-
phores (49, 50).

Showing that a factor influences the local distribution pattern of
released AIs does not necessarily bear ecological significance.
Some factors may rather be ecologically irrelevant or confound-
ing. If cells live under constant, predictable mass transfer condi-
tions, cell densities, or distribution patterns throughout their life
history, one or several of these factors may be negligible. The pur-
pose of AI systems would then be to measure only the variable
influencing factor(s) and to control cellular activities whose effi-
ciency correlates with them. For example, the evolutionary benefit
of light emission by bacteria living in light organs may be con-
nected with the number of emitting cells, determining visibility, as
cell distribution patterns and diffusion properties of the environ-
ment in the light organ are predictable (54). Depending on how
critical an AI-regulated decision is for fitness, a relatively small

FIG 4 Designation of AI signaling according to the factors that determine AI
accumulation. QS, quorum sensing based on cell density; DS, diffusion sensing
based on mass transfer properties; CS, cluster sensing based on the spatial
distribution of cells. Red and yellow backgrounds indicate low and high AI
concentrations, respectively; cyan and purple dots indicate noninduced and
induced cells, respectively. (Modified from reference 47.)
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impact of influencing factors not correlating with efficiency may
be tolerable. However, predictable, constant conditions are prob-
ably quite rare in nature and have to be proven before assuming
that the system’s purpose is to measure only one or two dominat-
ing factors. Generally, we propose that broader explanations
should be considered for the interpretation of the ecological role
of a specific AI system. These explanations assume that the AI is
useful for efficiency prediction under a broader set of influencing
factors.

Additional environmental factors affect the local concentration
pattern of released AIs. Temperature generally influences the sta-
bility of biological molecules, and pH affects the stability of AHL
(55, 56). AHL signals are more rapidly degraded at alkaline pH
(57). Sorption or even binding to surfaces can decrease the soluble
AI concentration. Hydrophobic AIs such as quinolones or long-
chain AHLs could partition to biotic or abiotic structures such as
membranes or lipophilic surfaces. Other bacterial or eukaryotic
species influence AI systems by, e.g., the degradation or produc-
tion of the same or similar AIs, AI-mimicking substances, or
AI-blocking activities. Usually, these effects are interpreted as sec-
ondary effects disturbing the actual purpose of the AI system.
However, if the efficiency of the regulated target activities is af-
fected by pH, the sorbing matrix, or the interfering species in a
correlated way, it cannot be excluded that these factors are part of
the measurement objective. Exemplarily, it has been proposed
that in some cases, AHLs may be used for pH sensing (58). Critical
questions in this context are as follows. Is the interpretation of the
ecological purpose of AIs meaningful in the context of actual,
natural conditions? Is the use of AIs for this purpose reasonably
cost-effective compared to other possible regulatory strategies?
Does it present an evolutionarily stable strategy (ESS)? Or does the
influencing factor indeed just perturb what should be measured?
The question of what cells actually measure by AIs and for what
benefit is still not completely satisfactorily answered and probably
varies within and between species (some of which harbor multiple
AI systems) and in relation to environmental conditions.

In an evolutionary context, the fitness consequences of AI-reg-
ulated phenotypes that can benefit individual cells as well as
groups of cooperating cells are important to consider. Would we
expect them to always work in the same direction, and why? Let us
consider AI-controlled bioluminescence in some marine Vibrio
species as an example. Costly luminescence is visible and thus
beneficial only if produced by many cells but presents a waste of
energy if produced by a single cell in a diffusion-limited environ-
ment. As the cells probably cannot distinguish between both sce-
narios when measuring the AI concentration, the question of the
evolutionary stability of such behavior arises. Whether AI-con-
trolled bioluminescence represents an ESS depends on how often
single cells experience a situation dominated by mass transfer ver-
sus one dominated by changes in cell density. However, if we
alternatively assume that oxygen detoxification is the main or at
least the former purpose of bioluminescence, direct benefits of
spatially isolated (and thus noncooperating) cells and inclusive
fitness benefits of cooperating cells in a population would work in
the same direction (59). Cooperation can provide a direct fitness
benefit to the reproductive success of the individual performing
the behavior that outweighs the cost of performing the behavior.
Cooperation also provides an indirect benefit because it is directed
toward other individuals who carry the cooperative gene (60).

AIs as Proxies for Environmental Changes beyond Effector
Release

The original definition of the ES concept, although thought to
explain most cases of QS, was relatively narrow. For example, it
focused on the regulation of released effectors; i.e., it argued that
AIs are suitable to control genes that are directly or indirectly
involved in secretion. However, several AI systems control intra-
cellular enzymes that are not involved in secretion but that affect
the concentration of environmental substances. These intracellu-
lar enzymes, for example, reduce oxidative stress or acidification
(61–64). In these cases, mathematical modeling predicts that AIs
can also be used as reliable predictors of costs and benefits (B. A.
Hense and J. Müller, unpublished data). The efficiency of a pop-
ulation of cells in reducing the concentration of harmful environ-
mental substances in their neighborhood via intracellular enzy-
matic reactions increases if more cells contribute. Aggregation of
cells and mass transfer restriction of the environmental matrix
further contribute to this reduction. Thus, changes in the concen-
tration of AI and harmful environmental substances are inversely
correlated (i.e., an increase of the cell number will result in a de-
crease in the amount of the environmental substance). In this
sense, the ES concept is applicable for situations without effector
release.

However, prediction of the efficiency of changing the environ-
ment by the cells via intracellular enzymes is not necessarily re-
stricted to degradation processes. Butanediol fermentation in Ser-
ratia plymuthica RVH1 is repressed by an AI system before
acidification caused by fermentation impedes population growth
(65). Alternatively, in some Burkholderia spp., AI activates the
production of oxalate to avoid toxic alkalinization by ammonia
(66). Here, the AI allows the cells to predict the environmental pH
if the population continues to produce waste products and
thereby to avoid negative fitness effects by changing the environ-
ment. In these cases, concentrations of AI and the environmental
substance (acid or base) are positively correlated.

All these considerations fit into the concept of AIs as predictors
of the efficiency of regulated target activities to modify the cell’s
environment, i.e., ES. In many bacteria, AI circuits function as
life-style switches in which master regulators govern the expres-
sion of up to several hundred genes rather than individual pheno-
types (67–72). Here, efficiency refers to the whole regulon rather
than an individual gene or operon; i.e., not every single, regulated
gene may be directly connected with changes in the environment.
However, to our knowledge, at least some genes of each AI regulon
code for activities that directly influence the environment. A
forthcoming meta-analysis of bacterial QS regulons supports this
notion (L. McNally and S. Brown, personal communication). A
simple example is AI-dependent toxin-antitoxin production in E.
coli (73). Here, AI coregulation of an intracellular product, anti-
toxin, makes sense because it is tightly coupled with AI regulation
of an extracellular product, secreted toxin.

Another example is the QS regulon of Pseudomonas aeruginosa.
Microarray studies revealed that AHL QS directly and indirectly
controls the expression of �300 genes (68, 74, 75). Only a fraction
of these genes encode secreted factors; however, this fraction is
primarily directly regulated by QS (76). Among the many genes
indirectly controlled by QS are central metabolic genes. It is con-
ceivable that many of these genes help shift cellular physiology
from a growth state to a secretion state (76). This shift may include
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the induction of metabolic pathways that produce the precursors
of secreted products as well as those that process nutrients made
accessible by the secreted product.

Taken together, AIs regulate life-style switches whose evolu-
tionary benefit is strongly coupled with the efficiency of control-
ling environmental changes. This is reasonable for all scenarios
where AIs can act as cost-saving proxies.

AIs as Triggers of Noncooperative Behavior?

The evidence that we have provided thus far supports the original
idea that AI regulation is associated with the induction of cooper-
ative behavior. Once a critical AI concentration (or sometimes cell
density) is reached, all cells in a population induce a coordinated,
phenotypically homogeneous, and synchronous joint activity,
which is not efficient if done by a single cell or a small number of
cells (77). This transition may be accompanied by a concomitant
repression of noncooperative traits. For example, in the pathogen
Staphylococcus aureus, the Agr QS system activates secreted toxins
and represses surface adhesins at high cell density (78). As dis-
cussed above, a direct connection to cooperative behavior does
not have to exist for each single gene in the AI regulon, which often
may rather assist switches to cooperative life-styles. However,
there are examples where AIs terminate joint activity and even
seem to trigger solely noncooperative behavior.

In several Pseudomonas putida strains, an AI system (called
Ppu) triggers the release of the cell-associated surfactant putisol-
vin (79). Putisolvin promotes the removal of cells from the colo-
ny/biofilm. Fluorescence labeling showed that in smaller colonies,
only single cells detach from the colony once their AI system
reaches the induced state (34). Although the degree to which in-
duction is dominated by AI accumulation or by stochastic upregu-
lation is not completely clear, AI-controlled putisolvin release can
hardly be interpreted in terms of public goods, as only the induced
cell is able to detach. The response does not occur synchronously
within the population.

In several other species, AIs trigger the detachment of cells from
biofilms (80). In P. aeruginosa and S. aureus, subpopulations are
released from individual microcolonies, resulting in cycles of de-
tachment and regrowth (81–84). This seemingly noncooperative
behavior (the cells leave their aggregate) has been connected with
escape from nutrient limitation (85) due to overcrowding. Trig-
gering removal directly by starvation would be a response to the
prevailing environmental conditions. In contrast, coupling with
AI introduces a predictive element to the decision process, i.e.,
information on the degree of nutrition depletion if the present
population continues consumption under the actual conditions.
The same applies to the accumulation of waste products.

Colonies or biofilms present a certain degree of protection, e.g.,
against antibiotics and grazing. Leaving of colonies by single cells
may thus be accompanied by an increase in the risk of death (de-
creased fitness). However, the population can benefit by, e.g., de-
creased starvation pressure or by the potential colonization of new
localities. Such behavior could be considered altruistic and can be
beneficial even to the detaching cell in light of the inclusive fitness
theory, if detaching and resident cells share the same cooperative
trait (86). By leaving, the individual cell increases the fitness of
resident cells in the colony and, due to their high relatedness,
indirectly increases its own fitness (87). Consequently, although
not connected with the production of public goods, we can con-
sider behaviors such as detachment from colonies “cooperative.”

In fact, it is hard to imagine how cell-cell communication, itself
representing a cooperative regulation strategy within a species or
even a clone, could control noncooperative, selfish cell behavior of
single cells in an evolutionarily stable way. Thus, we assume that
AIs generally regulate cooperative behavior. Note that this does
not mean that the specific circumstances always allow for cooper-
ation. A borderline case would be diffusion sensing of an individ-
ual, isolated cell (discussed in more detail below), such as that
residing in the phagosomal compartment of a macrophage (88,
89). AI induction promotes escape from the endosome and apop-
tosis of the host cell. Such a behavior is simply nonsocial, neither
cooperative nor selfish, just because the situation of the isolated
cell is nonsocial. However, as soon as the compartment contains
more than one cell, the AI-controlled behavior turns into cooper-
ation; that is, it is the situation that determines whether such a
behavior is actually cooperative and not the behavior itself.

AI-mediated cooperative behavior by no means requires syn-
chronous, uniform responses of all cells in a population. Studies
with single-cell resolution show the absence of population-wide
synchronicity of AI responses in isogenic populations grown
planktonically or as a biofilm (19, 81, 84, 90). It is possible that
emerging heterogeneities, caused by chemical gradients or sto-
chastic variations, are sometimes a purposeless side effect. How-
ever, there is increasing evidence for the potential benefits of a
division of work within a population, i.e., the emergence of sub-
populations with different tasks. In the well-studied case of Bacil-
lus subtilis differentiation, multiple AI systems are centrally in-
volved in triggering the development, maintenance, and
functionality of a number of subpopulations with different, com-
plementary phenotypes (29, 30). In this species, AI systems con-
trol the stochastic emergence of phenotypic heterogeneity, i.e.,
when and to which degree cells of a certain subpopulation de-
velop, but also control activities within subtypes; that is, they con-
trol a nonsynchronous, nonhomogenic response network, which
is nevertheless cooperative and coordinated in the way that it ben-
efits the whole population by a controlled division of labor.

At the level of the individual gene product, a relation to
cooperativity is often difficult to determine. For example, AI
control of intracellular nucleoside hydrolase (Nuh) in P.
aeruginosa has received considerable attention in the context of
social evolution (91–94). Nuh is a periplasmic enzyme that hydro-
lyzes adenosine to yield adenine and ribose, allowing the cell to
grow on adenosine as the sole carbon or nitrogen source. This is, at
first sight, a strictly noncooperative, cell-associated behavior.
However, there are several, not necessarily mutually exclusive,
scenarios that link AI control of Nuh to cooperation. First, AI
control of Nuh may help stabilize other cooperative behaviors that
are regulated by the same AI system. This regulatory linkage,
termed pleiotropic constraint, can incur a cost to AI receptor-
deficient cheater mutants whenever adenosine is a substrate (94,
95). Alternatively, Nuh may have a role in optimizing AI produc-
tion by degrading by-products during AHL synthesis, as proposed
by Heurlier et al. (91). Finally, the periplasmic location of the Nuh
enzyme may render it or its metabolites prone to leakage into the
extracellular space. Such periplasmic leakage is common and has
been reported for Escherichia coli, for example (96). In this case, AI
signaling would directly control a (partially) shared, cooperative
behavior.
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Role of AI Systems and Accessory Mechanisms in
Homeostasis of Cooperative Behavior

Ecological interpretations of AI systems focus on the idea that a
certain minimum threshold (i.e., a certain cell density) is required
to render a joint activity effective. Examples are the release of
antibiotics or digestive exoenzymes. When released by a single cell
in an open ocean, both will dilute, and the benefit for the cell will
be minimal; i.e., the net benefit due to the production cost will be
negative. With increasing cell density, the production costs for the
population increase roughly linearly (the costs per cell remain the
same, of course), whereas the fitness benefit of the population
increases disproportionally strongly (Fig. 5). Above a certain cell
density, cooperative production pays off. Ideally, in such a sce-
nario of synergistic benefits, AIs control the production of target
functions (92, 97, 98).

However, there are counteracting effects that appear with in-
creasing cell density. The increasing relevance of resource (nutri-
ent) limitation is discussed above. Additionally, in almost all cases,
the increase of the benefit gained by joint cooperative activity
approaches saturation or may even decline with a further increase
in cell density. If antibiotics reach a concentration that kills all
competitors, a further increase of production does not pay off.
Similarly, if all protein substrate is effectively degraded by released
exoproteases, additional release by further cells is not beneficial.
An excess of antibiotics may even cause harm to the producers
themselves, and other, competitive species may exploit excess exo-
protein production. Thus, there is a population density range,
bounded by a lower and an upper threshold, at which cooperation
pays off and benefit exceeds cost. Here, cooperation can be re-
garded as stable, i.e., in homeostasis (defined as the stability of
systems, homeostasis in our case refers to a cooperating popula-
tion). Beyond keeping the AI system within this homeostatic
range, the system can be expected to be further tuned to the point
where the net benefit is optimal (Fig. 6). For reasons of simplicity,
we ignored additional layers of complexity such as those caused by
feedback between nutrients and cell density. These factors would
complicate the regulation of homeostasis but would not qualita-
tively change the outcome.

Consequently, in a growing population, there should be regu-
latory systems to dampen the contribution of individual cells to
cooperative behavior once activated. In fact, there is ample evi-
dence that AIs either control this process directly or are intimately
tied to accessory feedback mechanisms. In principle, excessive co-
operation can be avoided by limiting the number of cooperating
cells or by decreasing the contribution from each cooperating cell.

There are various molecular mechanisms of how AIs systems
can tune the cooperative activity of each participating cell. Nega-
tive feedback loops introduced into the molecular architecture of
AI production and/or sensing are often employed. For example, in
P. aeruginosa, AI expression is repressed by the negative regulator
RsaL (99, 100), while receptor activity is inhibited by the antiacti-
vators QteE and QscR (101–103). AI induces the transcription of
RsaL and QteE (76) and activates QscR as a ligand (104). Further-
more, AI levels may be controlled by self-produced AI-degrading
enzymes (105). In Vibrio fischeri, the expression of the AI receptor
LuxR is upregulated at intermediary but downregulated at high AI
concentrations, which was assumed to maintain light production
within a certain strength range (106). Similar combinations of
positive and negative feedbacks at intermediary and high AI con-

FIG 5 Costs, benefits, and homeostasis in cooperative activities. (A) Variation in
benefits. Shown are sketches of fitness benefit and cost, calculated as the sum of all
individuals in a population over cell density (or cell number in the case of colo-
nies). For simplicity, costs per cells are assumed to be constant; i.e., each cell con-
tributes equally to cooperation. The benefit curve eventually approaches satura-
tion, e.g., if all substrate is degraded by exoenzymes (green continuous line), or
declines, e.g., if high concentrations of released toxins harm the producers (green
dashed line). Consequently, the cell density range in which cooperation pays off
changes (homeostasis range [indicated by arrows]); here, AI induction of cooper-
ative activity can be expected. (B) Variation in costs. Different costs of cooperative
behaviors (e.g., production of exoenzymes or antibiotics) influence the homeosta-
sis range. The dashed line indicates cooperation that never pays off, and the dashed
dotted line indicates cooperation that always pays off; in both cases, no AI regula-
tion is required. The continuous and dotted lines indicate cooperation that pays off
only in a certain cell density range (shown by the arrows). Here, AI control of
cooperative activity can be expected. According to the metabolic prudence con-
cept, the cost of cooperation can also vary for the same activity (162). In fact,
variation in AI control in accordance with the metabolic prudency concept has
been observed (125). (C) AI control of costs and benefits. AI control avoids the
costs of cooperative behavior for low cell densities (continuous lines). Once in-
duced by AIs, populations can subsequently reduce costs (dashed and dotted lines)
and thus widen the homeostasis range, e.g., by downregulating the production of
public goods by AIs in a density-dependent manner. If this is realized by individual
cells switching from the producing to the nonproducing subpopulation, in prin-
ciple, the homeostasis range can be infinite (dashed lines). However, if it is realized
by decreasing the average production of public goods per cell, the cost curve will at
some point cross the benefit curve, because the costs for the effector production
machinery cannot be below a certain minimum value, and the regulatory machin-
ery is costly (dotted lines). Note that these idealized graphs are meant to visualize
principles. The same applies to Fig. 6 and 9. These graphs do not consider addi-
tional, interfering effects such as negative feedback via AI-regulated public goods
or nutrient depletion.
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centrations, respectively, have been described for other species
(107, 108). In a basic version, such a combination can be realized
by a single receptor-AI system, binding with different affinities to
two (or, theoretically, more) counteracting DNA target sites such
that an AI response may be activated at low but repressed at high
AI concentrations (107, 109). Such regulatory principles have
been described for many AI systems, although their function in
the context of homeostasis has been interpreted only rarely (108,
110–112).

An alternative strategy is to limit the proportion of cooperating
cells within a population. The release of individual cells or groups
of cells from biofilms, as mentioned above, can be interpreted in
this context, as it represents a method for how the number of
locally cooperating cells can be restricted. Periasamy et al. (84)
reported that the agr AI system in S. aureus regulates surfactant-

mediated periodic detachment of cells from biofilms and struc-
tural development-like channels within the biofilms, achieving
biofilm homeostasis by maintaining a maximum thickness and a
nutrient supply to deeper biofilm layers, and also the spread of
infection.

A similar effect can be achieved if cells remain physically asso-
ciated with a population but cease to cooperate. This can occur if
intercellular signals control both the induction and termination of
the cooperative behavior. In B. subtilis populations, a complex
signaling network governs the differentiation of cells into at least
seven subtypes. Under certain conditions, some cells develop into
matrix producers that release exopolysaccharide and the matrix
protein TasA as public goods (29, 30, 113). A subfraction of the
matrix producers may eventually sporulate. The level of phos-
phorylated Spo0A (Spo0A-P), a major transcriptional regulator,
controls both developmental steps. A certain albeit low level of
Spo0A-P triggers matrix producers, whereas a high level of
Spo0A-P triggers sporulation. External regulation is complex and
still not fully understood. Besides environmental factors such as
starvation, AIs are involved in the control of Spo0A phosphoryla-
tion. Matrix producer development is promoted by an intercellu-
lar signal called surfactin. Spores, which halt the production of
public goods, were reported to be triggered by another AI, PhrA, a
small signal peptide of the Phr family. In this sense, the beginning
and termination of the release of public goods in a specific sub-
population are AI controlled.

In the case of B. subtilis development, entry and exit decisions
are based on different signals. However, in principle, the same
effect is possible with one signal that binds different receptors with
different affinities. The more sensitive receptor might induce a
cooperative behavior, and a second, less sensitive receptor might
terminate it by, for example, acting as a transcriptional repressor.
Although the details are not clear, the two AI receptors in Legion-
ella pneumophila, which have opposite effects on the majority of
the regulated target genes, may be interpreted in this way (114).
Vibrio harveyi in turn limits AI-dependent activation in a propor-
tion of participants: the number of AI-induced bioluminescing
cells in an isogenic population never exceeds 69%. Only the addi-
tion of exogenous AI results in almost 100% bioluminescing cells
(19). Although the underlying mechanism remains unclear, here,
AIs control the onset of bioluminescence in the population but
also control the maximum contribution.

Homeostasis in cooperativity is not limited to individual behav-
ioral traits. If different cooperative behaviors have different cost/
benefit ratios and are expressed in one and the same organism,
then there must be regulatory mechanisms to properly tune each
behavior and minimize interferences. An example is again cell
differentiation in B. subtilis, specifically the release of public goods
on one side and the induction of detachment on the other side.
The former behavior usually favors spatial stationarity (i.e., the
cells should stay in the area where the public goods are released to
maximize the net benefit), whereas the latter is connected with
spread (29, 30). At the single-cell level, the benefit of one behavior
is diminished by the other if simultaneously expressed; thus, both
phenotypes appear to be mutually exclusive. Consequently, a di-
vision of labor with respect to mobility versus the release of public
goods is indeed observed in B. subtilis populations. As indicated
above, the underlying circuitry involves different AI thresholds for
different phenotypes and the use of multiple AI systems and re-
ciprocal suppression mechanisms on gene expression (29, 30).

FIG 6 Optimality as a function of costs and benefits at various strengths of
cooperation. (A) Production of two different public goods. The shape of the
curves of fitness benefit over cooperation strength varies for different cooper-
ative behaviors. Whereas exoenzyme (EE) production, e.g., for nutritional
purposes, may simply follow a hyperbolic curve, antibiotic (AB) production is
best reflected by a sigmoid curve (the antibiotic simply has little to no effect on
susceptible species at concentrations far below the MIC). Fitness benefits may
even decrease at very high antibiotic concentrations due to possible self-inhi-
bition. As described in the text, AI control and accessory mechanisms fine-
tune cooperation strength such that the net benefit for a given cooperative
behavior is optimal. Note that the use of the difference between fitness benefit
and cost as an indicator for optimization oversimplifies the situations, for
reasons of presentability. In some cases, the cost/benefit ratio may be more
suitable. (B) Exoenzyme production at different cell densities. HCD, high cell
density; ICD, intermediate cell density; LCD, low cell density. For high cell
densities and intermediate cell densities, different levels of cooperation
strength are optimal. For the scenario presented here, at a low cell density,
cooperation never pays off; thus, AI-controlled induction should not occur.
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Unfortunately, to our knowledge, a rigorous, comprehensive
analysis of such sophisticated systems with respect to cost/benefit
optimization has not yet been undertaken.

From another perspective, AI control of cooperative behavior
represents an optimized manifestation of the Allee effect, a well-
known phenomenon in population ecology. The Allee effect de-
scribes the fact that within a certain population density range, the
growth rate (or, more generally, fitness) is sometimes positively
correlated with the density, or number, of individuals in a popu-
lation (115). At very high densities, resource competition inter-
feres with the positive effect; i.e., the positive correlation may turn
into a negative one. AI regulation ensures that behavioral proper-
ties that enable the Allee effect are expressed only in the density
range where they pay off. The role of the Allee effect in the trade-
off between population spread and survival was recently investi-
gated with an engineered bacterial system, using V. fischeri QS
components (116).

Beyond microbiology, recent studies of mammalian systems
also suggest that QS-like strategies are involved in the homeostatic
control of the immune response as well as cell differentiation pro-
cesses in cancer development (117–121).

Variability of the AI Production Rate: the Hybrid Push-Pull
Model

It was generally assumed that prequorate cells produce AIs at a
constant low rate and that upon reaching a quorum, positive feed-
back results in an increased (constant) production rate. This is
also the foundation for most mathematical models. For more
pragmatic reasons, some later models include a term for the nu-
trient dependency of AI production, i.e., a lower level of AI pro-
duction under nutrient-depleted conditions (38, 122). As an al-
ternative, the AI concentration has been suggested to reflect the
change in cell density rather than the actual cell density, at least in
cases where AI production is linked to central metabolic pathways
(123). The idea behind this is that, generally, a high growth rate is
connected with high metabolic activity. In fact, the level of AI-2
accumulation in V. harveyi is highest during the exponential
growth phase, and the AI-2 concentration declines when the
growth rate decreases upon entry into stationary phase (124). AI-2
is an unavoidable waste product of an essential metabolic pathway
in many bacteria. Interestingly, a similar AI dynamic is observed
during the growth of P. putida IsoF, although its AI (mainly
3-oxo-decanoyl-homoserine lactone) is not known to be a waste
product (105). Due to different stabilities of AIs and some AI-
receptor complexes, actual AI concentrations may either reflect
more the actual population (for unstable AIs) or integrate infor-
mation over several generations (for stable AIs).

A number of cellular and extracellular factors directly and indi-
rectly affect either the AI production rate or receptor expression
levels. Both have the potential to modulate the quorum threshold.
For example, AI systems often regulate responses to stress such as
starvation, and the scarce quantitative data suggest nonlinear or
even nonmonotonous relationships between the activity of AI sys-
tems and the degree of starvation (21, 125). In V. fischeri, at least in
a certain range, nutrient deficiency promotes AI activity. At very
low nutrient levels, AI production finally ceases (21). (Note that
the latter indicates, again, that AI systems serve to control not just
the onset of cooperative activities but also their termination.)

Coupling AI release with information about starvation allows
the cell to integrate information about its individual demand into

the communication signal (126). The increased AI production
in the case of nutrient depletion can be interpreted as a kind of
emergency call. Starving cells may have an increased demand for a
coordinated behavior improving the supply of a limiting nutrient.
The demand is communicated by increased AI release. This re-
duces the number of cells required to reach the induction thresh-
old. In the case of V. fischeri, demand stops once starvation be-
comes too severe. This could be interpreted as a reaction to a
scenario where cells can no longer afford to engage in cooperative
activities but concentrate on maintaining essential cellular metab-
olism.

For an increasing number of species, the influence of various
environmental substances or, connected with this, the cellular
(growth) state on AI activity is known (see, e.g., references 125 and
127). This includes signals from hosts (for example, about their
health state) in mutual or parasitic relationships (see, e.g., refer-
ences 128–130). The demand might often be coupled with a will-
ingness or ability to contribute. In a stressful situation, lower re-
productive potential may favor altruistic behavior, which at its
extreme may cause some cells to commit suicide to the benefit of
others (131). From an efficiency point of view, all these factors
affect the actual need of the bacterial cells for the regulated target
behavior, their potential or willingness to contribute to it, or the
opportunity for the regulated behavior to be effective. Unfortu-
nately, in batch culture experiments, it is difficult to discriminate
between the influence of changing AI production rates per cell and
the influence of changing cell densities on the actual AI concen-
tration as nutrient availability changes over time. Attributing ex-
perimental results purely to changes in cell density may have led to
misinterpretations.

In spatially structured populations as colonies or biofilms,
physicochemical gradients can require different cellular re-
sponses. Each cell can convey information about its individual
demands for cooperative activities by producing different
amounts of AIs (126). The specific demands of each cell at its
specific location can thus be integrated into spatially structured
communication, resulting in optimized regulation of the target
behavior at the population level (Fig. 7).

Referring to concepts from economics, the term “hybrid push-
pull control” for this kind of regulation design has been proposed
(126), where “pull” (the actual demand of the buyers for a prod-
uct) reflects the demand of a cell for the target behavior, trans-
ported by a change in AI production (Fig. 8). “Push” (the potential
strength of a company to produce the product) reflects the possi-
ble reached strength of the target behavior. As the pull and push
factors both influence the cost-effectiveness of the regulated activ-
ity, the authors of that study hypothesize that the core purpose
of this regulation system is to promote gene control based on a
preassessment of the efficiency of the target behavior. Beside
nutrients, other intra- and extracellular factors affect effi-
ciency. Examples are other environmental factors (such as pH
and temperature), the presence of competing or beneficial mi-
crobes, and the developmental state of the cell (such as sporu-
lation and mobility).

Interlinking the cell’s need, its internal ability, and/or the op-
portunity for efficient target behavior with the AI production rate
adds an internal demand or pull aspect to the AI system (“Do it
when you want/need it—and ask others to give you a hand”),
reflecting the demand of a cell for the target behavior, transported
by a changing AI production rate. The external factors cell density,

Core Principles of Bacterial Autoinducer Systems

March 2015 Volume 79 Number 1 mmbr.asm.org 161Microbiology and Molecular Biology Reviews

http://mmbr.asm.org


cell distribution, and mass transfer limitation determine the po-
tential strength of the coordinated target activity and could be
regarded as push factors (“Do it when your activity has an impact”
or “Do it when it is effective”). AI regulation systems integrate
information about both aspects into the local AI concentration.
Sensing the combined pull-push information carried by the AIs
allows each cell a contextual interpretation of the state of the
neighboring cells relative to its own under actual push conditions
(132). This results in an adaptive behavior of cells within the grow-
ing colony, highly dynamic in space and time. Cooperativity and
division of labor can emerge. Their spatiotemporal flexibility goes
beyond those of real multicellular organisms, e.g., because cell
differentiation with respect to the division of work can be revers-
ible. This remarkable phenotypic plasticity probably enables an
adaptive life-style optimization of the colony under the prevailing
conditions.

Signaling systems that employ aryl-homoserine lactone signals
can serve as an example of how pull information is integrated.
These types of signals contain a cinnamoyl or p-coumaroyl group.
Cinnamate and coumaric acid are both predegradation and deg-
radation products of lignin (133). The soil bacterium Rhodopseu-
domonas palustris, which can grow on p-coumarate as the sole C
source, relies on the uptake of external p-coumarate to produce its
AI p-coumarate– homoserine lactone. It has been suggested that
genes regulated by this compound promote the approach of R.
palustris to host plant roots, i.e., to a potential nutrient source
(134). This represents an elegant, simple way of integrating infor-
mation about pull aspects (here, the presence of nutrient sources)
into the signal concentration.

The control architecture of the cadAB operon in E. coli may be
interpreted as an interesting example for a hybrid push-pull strat-
egy. The cad module is a conditional pH stress response system
(135, 136). Induced by acidification, the sensor CadC, a one-com-
ponent receptor, promotes the expression of cadAB. The enzyme
CadA converts lysine under the consumption of a cytoplasmic
proton to cadaverine and CO2; the lysine/cadaverine antiporter
CadB subsequently exports cadaverine. The expression of cadAB

is promoted by low pH, high substrate concentrations (lysine),
and the absence of the reaction product cadaverine, all measured
externally. Due to the negative feedback via cadaverine, the system
displays only a transient response, even if the conditions for its
induction (e.g., low pH) persist. The purpose of this regulation
design is unclear. However, cadaverine fulfills the basic require-
ments for an AI, as it is released and sensed by the same cells and
controls gene expression. A high extracellular cadaverine concen-
tration in combination with a low pH indicates high but ineffec-
tive antiacidification activity by the cell and potential neighbors.
Thus, from an economical point of view, the Cad response should
be stopped. Here, pull information about the demand side of the
response (lysine as an indicator that it can be done and low pH as
an indicator that it should be done) in combination with AI-me-
diated push information (how effective it would it be to continue)
control the antistress response and the “AI” itself.

The demand of cells within a population for cooperation di-
rectly influences its benefit and thus the homeostatic range (Fig.
9), rendering the control of AI systems by pull aspects useful with
respect to the maintenance of efficiency.

From an ecological perspective, changing environments can
shift push and pull aspects in opposite directions. Dilution events
such as rainfall decrease the cell density of a microbial population
but increase starvation. Depending on the quantitative connec-
tions in the regulation network, such an event could induce the
system through increased AI production, although the cell density
declines. This notion is supported by recent experimental data.
Nutrient dilution in minimal medium batch cultures decreases
the growth yield but increases QS gene expression per cell (125).

The existence of a pull aspect in AI production may also shed
light on the poorly understood existence of multiple AI systems in
a number of species. Originally, a constant, constitutive, nonin-
duced AI production rate, almost identical for all cells, was as-
sumed to allow for cell density estimation, requiring usually only
one AI system. The efficiencies of different target behaviors de-
pend on different, often independent pull aspects, varying over
time and, in spatially structured environments, over space. The
relevance of pull aspects can furthermore vary between different
subpopulations (phenotypes). Multiple AI systems allow for the
independent transportation of such different pull information.
Consequently, AI production rates should vary over time, inde-

FIG 7 Asymmetric communication in a biofilm. Gradients of nutrients (or
other environmental factors) can affect AI production and perception. Emerg-
ing AI gradients can themselves affect AI synthase or receptor activities, gen-
erating feedback. Often, these impacts are nonmonotonous. For example, nu-
trients may upregulate AI at low concentrations and downregulate AI at high
concentrations. Depending on the environmental conditions and the intracel-
lular regulation architecture, this can result in different spatial patterns of
components involved in AI production (AI synthase) and/or AI sensing (re-
ceptor). These impacts might be strongest at the upper or lower biofilm surface
or somewhere in between, which is depicted by scenarios a to c (126). In other
words, different layers in the biofilm talk or listen with different intensities.
Asymmetric communication can be further complicated by stochastic effects
in communication, the development of subpopulations, heterogeneity of bio-
film morphology, or the presence of other species.

FIG 8 Hybrid push-pull model of AI-controlled cooperation. Push factors
impact the strength and potential for beneficial cooperation. These factors are
environmental factors that influence AI accumulation and perception by an
individual cell, namely, cell density, diffusion, and cell clustering. Pull factors
impact the cellular demand for cooperation. These factors are often stress
factors, such as nutrient starvation, that affect the physiological state of the cell.
Pull factors often positively regulate AI production or reception. AI and R
denote AI signals and receptors, respectively. Thin and thick black arrows
denote the activity of production in the off- and on-states, respectively.
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pendently for each AI produced by a cell, as a function of different
environmental and/or cellular conditions. In fact, there are only a
few studies that have analyzed the production rates of multiple AIs
over time (e.g., see references 124 and 137) under batch culture
conditions. In V. harveyi, the growth phase-dependent produc-
tion of different AIs was reflected by the corresponding expression
of different AI-regulated genes (124). The authors of that study
and others suggested that multiple AI systems enable the cells to
appropriately time target gene expression (68, 138). However, the
sequential gene expression observed in batch cultures, where con-
ditions monotonously change over time, may not be the desired
purpose in the natural environment. Here, adaptation to more
time-constant or oscillating conditions, such as nutrient delivery
and waste removal by flow, may be more desirable. Therefore,
under these conditions, adaptation to a particular condition and
achievement of a specific steady state are more important than
regulating the timing of expression. Additionally, the temporal
pattern of target gene expression in planktonic batch culture ex-
periments, which depend on gradients of AIs over time and of
factors influencing the AI system as nutrients, can be expected to
be partly reflected by the corresponding spatial patterns in natural
biofilms.

As noted above, the integration of the cell’s demand for a regu-
lated activity within the AI system can be realized on the signal-
sending side (e.g., by regulating AI synthases) or on the receiver
side (e.g., by regulating the AI receptor). Usually, both are coupled
via the autoregulation of the AI gene, but there are exceptions
without such feedback. Especially in the latter case, regulation on
the receiver side allows the cell to adapt its response on the popu-

lation’s call for cooperation, as transferred by the environmental
AI concentration, to its own specific “willingness” to contribute,
which also belongs to the pull factors. This is of specific interest
when several cellular activities are regulated by an AI. Depending
on its specific conditions, the willingness of a cell to contribute
may vary independently between these activities. The existence of
“orphan” AI receptors, i.e., the presence of several receptors for a
single AI, can (partly) be explained by this. In fact, in the case of L.
pneumophila mentioned above, the two receptors for the lqs sys-
tem, LqsS and LqsT, display differential expression patterns dur-
ing exponential growth (114). Interestingly, 90% of the 105 genes
downregulated in lqsT mutants are upregulated in lqsS mutants.
Thus, LqsS and LqsT seem to regulate a set of genes related to
growth phase reciprocally, but both receptors depend on the same
AI, 3-hydroxypentadecane-4-one.

Different AI-regulated target behaviors may even exclude each
other. In B. subtilis, both competence and sporulation are AI me-
diated, although they cannot work simultaneously in the same cell
(29, 30). Moreover, each sporulating cell decreases the benefit of
other cells that develop competence. Thus, there is a conflict of
both activities in the cell and the population.

In summary, due to the pull aspect, multiple AIs enable the use
of different “words” by bacteria, which can be understood indi-
vidually or in combination. Theoretically, the content of push
information could also vary between different AIs; e.g., if depen-
dent on molecule size or hydrophilic properties, information
about different aspects of mass transfer properties of the sur-
rounding environment are transported, which may be relevant for
different public goods. Very recent experimental evidence sup-
ports this notion, suggesting that under certain conditions, a com-
bination of multiple AI systems in P. aeruginosa could be em-
ployed to discriminate between different push aspects (46).
However, the differential regulation of these AI systems by nutri-
ent conditions indicates the additional relevance of pull factors
(125).

WHO COMMUNICATES WITH WHOM?

It has been assumed that AIs are employed for communication in
a given population; i.e., all cells within it “talk” and “listen” simul-
taneously in the same way. Note that we focus on intraspecies
communication here; the multitude of ecologically relevant inter-
species interactions via extracellular substances is beyond the
scope of this article, as they differ significantly from intraspecies
communication with respect to evolutionary and ecological con-
sequences. Rigorous investigations of whether interspecies com-
munication fits the definition of “signaling” as discussed above are
often missing and in fact difficult to conduct (22). Strictly speak-
ing, even the concept of “autoinduction” is ill suited here. The
reader is referred to, e.g., work by Atkinson and Williams (7) for
further reading on this subject.

The original concept has now been refined significantly. As
discussed above, analysis of gene expression in AI systems at the
single-cell level, primarily by using fluorescence markers, demon-
strates the existence of heterogeneity for genes of AI systems as
well as AI-regulated genes in planktonic studies with a mono- or
multimodal distribution (e.g., see references 17 and 139 to 141).
Typically, in induced populations, there is also a fraction of non-
contributing (nonfluorescing) cells, which obviously does not or
only weakly participates in the coordinated behavior. Further-
more, spatially structured populations in microcolonies or bio-

FIG 9 Costs and benefits of exoenzyme production under different pull con-
ditions. The red line indicates costs, and the green continuous line indicates
fitness benefit at the population level as a baseline for comparison with the
various pull conditions. Under stronger nutrient-limited albeit still growth-
permitting conditions (starvation pressure), a population at lower cell densi-
ties will benefit from exoenzyme secretion involved in nutrient acquisition,
and the maximal benefit from the exoenzyme will be greater (dashed line). In
other instances, the maximum benefit of cooperative activities may be con-
stant, for example, if competitive species can be killed by the cooperative re-
lease of toxins, because more than killing of all competitors is not possible
(dotted lines). This influences the homeostatic range, i.e., the cell density range
where cooperation pays off, and thus, AI regulation can be expected. In ex-
treme cases, decreased demand might reduce the potential benefit to a level
where cooperation never pays off (dashed dotted line). For clarity, the sche-
matic shows equilibrium conditions. Differences in the growth rate are ne-
glected, and the physicochemical environmental conditions are assumed to be
constant. The depicted scenarios do not include AI control per se, but they
suggest where AI regulation would be beneficial and how it should vary under
different pull conditions.
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films have physicochemical gradients, which cause spatially asym-
metric communication. Until now, there have been no
comprehensive studies simultaneously investigating single-cell
activities for AI production, AI sensing, and target gene expres-
sion; thus, we do not understand the mechanisms and functions
behind the development of heterogeneity in depth. However, in
many cases it is evident that not all cells within a population com-
municate with and/or listen to each other in a symmetric way.
Division of labor may thus be an underestimated phenomenon,
although we cannot exclude the possibility that molecular noise
and stochasticity also have a role.

In the context of social evolution, one process that stabilizes
cooperation is assortment, the preferential interaction of identical
individuals to avoid the displacement of cooperative cells by non-
cooperative cheater mutants (142–144). In microbes, colony
growth is a form of assortment, because a single cell or a few
founding cells lead to the formation of clonal groups. For the
long-term maintenance of cooperation, repeated cycles of colony
dispersal, mixing, and regrowth constitute an important mecha-
nism (145). As a consequence, communication and regulated co-
operation should primarily occur within rather than between col-
onies. This bias indeed received some experimental support (34).
Unfortunately, in-depth data specifically designed to analyze the
question of who talks to whom at the colony level are still missing.

We suggest that communication occurs locally rather than
globally. Measurement of AI concentrations in relatively large
samples (milliliter volumes) of spatially structured populations in
spatially structured environments (e.g., soil, cystic fibrosis [CF]
lung, and gut) averages spatially heterogeneous concentrations
and thus underestimates the local concentration to which cells
might be exposed (see, e.g., reference 146). This has consequences
for the estimation of the relevance of signaling within the popula-
tion but also for the impact of AIs on other bacteria or host cells.
This may (partly) explain the conflicting findings that AIs are
central regulators of virulence in most pathogens and that some
AIs directly affect host cells in vitro but that most studies detect
little or no AI in samples of lung, sputum, gut, and others (146).
Mixing events before or during sampling may further destroy spa-
tial structure. Spatially and temporally resolved measurement of
AI concentrations and activity patterns under less disturbed,
close-to-in situ conditions is therefore highly desirable but re-
quires new technologies (147).

The assortment concept mentioned above challenges the evo-
lutionary stability of intercolony communication, i.e., the coop-
eration between subgroups of the same species but of uncertain
genetic kinship. This raises interesting questions about the role of
extracellular AI-degrading (quorum-quenching [QQ]) enzymes
in AI-producing species, which are able to degrade their own AI
(148, 149). QQ enzymes have been interpreted mainly in terms of
disturbing AI systems of other species, limiting or terminating
cooperation activities in certain growth states, or using AIs just as
nutrients (149, 150). However, the efficiency of extracellular QQ
enzymes for these purposes has yet to be proven in situ. Alterna-
tively (or additionally), extracellular QQ enzymes could serve to
suppress intercolony communication or to suppress the AI-regu-
lated target genes in neighboring colonies of the same species.
Such a behavior is contrary to the originally assumed population-
wide communication and cooperation. Thus, a neighboring col-
ony would not necessarily be a partner but would primarily be a
competitor for resources.

CONCLUSIONS

It is clear that the original idea of AI systems as cell density-depen-
dent triggers that enable uniform, synchronous behavior requires
refinement. Based on our considerations in the sections above, we
can define properties common to all AI systems, allowing for a
deeper understanding of the ecological and evolutionary func-
tions.

Mechanistically, AI systems govern the release of diffusible
substances into the environment, the measurement of their con-
centration by the releasing cells, and a targeted response via
changes in gene expression. This behavior is cooperative in nature
and is clearly separate from eavesdropping, coercion, and para-
crine signaling. The latter may exploit the same molecules, but the
sender and receiver are different. Furthermore, these behaviors
have completely different ecological functionalities and evolu-
tionary properties (23). Although the specific ecological purpose
of AIs varies depending on the specific system, AI systems gener-
ally allow for an estimation of the efficiency of a regulated target
activity in the context of the specific conditions to which the cells
are exposed. The AI system integrates push and pull information
relevant to the regulated activities, thereby enabling robust deci-
sion-making.

AI systems acquire information about the physical environ-
ment, specifically mass transfer properties, enabling isolated cells
as well as groups of cells to optimize their behavior with respect to
this environment. Simultaneously, AI systems collect information
about the presence, distribution, and demand of cells in a popu-
lation, enabling a coordinated, cooperative behavior within cell
(sub)populations but not necessarily connected with synchron-
icity and uniformity of the reaction. We suggest that AI systems
at least predominantly regulate cooperative behaviors (or,
more generally, life-styles) and that the fitness benefit of these
behaviors is affected by all aspects integrated into the signal
information in a correlated way. This, for example, applies to
the release of public goods (47) but also to a number of other
regulation targets, as discussed above. Taken together, AI reg-
ulation is generally connected with cooperativity and coordi-
nation within (sub)populations but may also regulate the be-
havior of isolated cells.

According to the definition of AI systems by such common
principles, their spread over a wide taxonomic range, including
fungi, plants (algae), animals, and possibly even viruses, where
host cell lysis may depend on the virus concentration, is not sur-
prising (151–159). AI systems evolved several times indepen-
dently. This is plausible given that species release a plethora of
substances into the environment. In its most basic form, just the
measurement (sensing) of these released substances is sufficient to
be considered a rudimentary “AI system.” Thus, it is not so much
the wide distribution of AI systems but rather the lack of their
description in some taxa such as archaea that seems surprising and
may be the result of biased research (12).

Taken together, we have made an attempt in this review to
identify principles common to bacterial AI systems, primarily
from an ecological point of view. We have argued that such core
principles include (i) the regulation of behaviors that are largely
cooperative in nature, (ii) assessment of their efficiency by inte-
grating push and pull factors, and (iii) mechanisms of homeo-
static control.
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