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Abstract

BACKGROUND—Metabolomics, the systematic analysis of low molecular weight biochemical 

compounds in a biological specimen, has been increasingly applied to biomarker discovery.

CONTENT—Because no single analytical method can accommodate the chemical diversity of the 

entire metabolome, various methods such as nuclear magnetic resonance spectroscopy (NMR) and 

mass spectrometry (MS) have been employed, with the latter coupled to an array of separation 

techniques including gas and liquid chromatography. Whereas NMR can provide structural 

information and absolute quantification for select metabolites without the use of exogenous 

standards, MS tends to have much higher analytical sensitivity, enabling broader surveys of the 

metabolome. Both NMR and MS can be used to characterize metabolite data either in a targeted 

manner or in a nontargeted, pattern-recognition manner. In addition to technical considerations, 

careful sample selection and study design are important to minimize potential confounding 

influences on the metabolome, including diet, medications, and comorbitidies. To this end, 

metabolite profiling has been applied to human biomarker discovery in small-scale interventions, 

in which individuals are extremely well phenotyped and able to serve as their own biological 

controls, as well as in larger epidemiological cohorts. Understanding how metabolites relate to 

each other and to established risk markers for diseases such as diabetes and renal failure will be 

important in evaluating the potential value of these metabolites as clinically useful biomarkers.

SUMMARY—Applied to both experimental and epidemiological study designs, metabolite 

profiling has begun to highlight the breadth metabolic disturbances that accompany human 

disease. Experimental work in model systems and integration with other functional genomic 

approaches will be required to establish a causal link between select biomarkers and disease 

pathogenesis.

Although the number of potential cardiovascular biomarkers continues to grow, many 

provide only limited improvement over established metrics because they participate in 
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pathways that are already known to be associated with cardiovascular disease (e.g., 

inflammation, thrombosis/hemostasis, and cholesterol transport). Therefore, much interest in 

biomarker research has been directed toward the application of unbiased methods to disease 

phenotyping. Metabolomics, or metabolite profiling, refers to the systematic analysis of 

metabolites—i.e., low molecular weight biochemicals including sugars, amino acids, 

organic acids, nucleotides, and lipids—in a biological specimen (1–3). Downstream of 

transcriptional, translational, and posttranslational processes (Fig. 1), metabolites serve as 

the most proximal reporters of alterations in the body in response to a disease process. 

Furthermore, with an estimated 3000–5000 detectable serum metabolites, the human 

metabolome is potentially more tractable for interrogation than are other, more 

informationally complex “omic” data sets (4).

Metabolomics has been increasingly applied to biomarker discovery, and the results have 

demonstrated both feasibility and flexibility across physiological, interventional, and 

epidemiological human studies. Ongoing advances in analytical chemistry and computing 

power will no doubt lead to continued improvement of the breadth and throughput of such 

discovery efforts. In addition to technical considerations, however, the successful 

application of metabolite profiling to biomarker research requires equal attention to issues of 

sample selection and study design. For example, initial work demonstrating the broad 

metabolomic sequelae of diabetes and renal failure, as well as the intercorrelation of 

metabolites, has highlighted the potential for confounding in metabolomic investigations of 

cardiovascular disease. Conversely, by highlighting select metabolic perturbations across 

different clinical contexts, such studies may also reveal shared pathways to disease. This 

review provides an overview of metabolomics applied to biomarker discovery, with an 

emphasis on the insights gained and lessons learned from recent human studies.

Metabolomics Technologies

Endogenous metabolites span a variety of compound classes, with significant differences in 

size and polarity, across a wide range of concentrations. As a consequence, no single 

analytical method is able to accommodate the chemical diversity of the entire metabolome. 

Although various methodologies have been employed, 2 core technologies have prevailed as 

the workhorses of metabolite profiling: nuclear magnetic resonance spectroscopy (NMR)4 

and mass spectrometry (MS), with the latter coupled to an array of separation techniques 

including gas chromatography (GC) and liquid chromatography (LC). Although capable of 

providing complementary and overlapping coverage of the metabolome, each of these 

methods has important differences in relative strengths and weaknesses (Table1) (5).

NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

NMR uses the magnetic properties of select atomic nuclei (e.g., 1H, 13C, or 31P) to 

determine the structure and abundance of metabolites in a biological specimen. In a strong 

magnetic field, a given NMR-active nucleus absorbs electromagnetic radiation at a 

4Nonstandard abbreviations: NMR, nuclear magnetic resonance spectroscopy; MS, mass spectrometry; GC, gas chromatography; LC, 
liquid chromatography; PMI, planned myocardial infarction; FHS, Framingham Heart Study; BCAA, branched-chain amino acids; 
CRP, C-reactive protein.
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characteristic frequency. Because this NMR signal is influenced in an identifiable way by 

the nature of neighboring atoms, chemical shifts in its resonance frequency can be used to 

assign local molecular structure. By measuring of all frequencies, metabolite identity can be 

determined, although this is not feasible for all compounds in a complex mixture. Stronger 

magnetic fields permit higher information content and increased analytical sensitivity, but at 

increased cost. NMR can be applied to in vivo tissues or to biological fluids obtained from 

humans or cells in culture. In addition to its usefulness for structure elucidation, this 

technology is advantageous because it is nondestructive and requires relatively little sample 

preparation, does not require chromatographic separation or ionization of analytes, and is 

able to provide information on flux through metabolic pathways. Unlike MS, NMR can be 

used to perform absolute quantification without the use of isotope-labeled standards. 

However, because of the combination of relatively low analytical sensitivity and high data 

complexity, unambiguous identification and quantification by use of NMR is limited to 

abundant metabolites—typically <100 analytes in human biofluids.

MASS SPECTROMETRY

MS tends to have much higher analytical sensitivity than NMR, permitting the measurement 

of hundreds to thousands of metabolite peaks. Although experimental samples can be 

infused directly into the mass spectrometer, most platforms employ upfront GC or LC to 

separate analytes over a fixed period of time. In GC, the sample is vaporized and undergoes 

chromatography in the gas phase; this method is particularly suited for volatile, nonpolar 

metabolites. LC is best suited for nonvolatile metabolites in solution, and various column 

chemistries are available to facilitate separation of different analyte classes (e.g., polar vs 

non-polar). After chromatography, metabolites enter the mass spectrometer and undergo 

ionization. As the name implies, MS resolves metabolites on the basis of mass, or more 

precisely, the mass-to-charge ratio (m/z) of their respective ions. Several distinct methods 

exist to separate ions according to their m/z.

TOF-MS—TOF mass spectrometers apply a fixed electric field to accelerate ions and then 

measure the time they take to reach the detector: lighter ions will arrive at the detector first. 

Important advantages of TOF instruments include excellent mass accuracy and wide m/z 

range, although the ability to scan relatively higher m/z molecules is more important for 

proteomic applications than for metabolite profiling.

Quadrupole MS—Quadrupole mass spectrometers apply oscillating electrical fields 

between 4 parallel rods to selectively stabilize the flight path of ions of select m/z, thus 

serving as a mass-selective filter. The potentials across the rods can be adjusted to sweep 

across a range of m/z values, or to settle only on select ion masses of interest. Although the 

mass accuracy and m/z range of quadrupole-MS instruments are generally inferior to those 

of TOF instruments, the linear dynamic range for relative quantification is generally better 

with quadrupole instruments. Furthermore, in triple-quadrupole MS, the first quadrupole can 

act as a mass filter for select “precursor” ions, the second quadrupole can be used as a 

collision cell to allow collision-induced dissociation of these precursor ions, and the third 

quadrupole can either allow all fragments to pass to the detector or serve as a mass filter for 

a single product fragment. Operated in the latter mode, triple-quadrupole instruments permit 
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tandem MS spectrometry, with subsequent improvements in both the analytical sensitivity 

and specificity for preselected metabolites of interest.

Ion trap MS—Ion trap mass spectrometers, which can have different structural 

configurations, apply an electrical field to accumulate and hold ions of a specific m/z. 

Trapped metabolites can then be ejected from the ion trap, or fragmented in the ion trap for 

tandem MS analysis; m/z is determined on the basis of the radio frequency potential required 

to retain ions in the trap. By accumulating metabolites of interest, ion traps maximize 

analytical sensitivity, but provide less robust quantification across a narrower dynamic 

range.

Instruments that combine mass analyzers are available, e.g., quadrupole-TOF and ion-trap 

TOF instruments, in which the upstream module can be used to select and fragment ions of 

interest, and the downstream TOF component provides high-resolution mass spectra. 

Furthermore, alternative methodologies for m/z discrimination are available, including 

Sector mass spectrometers and Fourier transform ion cyclotron resonance mass 

spectrometers. To date, these instruments have been applied less frequently for human 

biomarker discovery.

TARGETED VS PATTERN-RECOGNITION (NONTARGETED) ANALYSES

Both NMR and MS can be used to characterize metabolite data either in a targeted manner, 

or in a nontargeted, pattern-recognition manner (6–7). As previously noted, because of 

limited analytical sensitivity and data complexity NMR can assign definitive metabolite 

identities to only a subset of peaks arising from a biological specimen. Similarly, although 

MS can generate hundreds, and in some cases thousands, of metabolite peaks from human 

biofluids, chromatographic elution time and m/z are often insufficient to confidently assign 

peak identities. For targeted approaches, the user focuses on a predefined set of metabolites 

of known identity—typically several dozen to hundreds—for detection and quantification. 

Tandem MS has proven to be an invaluable tool for such approaches: e.g., using a triple-

quadrupole mass spectrometer, the investigator can selectively monitor for specific 

precursor/product ion combinations corresponding to known metabolites, as confirmed 

empirically by collision-induced–dissociation analyses of commercial standards. For 

pattern-recognition analyses, the user measures as many peaks as possible, although the 

underlying identities of the species giving rise to the peaks are not generally known. In these 

studies the investigators generally adopt a strategy of identifying qualitative differences in 

peak profiles between experimental groups.

Although the targeted approach generates a narrower view of the metabolome that is biased 

toward a predefined set of analytes, researchers have more confidence in the end results 

because they know what is giving rise to the signals. Mass spectrometers are more 

analytically sensitive when operated in a targeted fashion, acquiring data only for specific 

m/z. The nontargeted approach generates rich signatures, but provides little immediate 

insight into underlying biological processes and can lead to overfitting of data. Also, 

spurious results can occur if the identity of the peaks is unknown. For example, in one study 

pattern-recognition techniques were applied to 1H NMR spectra of human serum to aid in 
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the noninvasive diagnosis of chronic coronary artery disease (8). In this study, however, the 

metabolites that generated the spectroscopy peaks were not unambiguously identified, and 

the findings ultimately proved to be confounded by the effects of statin therapy (9–10).

Metabolomics Research on Human Samples

Although samples derived across a spectrum of experimental models are amenable to 

metabolite profiling, human plasma or serum confers several important advantages for 

metabolomic cardiovascular biomarker discovery. As previously noted, no single analytical 

method can provide comprehensive coverage of the metabolome. Therefore, several aliquots 

of a given experimental sample may have to be distributed across different profiling 

methods to achieve broad analyte coverage. Even more sample is required for other 

laboratory tests, e.g., clinical measurements of lipids, troponin, and insulin, which may be 

important confounders or internal controls for a given experiment. Whereas sufficient 

plasma is readily obtained from human study participants, phlebotomy on laboratory mice 

typically yields a sample limited to a few hundred microliters and is associated with 

relatively greater hemodynamic and physiologic stress. Collection of larger volumes of 

blood from a mouse often requires that the animal be killed, introducing a dramatic 

perturbation that may confound investigation of various cardiovascular phenotypes, e.g., 

blood pressure and ischemia, and precluding longitudinal follow-up. By contrast, 

phlebotomy is expected to have little to no effect on the cardiovascular profile of humans, 

aside from the occasional vasovagal reaction.

In addition to practical considerations, there are important biological advantages to the use 

of human samples for metabolite profiling. Exogenous inputs make important contributions 

to the circulating metabolome and are difficult to duplicate across species. First, food intake 

impacts the metabolome, both directly with the absorption of dietary metabolites and 

indirectly as hormones like insulin act to modulate metabolic pathways (11). In some cases, 

discriminating metabolites between individuals with and without disease may reflect an 

imbalance in long-term dietary habits but would be obscured in animal models with 

homogeneous and/or artificial (from a human perspective) diets. Second, there is increasing 

awareness of how gut bacteria impact the metabolome by metabolizing and modifying both 

dietary inputs and constituents of the enterohepatic circulation (e.g., bile acids) (12). One 

study applied nontargeted LC-MS–based metabolite profiling to plasma obtained from 

genetically identical mice that did or did not (germ-free) have gut bacteria (13). A total of 

197 metabolites were found to be unique to 1 of the 2 mouse populations, and many more 

had significant differences in abundance between the 2 groups. Because humans, mice, and 

other animals harbor fundamentally different gut flora, the study of human samples is the 

most direct method for circumventing this potential biological confounder.

Human Metabolomics Biomarker Studies

Circulating biomarkers that have been successfully incorporated into cardiology practice 

include diagnostic markers of acute changes, e.g., troponin I and troponin T for myocardial 

infarction and B-type natriuretic peptide for decompensated congestive heart failure, as well 

as prognostic markers of adverse cardiovascular outcomes, e.g., LDL cholesterol. The 
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discovery of both kinds of biomarkers requires the ability to differentiate subtle clinical 

phenotypes, both acutely and over time, and to control for a wide range of confounding 

variables, including diet, medications, and comorbidities. Human metabolomic studies have 

begun to address these challenges, using both experimental and epidemiological study 

designs.

EXPERIMENTAL STUDIES

Because metabolomic studies are at risk for numerous confounders and because of the 

inherent unpredictability of the onset of pathological states, controlled human studies offer 

important advantages for metabolite biomarker discovery. Clinical cardiology is uniquely 

suited for such investigation, including experiments in which serial sampling of study 

participants before and after a controlled perturbation allows each individual to serve as his 

or her own biological control. In addition to attenuating noise attributable to interindividual 

variability, such studies allow more precise assessment of the kinetics, and even tissue 

specificity, of metabolite changes.

This type of strategy has been exploited in several cardiometablic diseases. In a human 

model of “planned myocardial infarction” (PMI), investigators profiled plasma drawn 

serially from 36 individuals with hypertrophic obstructive cardiomyopathy undergoing left-

heart catheter-guided alcohol septal ablation (14). Alterations in several metabolites were 

detected as early as 10 min after PMI, and profiling of plasma obtained directly from the 

coronary sinus confirmed myocardial origin for select metabolites. In validation 

experiments, a PMI-derived plasma signature of aconitic acid, hypoxanthine, 

trimethylamine-N-oxide, and threonine differentiated with high diagnostic accuracy 

individuals presenting to the emergency room with spontaneous myocardial infarctions from 

controls undergoing diagnostic coronary angiography. More recently, to better understand 

the metabolomic response to nonpathologic cardiovascular exertion, we profiled plasma 

obtained from individuals undergoing exercise. Metabolite profiles of individuals running on 

a treadmill and riding a stationary bike demonstrated highly concordant changes, including 

plasma indicators of glyceogenolysis (glucose-6-phosphate), tricarboxylic acid cycle span 2 

expansion (succinate, malate, and fumarate), and lipolysis (glycerol) (15). Among the 8 

individuals who underwent bicycle ergometry, multisite blood sampling—superior vena 

cava, pulmonary artery, and radial artery—permitted instantaneous assessment of metabolite 

gradients in distinct vascular beds, confirming glycerol release from exercising tissue. 

Interestingly, plasma glycerol concentrations had a positive correlation with acute exercise 

fitness, a relation that held in a subsequent profiling experiment of 25 individuals who 

completed the 26.2-mile Boston marathon. Furthermore, plasma glycerol concentrations had 

a negative correlation with resting heart rate, an independent predictor of exercise capacity, 

in 302 individuals in the Framingham Heart Study (FHS).

Thus, human metabolomic studies can shed light on controlled, highly phenotyped 

perturbations, as well as generate hypotheses for more heterogeneous populations. This 

approach is certainly not restricted to research in cardiology. Metabolomic investigations of 

plasma obtained immediately before and after hemodialysis have identified novel markers of 

uremia (16–17). Investigators profiling plasma before and after oral glucose challenge have 
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sought to identify novel markers of insulin resistance (18–19). Most recently, investigators 

have applied targeted LC-MS–based metabolite profiling to plasma before and after gastric 

bypass surgery (20–21). In a study of equivalent weight loss achieved either by gastric 

bypass surgery or dietary changes, only gastric bypass surgery was associated with 

decreases in branched-chain amino acids (BCAAs) and BCAA oxidation products (21). 

Notably, these authors previously identified a BCAA-related signature that differentiates 

obese vs lean humans and showed that BCAA may contribute to the development of 

obesity-associated insulin resistance (22). These findings raise the possibility that decreases 

in circulating BCAAs may contribute to the relatively greater improvements in glucose 

homeostasis associated with surgical vs diet-induced weight loss.

EPIDEMIOLOGICAL STUDIES

In addition to discrete perturbational studies, metabolite profiling in large, well-phenotyped 

human cohorts is an alternative strategy to address concerns about confounding. 

Epidemiological approaches are particularly suited for the study of chronic human diseases 

that are not amenable to acute physiological modeling, for which biomarkers are needed 

more for screening and determining prognosis than for diagnosis. Large, adequately 

powered studies are necessary because the predictive effects of new biomarkers may be 

smaller than those observed with classic risk factors and because multiple biomarkers are 

often studied concurrently. Ongoing improvements in metabolomics technologies now 

enable sufficient throughput to make such studies feasible. For example, present techniques 

coupling LC with a triple quadrupole mass spectrometer can acquire data on hundreds of 

analytes in a run time of 30 min per sample. At present, similar studies are not feasible with 

proteomic applications.

In an initial proof-of-principle study in 2 large population-based cohorts, we found that 

BCAA and aromatic amino acid concentrations had a significant association with future type 

2 diabetes up to 12 years after initial plasma profiling. These findings were essentially 

unchanged after adjustment for established clinical risk factors (23). The initial discovery 

experiment used a nested, case-control design in the FHS with 189 individuals who 

ultimately developed type 2 diabetes and 189 control individuals who were matched for age, 

body mass index, and fasting glucose and did not develop type 2 diabetes. A validation 

experiment in 326 individuals from the Malmo Diet and Cancer Study employed the same 

matching scheme. Because the study design enriched the control population for high-risk 

features such as obesity and increased fasting glucose, we also performed metabolite 

profiling on 400 randomly selected controls from FHS. Although the association between 

metabolites and incident diabetes was significant across each experiment, the strength of 

association was attenuated in the case vs random cohort analysis. Whereas amino acid 

increases led to large improvements in model fit and discrimination (c statistics) between 

cases and matched controls, changes in these parameters were less significant between cases 

and random controls. These findings suggest that amino acid profiling might have greater 

value in high-risk individuals and underscore how study design modulates study outcome 

and interpretation; although metabolomics technologies are new, old lessons in 

epidemiology still apply.
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Metabolite profiling in well-phenotyped clinical cohorts provides an opportunity to integrate 

metabolite data with a wide range of demographic and clinical data. Such efforts may 

illuminate novel risk associations, and they also demonstrate the diversity of potential 

confounders that mandate judicious interpretation of metabolomic data. For example, given 

the emerging associations between BCAA concentrations and obesity, insulin resistance, 

and incident diabetes, BCAA are likely to be associated with other cardiometabolic 

phenotypes as well. Indeed, in a metabolite-profiling study of more than 600 individuals 

undergoing cardiac catheterization, BCAA concentrations were independently associated 

with death or myocardial infarction during follow-up (24). The authors appropriately 

adjusted their statistical analyses for an initial imbalance in diabetes, but their findings may 

still represent a subtle manifestation of how insulin resistance modulates profiles of 

circulating amino acids. Because of the kidneys’ fundamental role in small-molecule 

handling, renal function is another important potential confounder of metabolite biomarker 

discovery. Dunn et al. applied a GC-MS–based platform to measure 272 metabolite peaks in 

plasma obtained from 52 individuals with heart failure and 57 age-matched controls, and 

identified pseudouridine as the most significant discriminator of disease status (25). 

However, pseudouridine was positively correlated with serum creatinine, and cases had 

significantly higher serum creatinine concentrations than controls, highlighting the potential 

confounding influence of renal function. Indeed, in a study of 41 individuals with chronic 

kidney disease, 52 of the 117 measured metabolites were either positively or negatively 

associated with estimated glomerular filtration rate (26). Future efforts to fully annotate the 

metabolome as a function of estimated glomerular filtration rate will be particularly 

important in cardiology research given the marked cardiovascular risk associated with even 

moderate renal impairment (27). Similar studies to cross-reference metabolite concentrations 

against other clinical variables such as age, sex, body mass index, and blood pressure will 

ultimately serve as an important resource for a range of metabolomic applications, including 

biomarker discovery.

Metabolite Profiling and Multimarker Approaches

The majority of current biomarkers for cardiovascular screening fall along pathways already 

known to be associated with cardiovascular disease, such as inflammation and cholesterol 

biosynthesis. Consequently, available biomarkers often provide information that is 

correlated with what is already known or being measured. Although correlated biomarkers 

can underscore the importance of a biological pathway, they may not provide a substantial 

increase in diagnostic or predictive value. This point has been highlighted by several studies. 

Pepe and Thompson performed simulations using 2 hypothetical cancer biomarkers (28). 

Assuming an area under the curve of 0.80 with 1 biomarker alone, they showed that the 

addition of a second biomarker raised the area under the curve to 0.88 if the 2 biomarkers 

were weakly correlated, but to only 0.83 if the 2 biomarkers were moderately correlated. 

This result translates into a diagnostic sensitivity of 80% with 2 weakly correlated 

biomarkers, compared with a diagnostic sensitivity of 70% with 2 moderately correlated 

biomarkers (assuming a false-positive rate of 20%). The implication is that an additional 10 

individuals for every 100 people destined to develop disease would be identified with the 

use of less correlated biomarkers, a clinically meaningful difference.
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Wang and colleagues recently explored factors that influence whether new biomarkers can 

add to diagnosis and risk prediction above and beyond established markers (29). They 

performed a simulation based on adding 1–100 hypothetical biomarkers to a traditional risk 

model for cardiovascular disease. Traditional risk models (including cholesterol 

concentrations, age, and hypertension) have an approximate area under the curve of 0.75 

across populations. For the simulation performed by Wang et al., each of the hypothetical 

biomarkers had a similar magnitude of association with cardiovascular events similar to 

established cardiovascular biomarker such as C-reactive protein (CRP) or B-type natriuretic 

peptide. These investigators demonstrated that a key determinant of improvement in the c 

statistic is the degree of correlation between biomarkers. With a set of biomarkers that has a 

mean marker–marker correlation of r =0.4 (moderately correlated), >50 biomarkers are 

needed before the c statistic is increased by 0.05. By contrast, when the average marker–

marker correlation is r =0.05 (weakly correlated), <10 biomarkers are needed to raise the c 

statistic by 0.05.

The intercorrelation for 48 plasma metabolite concentrations in 189 fasting individuals in 

the FHS is shown in Fig. 2. Mean correlations within groups of molecules were highest for 

urea cycle metabolites (r = 0.49), metabolites involved in nucleotide metabolism (r =0.38), 

amino acids (r =0.34), and methyl-transfer metabolites (r = 0.34). As more metabolites are 

measured in large cohorts, similar correlation clusters, both expected and unexpected, are 

likely to emerge. Understanding how metabolites relate with each other and with established 

risk markers will be important in assessing their value as potential biomarkers and may also 

lead to previously unappreciated connections between metabolic pathways.

From Association to Causation

Several limitations to metabolomic biomarker discovery warrant mention. Although 

metabolite profiling of clinical plasma samples can generate metabolic “snapshots,” it does 

not provide information on pathway flux—for example, metabolite profiling cannot be used 

to determine whether a metabolite is increased in plasma because it is being produced in 

excess or because of a downstream block. Furthermore, the development of clinically useful 

biomarkers will require a more comprehensive understanding of how exogenous factors 

impact the metabolome, e.g., how diet and medications impact metabolite markers of 

interest, and what intra- and interindividual variability is normal for these metabolites. 

Finally, although adequately powered clinical studies enable investigators to incorporate 

strategies to minimize confounding, e.g., multivariable adjustment or population 

stratification by known risk factors, such studies cannot be used to establish a causal link 

between disease biomarkers and disease pathogenesis.

To this end, metabolomic findings derived in human studies can be further interrogated in 

model systems. Using nontargeted LC-MS–based metabolite profiling, Wang et al. profiled 

plasma from 75 individuals who experienced myocardial infarction, stroke, or death in the 

ensuing 3 years and 75 age-and sex-matched controls who did not (30). Of 18 analytes that 

were significantly different between cases and controls, 3 demonstrated significant 

correlations among one another, suggesting a potential common biochemical pathway. 

Using a variety of analytical methods, these investigators identified the metabolites as 
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betaine, choline, and trimethylamine-N-oxide, all metabolites of dietary 

phosphatidylcholine. Dietary supplementation of choline was sufficient to promote 

atherosclerosis in mice, and suppression of intestinal bacteria responsible for the conversion 

of phosphatidylcholine to choline inhibited this atherogenesis. In addition to reinforcing the 

interaction between diet, gut bacteria, and the metabolome, this study demonstrates how 

metabolomic biomarker discovery can elucidate novel pathways to disease.

Integrating genomic and metabolomic data in humans is an alternative strategy to establish a 

causal link between metabolite biomarkers and disease. Analyses demonstrating that single-

nucleotide polymorphisms that modulate plasma LDL cholesterol concentrations are 

independently associated with incident cardiovascular disease are consistent with the known 

causal role of LDL cholesterol in atherogenesis (31). By contrast, genetic loci associated 

with plasma CRP concentrations (including in the CRP locus) had no association with 

coronary heart disease, arguing against a causal association between CRP and 

cardiovascular disease (32). Recent work has begun to explore the genetic determinants of 

plasma metabolite levels in large human cohorts (33–35). As ongoing studies further 

delineate the genetic determinants of plasma metabolite profiles, efforts to triangulate gene–

metabolite–disease associations will provide insight into if and how metabolite markers 

contribute to disease pathogenesis.

Summary

Emerging technologies now permit higher resolution phenotyping of biological specimens. 

However, whereas robust technologies capable of genomic and transcriptomic profiling are 

now well established, no single analytical method provides comprehensive coverage of the 

human metabolome. Thus, investigators have employed various technologies, including 

NMR and MS (coupled to upfront LC or GC), and used alternative analytical strategies, i.e., 

targeted vs pattern recognition. Metabolite profiling has demonstrated feasibility and 

flexibility for biomarker discovery in both small, extremely well-phenotyped human 

interventions and larger, epidemiological human cohorts. Although both approaches seek to 

minimize confounding by uncontrolled clinical variables, further efforts to understand the 

diversity of inputs to the metabolome will be an important resource for future metabolomic 

biomarker studies. In parallel, investigation in model systems and integration with other 

functional genomic approaches in humans will provide insight into the pathophysiologic 

interactions between metabolite markers and disease.
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Fig. 1. The conceptual relationship of the genome, transcriptome, proteome, and metabolome
Informational complexity increases from genome to transcriptome to proteome. The 

estimated number of entities of each type of molecule in a typical cell is indicated in 

parentheses. Reproduced with permission from (36).
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Fig. 2. Correlation matrix for plasma metabolite concentrations in the FHS
Age- and sex-adjusted Pearson correlation coefficients for metabolite concentrations in 189 

individuals in the FHS. 5-HIAA, 5-hydroxyindoleacetic acid; ADMA/SDMA, asymmetric 

and symmetric dimethylarginine; GABA, gamma-aminobutyric acid; NMMA, N-

monomethyl-arginine.

Rhee and Gerszten Page 14

Clin Chem. Author manuscript; available in PMC 2015 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rhee and Gerszten Page 15

Table 1

Metabolomics technologies.

Chromatography None GC • Ideal for volatile nonpolar analytes

LC • Ideal for ionizable analytes in solution

Other • Direct infusion (no chromatography)

• Capillary electrophoresis

• Thin-layer chromatography

↓ ↓

MS

Analytical method NMR TOF Triple quadrupole Ion trap

Metabolite identification Chemical shift m/z (Flight time) m/z (Filters for m/z) m/z (Trapping frequency)

Advantages • Robust • Mass accuracy • Sensitivity • Sensitivity

• No sample destruction • Wide mass range • Can perform tandem MS • Can perform tandem MS

• No chromatography or 
analyte ionization

• Dynamic range

• Unambiguous 
identification of 
abundant analytes

Disadvantages • Limited sensitivity • Limited dynamic 
range

• Poor mass accuracy • Limited dynamic range

• Isotopic standards 
required for absolute 
quantitation

• Isotopic standards 
required for absolute 
quantitation

• Isotopic standards required for 
absolute quantitation
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