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Abstract

Heart disease is the leading cause of death in humans, and myocarditis is one predominant cause 

of heart failure in young adults. Patients affected with myocarditis can develop dilated 

cardiomyopathy (DCM), a common reason for heart transplantation, which to date is the only 

viable option for combatting DCM. Myocarditis/DCM patients show antibodies to coxsackievirus 

B (CVB)3 and cardiac antigens, suggesting a role for CVB-mediated autoimmunity in the disease 

pathogenesis; however, a direct causal link remains to be determined clinically. Experimentally, 

myocarditis can be induced in susceptible strains of mice using the human isolates of CVB3, and 

the disease pathogenesis of postinfectious myocarditis resembles that of human disease, making 

the observations made in animals relevant to humans. In this review, we discuss the complex 

nature of CVB3-induced myocarditis as it relates to the damage caused by both the virus and the 

host's response to infection. Based on recent data we obtained in the mouse model of CVB3 

infection, we provide evidence to suggest that CVB3 infection accompanies the generation of 

cardiac myosin-specific CD4 T cells that can transfer the disease to naïve recipients. The 

therapeutic implications of these observations are also discussed.
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1. Introduction

Dilated cardiomyopathy (DCM), a myocardial disease that commonly results in congestive 

heart failure, is a challenging clinical entity with no known cure or specific causes, and it is 

a major indication for heart transplantation. The five-year survival rate of patients with 

DCM is less than 50% [1]. DCM can develop in individuals affected with myocarditis, for 

which various non-infectious and infectious agents have been implicated. Prominent among 

the infectious causes for myocarditis are enteroviruses like coxsackievirus B3 (CVB), a 

bona fide pathogen of the cardiovascular system. In the U.S., approximately five million 

enteroviral infections are attributed to CVB1-5. A proportion of these (12%) may have 

myocardial involvement in which CVB1, CVB3 and CVB5 serotypes are commonly 

implicated [2, 3]. Serologically, CVB3-reactive antibodies are found in about 50% of DCM 

patients, while enteroviral genomic material can be detected in up to 70% [4-8], suggesting 

that CVB3 infection is an important environmental predisposing factor for the development 

of DCM. In this review, we discuss the mechanisms related to the initial damage caused by 

the virus and how such damage can later be precipitated by the host's response to infection, 

leading to the establishment of self-destructive (autoimmune) phenomena and their 

implications for therapy in those affected.

2. Virus life cycle

Coxsackievirus, a member of the genus enterovirus, is a positive-sense single-stranded RNA 

virus belonging to the Picornaviridae family [9, 10]. Six serotypes have been identified 

(CVB1 to 6) and our focus is CVB3. The CVB3 viral genome consists of 7400 bases, and a 

single open reading frame flanked by 5’ and 3’ non-translated regions (NTRs) at the termini. 

Additionally, multiple secondary stem-loop structures can be formed in the 5’ NTR, which 

is known to harbor molecular determinants of viral pathogenicity [11, 12]. However, for 

replication of the viral genome, both the 5’ and 3’ NTRs can act as binding sites for a viral 

genome-linked protein (VPg), also called 3B [13, 14]. The viral genome encodes for a large 

polyprotein, which is proteolytically cleaved to produce structural and nonstructural (NS) 

proteins (Fig. 1; [15]. While structural proteins are required for virus assembly, NS proteins 

mediate the processing of viral polyprotein and replication of the viral genome [15-17]. The 

CVB3 genome lacks a 5’ 7-methyl guanosine cap structure, which is typically seen in most 

eukaryotic and many positive-sense viral RNAs and is needed to facilitate translation [18, 

19]. Instead, the 5’ NTR, which accounts for 10% of the viral genome (742 out of 7400 

nucleotides [nts]), contains an internal ribosome entry site (IRES) and mediates translation 

of positive-sense viral RNAs [20, 21].

For any productive infection, viruses have to enter host cells, multiply, and release progeny 

of infectious virions from the infected cells. The usual target tissues for CVB3 are heart and 

pancreas, although other organs such as brain, prostate, testis, liver, lung, and intestine can 

be infected [15, 22, 23]. Virus entry into the target tissues is mediated by two receptors: 

decay accelerating factor (DAF/CD55) and coxsackievirus and adenovirus receptor (CAR; 

Fig. 1) [24, 25]. Most tissues express DAF, a glycosyl-phosphatidylinositol-anchored 

membrane protein. The initial attachment of the virus occurs first through DAF, resulting in 

the rearrangement of cytoskeletal actin that involves activation of Abl and Fyn kinases [25]. 
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This process facilitates movement of CVB3 along the apical surface of the cell membrane, 

which provides access to CAR in the tight junctions of epithelial cells [26, 27]. In contrast to 

DAF, CAR acts as an internalization receptor in the target cells, where virus interacts with 

CAR's two extracellular Ig domains, D1 and D2 [24]. This interaction triggers Fyn-mediated 

phosphorylation of caveolin-1, leading to endocytosis of the virus [26, 27] and subsequent 

uncoating of the RNA genome (positive-strand) into the cytoplasm.

The positive-strand RNA translates into a large polyprotein by a 5’ cap-independent 

mechanism, whereby the IRES region of 5’ NTR acts as a ‘ribosome landing pad’ [20, 21]. 

The polyprotein is then proteolytically cleaved by two viral proteases – 2A protease (pro) and 

3Cpro – to generate three protein clusters, P1, P2, and P3, through cis-cleavage [28]. These 

protein clusters undergo a series of trans-cleavage steps to yield individual proteins: P1 – 

structural or capsid proteins (viral protein [VP]1, VP2, VP3, and VP4); P2 – 2Apro, 2B, 2C; 

and P3 – 3A, 3B, 3Cpro, and 3D polymerase (pol) [Fig. 1;[28, 29]. In the meantime, 2Apro 

and 3Cpro can shut off host protein synthesis by their proteolytic activity, allowing the virus 

to take control of infected cells. For example, 2Apro cleaves eukaryotic initiation factor 

(EIF)-4γ, poly (A) binding protein, and cytoskeletal dystrophin, in addition to triggering the 

caspase-3-dependent apoptotic pathway [30-32]. Similarly, 3Cpro also can cleave host 

transcription factors (TATA-binding protein, cAMP response element binding protein, 

octamer-binding transcription factor), and Bax and Bid proteins, resulting in sequestration of 

mitochondrial cytochrome c into cytoplasm and activation of the apoptotic pathway [33-36]. 

While both 2B and 3A proteins inhibit vesicular transportation from the Golgi complex and 

exocytosis of cellular proteins, protein 2C causes disassembly of the Golgi complex and the 

endoplasmic reticulum [ER; [37-39]. The 3Dpol (RNA-dependent-RNA polymerase) 

generated from the initial translation adds two uridine residues to VPg by a process called 

uridylation, thereby acting as a primer for the synthesis of negative-strand RNA from the 

poly (A) tail [40, 41]. The negative strand then acts as a template for multiple copies of 

positive-strand viral genome to be synthesized by 3Dpol; the positive strands are then 

packaged with the structural proteins and form infectious virions. The viral protein 2B, also 

called viroporin, oligomerizes and enters the cell membrane to form channels through which 

virions are released by cell lysis [42].

During the replicative cycle of the virus, however, dsRNAs can be generated utilizing the 

negative- and positive-strand viral genomes [43]. But the viral 2C protein, exhibiting 

nucleoside triphosphatase (NTPase) activity, dissociates dsRNA by unwinding [44, 45]. 

Variants of CVB3 with lower cytolytic activity can persist in the host as dsRNAs [43], but 

their identity as infectious viral particles has not been reported. Whether enteroviral RNAs 

like CVB3 present in DCM patients as reported in the literature [46-48] represent dsRNAs 

also remains to be investigated.

3. Pathogenesis of CVB3 infection

Studies from various experimental mouse models of CVB3 infections suggest that the 

disease course of myocarditis assumes two distinct stages that occur in continuum [49, 50]: 

the acute phase (14-18 days postinfection), in which infectious virus is present, causing 

damage to cardiomyocytes; and the chronic phase (beyond 18 days postinfection), in which 
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inflammation persists, although the extent of virus replication is much reduced due to 

selection of a defective virus [50, 51]. This is consistent with the observation that infectious 

CVB3 cannot be isolated in cardiac tissues from patients with DCM [52, 53]. To understand 

the immune pathogenesis of viral myocarditis, numerous mouse models have been 

developed involving the use of various strains of CVB3 [54-58]; Table 1].

3.1.Virus-induced cardiac damage

CVB3 replication can induce myocardial injury through apoptosis and necrosis of 

cardiomyocytes. The NS proteins generated from translation of the viral genome can 

significantly affect the structure and functions of cellular proteins (Fig. 2). Some of these 

include:

Shutdown of host proteins and cleavage of transcription factors—Notably, 

2Apro protein cleaves cytoskeletal dystrophin, and dystrophin-associated glycoproteins such 

as α-sarcoglycan, β-dystroglycan, and extracelluar laminin-2 [30, 59, 60]. Dystrophin is 

critical for connecting with the contractile protein F-actin within the cardiomyocytes [61, 

62]. Dystrophin deficiency may be relevant to human disease because patients affected with 

familial DCM show lack of dystrophin production [61, 62]. Likewise, viral protease 3Cpro 

can alter translation of cellular proteins by cleaving transcription factors such as TATA-

binding protein, cAMP responsive element, and octamer-binding protein [34-36].

Cell cycle arrest—Arrest in cell cycle progression has been reported in CVB3 infection, 

due to reduced synthesis or proteasome-mediated degradation of cyclin-D1 following the 

degradation of EIF-4γ by viral protease 2Apro [63].

Inhibition of vesicular transport—By blocking the transportation of proteins from the 

ER to the Golgi complex, viral protein 3A can inhibit exocytosis of secretory cellular 

proteins [37, 38].

Apoptosis—Cardiomyocytes infected with CVB3 can show DNA fragmentation and 

apoptotic bodies as early as nine hours postinfection, and viral proteases (2Apro and 3Cpro) 

are believed to mediate this process [64, 65].

Cell lysis—Being a cytolytic virus, CVB3 can injure the cell membrane, leading to lysis of 

cells by increasing the membrane permeability and pore formation [42, 66].

While the above mechanisms point to the possibility that the virus can directly damage 

cardiomyocytes as long as it is present in the tissues during acute infections, the 

pathomechanisms underlying the persistence of inflammation during the later stages of the 

disease process in the absence of detectable infectious viral particles remain elusive. 

Nonetheless, CVB3 RNA can be detected in the chronic stages in infected animals through 

21 days postinfection, and the viral genomes may contain deletions of 7 to 49 nucleotides in 

their 5’ termini [51]. Likewise, viral genomic material containing 5’ terminal deletions was 

detected from heart tissue from a fatal case of enterovirus-associated myocarditis [67]. 

Whether such defective viruses can reactivate and contribute to tissue damage like that 

caused by wild type virus has not been proved as viruses with 5’ terminal deletions were 
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non-cytolytic. However, evidence suggests that the defective virus can replicate in cell 

culture; mice inoculated with this virus showed the presence of viral RNA for up to 25 

weeks, but their hearts or pancreases were normal [51]. Thus, the notion of immune-

mediated damage is gaining more attention in explaining the disease pathology in the 

chronic stages.

3.2. Immune pathogenesis

As CVB3 injures cardiomyocytes, the tissue destruction can be potentiated by inflammatory 

cytokines (interleukin [IL]-1, IL-6 and tumor necrosis factor [TNF]-α) produced by cells of 

the innate (e.g., macrophages) and adaptive (antiviral, T helper [Th]1 and Th17 cytokines) 

immune systems (Fig. 3). Toll-like receptors (TLRs) can influence the severity of CVB3-

induced myocarditis: mice deficient for TLR-3 developed more severe myocarditis than 

their wild type littermates, whereas TLR-4-deficient mice developed less severe myocarditis 

[68, 69]. Furthermore, expression of TLRs can occur gender dependently: elevated 

expression of TLR-4 in the macrophages of male mice contributed to mortalities in CVB3-

infected animals, but the underlying mechanisms are unknown [70, 71]. In contrast, the roles 

played by certain cellular components of the innate immune system, such as gamma delta 

(γδ) T cells and natural killer (NK)-T cells, are more complex, in that γδ T cells and NK-T 

cells perform opposing functions (Fig. 3). Vγ4+ γδ T cells promote CVB3-induced 

myocarditis by killing regulatory T (Treg) cells through CD1d-mediated lysis and support 

interferon (IFN)-γ- production by CD4 T cells. NK-T cells, however, favor generation of 

Treg cells and dampen the inflammatory response triggered by γδ T cells. γδ T cells also can 

induce cardiac damage by killing the virus-infected CD1d-expressing cardiomyocytes by 

Fas/Fas-L pathway [72-74], while NK cells are protective in CVB3-induced myocarditis: 

mice depleted of NK cells showed increased viral titers and exacerbated myocarditis [75, 

76]. Recent studies indicate that CVB3 infection can lead to degranulation of mast cells 

within 6 hours postinfection and to production of proinflammatory cytokines (IL-1, IL-6, 

IL-8, TNF-α, granulocyte macrophage-colony stimulating factor and other molecules 

(histamine, heparin, and proteases). These mediators have the potential to precipitate the 

severity of viral myocarditis [77].

The relevance of the molecular mimicry hypothesis in the causation of CVB3-induced 

myocarditis also has been tested, but direct evidence is lacking (Fig. 3). Anti-streptococcal 

antibodies and anti-streptococcal T cells were shown to bind CVB3 and cardiac myosin; 

these responses were shown to be pathogenic [78-84]. Similarly, the phenomenon of epitope 

spreading also may be relevant to the pathogenesis of viral myocarditis, because pathogens 

like CVB3 that primarily infect hearts can lead to secondary generation of autoimmune 

responses resulting from release of self-antigens due to cardiac injury (Fig. 3). Either the 

newly released antigens are taken up by the resident antigen-presenting cells (APCs) (e.g., 

dendritic cells, DCs), or APCs can engulf cardiomyocytes infected with an infectious agent, 

leading to induction of pathogenic CD4 Th and/or cytolytic T lymphocyte (CTL) responses 

by cross-priming. Similarly, under the influence of Th cytokines, B cells sensitized with 

self-antigens can precipitate cardiac damage by producing pathogenic autoantibodies (Fig. 

3). But in these scenarios, presence of efficient Treg cells can dampen inflammatory 

responses. For example, adoptive transfer of Treg cells prior to infection with CVB3 
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protects mice from developing myocarditis [85], pointing to a possibility that autoimmune 

responses accompany CVB3 infection.

In support of autoimmune theory, autoantibodies to various cardiac antigens – such as 

cardiac myosin heavy chain (Myhc)-α, adenine nucleotide translocator 1 (ANT), β-

adrenergic receptor-1 (BAR), branched chain α-ketoacid dehydrogenase (BCKD), cardiac 

sarcoplasmic/endoplasmic reticulum calcium ATPase (CATP), laminin, and the muscarinic 

receptor – have been detected in patients with myocarditis and DCM, including 

experimental CVB3 myocarditis models [86-93]. But the pathological significance of these 

autoantibodies continues to be uncertain. Evidence for the generation of autoreactive T cells 

in CVB3 infection was first provided based on the finding that the CTLs obtained from 

Balb/C mice infected with CVB3 lysed the cardiomyocytes, and the T cells transferred the 

disease into naïve animals, but their antigen-specificity was not known [56, 94]. To 

delineate the autoimmune mechanisms in CVB3 myocarditis, we recently created major 

histocompatibility complex (MHC) class II dextramers (the new generation MHC class II 

tetramers) for Myhc-α 334-352, permitting us to determine the antigen-specificity of 

autoreactive CD4 T cells that might be generated in infected mice [55, 95]. Myhc-α has 

been recognized as a major autoantigen candidate in heart autoimmunity, and CD4 T cells 

sensitized with Myhc-α or its immunodominant epitopes induce autoimmune myocarditis, 

the phenotype of which resembles postviral myocarditis in humans [96, 97]. For example, 

Myhc-α 334-352 and Myhc-α 614-643 induce lymphocytic myocarditis in A/J and Balb/c 

mice, respectively [98, 99]. Using Myhc-α 334-352 dextramers, we demonstrated that A/J 

mice infected with CVB3 showed generation of Myhc-α-specific CD4 T cells and that 

antigen-specific CD4 T cells infiltrate hearts in infected mice [55]. More importantly, using 

adoptive transfer protocols, we showed that autoreactive CD4 T cells generated in mice 

infected with CVB can transfer myocarditis to naïve mice. The pathological changes 

observed in these mice were restricted to hearts, as pancreases were normal [55]. In addition, 

T cells sensitized with irrelevant antigen and virus did not induce disease. Furthermore, by 

proving that the naïve repertoire does not contain a significant proportion of Myhc-α-

reactive T cells, we concluded that generation of the Myhc-α-reactive T cells was secondary 

to the damage caused primarily by the virus [55]. We proposed that when intracellular 

proteins like Myhc-α are released as a consequence of the cardiomyocytolytic effect of 

viruses, they become visible to the immune system, leading to the induction of pathogenic 

autoimmune responses. This may be the reason inflammation persists in the absence of 

recoverable infectious virus in chronically infected mice. Similar observations are made in 

human DCM patients, who exhibit the signature of CVB infections, but actively replicating 

virions are rarely detected in cardiac tissues [100].

4. Antiviral immune responses and viral clearance

Experimentally, the two phases of CVB3 infection (acute and chronic) occur in continuum, 

but the infectious virus particles cannot be detected in mice beyond 14 to 18 days 

postinfection; furthermore, successful viral clearance may require the participation of both B 

cells and T cells [50, 57, 94, 101-103]. The importance of antibodies in the attenuation of 

viral myocarditis is demonstrated by the observation that animals infected with CVB3 could 

generate strong virus-specific neutralizing antibodies, and that B cell-deficient mice were 
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unable to resolve CVB3 infection and showed elevated viral titers [102, 104, 105]. Sex 

hormones appear to influence the disease outcome. Male Balb/C mice infected with CVB3 

showed robust disease-inducing IgG2a and IFN-γ-producing CD4 T cells (Th1-type), as 

opposed to females, in which dominant IgG1 and IL-4-producing CD4 T cells (Th2-type) 

favored disease resistance [106]. Previously, severity of CVB3-induced myocarditis was 

shown to be relatively high in mice deficient for CD8, but the disease was attenuated in mice 

deficient for CD4 [103, 107]. Conversely, mice deficient for both CD8 and CD4 were 

protected, suggesting that both cell types modulate the disease outcome [103].

The data available on the roles played by Th cytokines, however, are conflicting. For 

example, IFN-γ-knockout mice infected with CVB3 were protected from myocarditis, while 

reconstitution with recombinant IFN-γ restored disease susceptibility [108]. Similarly, 

IL-12Rβ1-deficient mice infected with CVB3 showed decreased viral replication and 

reduced inflammation in the hearts, whereas IFN-γ-deficiency exacerbated viral replication 

[69]. In other studies, however, IL-12 was found to be protective in CVB3-induced 

myocarditis by increasing the production of IFN-γ [109]. Furthermore, non-obese diabetic 

mice transgenically expressing IFN-γ specifically in the pancreas were found to be protected 

from CVB3 infection [110]. In contrast, IL-4-deficient C57Bl/6 and IL-13-knockout Balb/C 

mice developed severe myocarditis with prolonged viral persistence, suggesting that Th2 

cytokines promote disease protection in CVB3 infection [111, 112]. Recent studies indicate 

that IL-17 produced by Th17 cells is a critical mediator of CVB3 pathogenesis, as IL-17 

levels were elevated in both acute and chronic phases of viral infection [113-115]. 

Furthermore, blockade of IL-17 using neutralizing antibodies led to reduction in myocardial 

damage as well as viral replication [115, 116]. The question of whether induction of robust 

IL-17 responses coincides with viral clearance requires additional studies. However, 

neutralization of IL-22 in IL-17A-deficient mice decreased the severity of myocarditis and 

enhanced viral replication, raising the question whether Th17 and Th22 cells display 

differential effects on CVB3 pathogenesis because IL-22 can be secreted by both subsets 

[117].

Finally, formation of dsRNAs, although transitory, can interact with TLR-3, and TLR-7 and 

induce synthesis of type I interferons (IFN-α and IFN-β) by activating interferon regulatory 

transcription factor (IRF)-3 and IRF-7 pathways [Fig. 3; [118, 119]. IFNs can then activate 

two host proteins – RNA-dependent protein kinase and 2’ 5’-oligoadenylate synthetase – 

resulting in the synthesis of EIF-2α and ribonuclease (RNase) L [120]. While EIF-2α 

inhibits viral replication, RNase L promotes degradation of the viral genome, but both can 

trigger apoptosis [121-124]. In addition, EIF-2α can induce the transcription of apoptotic 

genes by enhancing the synthesis of activating transcription factor-4. Similarly, RNase L can 

activate c-Jun-NH2-terminal kinase and promote the transcription of apoptotic genes and/or 

activation of the mitochondrial death pathway [121, 122]. Thus, apoptosis of infected cells is 

considered to be one of the important mechanisms of viral clearance. Consistent with this 

notion, it has been recently demonstrated that selective ablation of type I IFN receptor in 

cardiomyocytes leads to exacerbation of myocarditis likely due to a delay in the clearance of 

virus [125].
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5. Therapeutic implications

Various therapeutic strategies have been developed in the medical management of patients 

with myocarditis/DCM. These include the use of antiviral compounds, interferons, 

intravenous immunoglobulin therapy, and immunosuppressive agents such as 

corticosteroids, and azathioprine [Table 1; [126-128]. None of these therapeutic agents, 

however, have proven to be effective in preventing the disease progression nor are these 

generally recommended for all patients regardless of the stage of disease. Similarly, no clear 

consensus has emerged for the use of immunosuppressive drugs because the supporting data 

are lacking. These judgmental limitations are in part due to the practical difficulties to 

differentiate patients with or without infectious origin in the clinical settings. Thus, for these 

groups of patients, the use of antiviral compounds and immunosuppressive drugs has been 

suggested as therapeutic modalities [126-128].

Experimentally, the use of animal models offers the advantage of testing the efficacy of 

therapeutics under defined conditions. To this end, as exemplified in Table 1, a variety of 

compounds such as antiviral drugs, small molecules, and natural medicines have been 

shown to attenuate the severity of acute CVB3 myocarditis through multiple mechanisms. 

Likewise, immunologically, costimulatory molecules, such as B7, CD40 and cytotoxic T-

lymphocyte antigen (CTLA)-4, have been successfully targeted for therapy, in addition to 

the use of cytokines (Table 1). The observations made in these animal models are relevant to 

CVB3 infections in humans because human isolates of CVB3 induce disease in mice with 

comparable pathologies, and the disease patterns also are similar, in that the disease course 

assumes two stages [50, 57]. While the acute phase is accompanied by multiplication of 

virus and cardiac inflammation, the chronic phase is devoid of actively multiplying viruses, 

yet inflammation continues to persist. In these circumstances, autoimmunity becomes a 

prime suspect. Our recent data showing the appearance of pathogenic Myhc-α-reactive T 

cells in mice infected with CVB3 is the first direct evidence to prove that autoimmunity can 

be an important component of CVB3 pathogenesis. Whether such an outcome is possible in 

humans remains to be investigated. If testing reveals this hypothesis to be true, it may 

provide a basis for the use of immune suppressive therapy in DCM patients who test positive 

for CVB3. Additionally, it also may create avenues to develop other immunologic strategies, 

like antigen-specific T cell therapies, to dampen autoimmune responses. Two such examples 

are the use of altered peptide ligands and induction of tolerance by administering soluble 

antigens via oral or nasal routes [129-132]. As a proof of principle for the latter approach, 

mice tolerized with Myhc-α and later infected with CVB3 have shown decreased severity of 

myocarditis, an effect mediated through T cells but not antibodies [129]. Thus, in the long 

term, we propose that antigen-specific T cell-based therapies may be a viable alternative to 

the use of chemotherapy and heart transplantations for myocarditis/DCM patients.

Conversely, it may be possible to prevent the occurrence of CVB3-mediated myocarditis 

through vaccination, but no commercial vaccines currently are available for use in humans. 

Nevertheless, experimentally, various vaccination strategies, such as the use of CVB3 virus-

like particles, attenuated viral strains, and priming and boosting with CVB3 DNA and 

recombinant viral protein, respectively, have been shown to effectively confer varying 

degrees of protection [133-136].
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CVB3, a bona fide pathogen of cardiovascular system, is ubiquitously present in the 

environment, making it possible that most humans may have a chance of exposure to this 

virus at some point in their lifetime. Although, the disease induced with CVB3, in particular, 

myocarditis may go unnoticed, but chronically, few of these individuals may develop DCM. 

Due to the lack of effective chemotherapy options, heart transplantation has become a 

critical necessity for patients with end-stage disease. For such patients in whom no 

infectious virions are present in cardiac biopsies, it becomes difficult to justify the use of 

antiviral drugs. The pathogenesis of CVB3 infection is complex in that tissue destruction 

involves the mediation of both the virus, through its lytic properties, and the host, via 

immune-mediated damage, importantly through the induction of pathogenic autoreactive T 

cell responses, as we have recently demonstrated in the mouse model. Thus, we have begun 

to provide answers for previously unanswered questions about why inflammation persists in 

the absence of detectable infectious virions, which if otherwise present, would be expected 

to continue to damage the cardiac tissue. Our data may support the notion that the immune-

mediated damage is superimposed on the initial tissue destruction caused by the virus, but 

once autoimmune response sets in, the disease process becomes perpetual, at which stage, 

immune-suppressive therapies may become the only therapeutic option. Finally, it is to be 

noted that enteroviral infections have been shown to be associated with various other 

chronic disease conditions, such as Type I diabetes, coeliac disease, and asthma [137-141]. 

Whether their pathogeneses involve the mechanisms similar to myocarditis triggered by 

CVB3 may be a worthy area for further investigations.
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List of abbreviations

ANT adenine nucleotide translocator 1

APCs antigen-presenting cells

BAR β-adrenergic receptor-1

BCKD branched chain α-ketoacid dehydrogenase

CAR coxsackievirus and adenovirus receptor

CATP cardiac sarcoplasmic/endoplasmic reticulum calcium ATPase

CTL cytolytic T lymphocyte

CTLA cytotoxic T-lymphocyte antigen

CVB coxsackievirus B

DAF decay accelerating factor

DCM dilated cardiomyopathy

DCs dendritic cells
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EIF eukaryotic initiation factor

IL interleukin

IRES internal ribosome entry site

IRF interferon regulatory transcription factor

MHC major histocompatibility complex

Myhc cardiac myosin heavy chain

NK natural killer

NS nonstructural

NTPase nucleoside triphosphatase

NTRs non-translated regions

nts nucleotides

RNase ribonuclease

Sh short hairpin

Th T helper

TLR Toll-like receptors

TNF tumor necrosis factor

Treg regulatory T

VPg viral genome-linked protein

γδ gamma delta
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Highlights

• Coxsackievirus B3 (CVB3) is a common suspect in patients with chronic 

myocarditis/DCM

• Autoimmunity is suspected, but a direct causal link remains elusive clinically

• Damage caused by autoreactive T cells may be a key mechanism in chronic 

viral infections
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Fig. 1. The life cycle of CVB3
Virus entry into the target cells first requires interaction with DAF, which facilitates viral 

attachment to CAR, leading to internalization of the virus in the cytoplasm. After uncoating, 

the positive-sense single-stranded RNA genome is translated to yield a large single 

polyprotein. This process requires binding of ribosomes to IRES. The polyprotein is then 

proteolytically cleaved to generate structural (P1 cluster: VP1 to VP4) and NS (P2 cluster: 

2Apro, 2B and 2C; P3 cluster: 3A, 3B, 3Cpro and 3Dpol) proteins by 2Apro and 3Cpro, two 

viral proteases. While the structural proteins, also called capsid proteins, contribute to the 

conformation of the virus, NS proteins mediate a variety of functions as indicated in the 

inset. During viral replication, 3Dpol plays a critical role in the formation of negative and 

positive strands of viral genomes, which can be paired to form dsRNA as an intermediate 

stage. The progeny virus containing a single-strand positive-sense RNA genome and 

structural proteins is finally released through cell lysis.
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Fig 2. Pathogenic mechanism of CVB3-induced cardiac damage
In cardiomyocytes infected with CVB3, the viral genome is translated to yield several NS 

viral proteins, whose main functions are highlighted in the inset.
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Fig. 3. Proposed mechanisms of inflammatory heart disease
Acute myocarditis can result from an overt immune response to exposure to cardiotropic 

pathogens, and cardiac damage can be due to the production of inflammatory cytokines of 

innate and adaptive immune systems. On one hand, although transitory, dsRNAs produced 

during the replication cycle of CVB3 can bind TLR-3 or TLR-7 and promote inflammatory 

response through the activation of NFkB. On the other, dsRNAs can mediate viral clearance 

by degrading the viral genome by activating IRF-3 / IRF-7 pathways. Various innate 

immune cell types, such as γδ T cells, NK-T cells and mast cells, can influence the disease-

outcome. While γδ T cells and mast cells promote cardiac damage, NK-T cells can dampen 

such a response. Exposure to environmental microbes that carry mimicry sequences for 

cardiac antigens can lead to the generation of pathogenic cross-reactive T cell and antibody 

responses. Nonetheless, once cardiac damage sets in, intracellular proteins (e.g., Myhc-α) 

that were previously invisible to the immune system can be released as a result of epitope 

spreading, leading to their uptake by APCs (e.g., DCs) and inducing CD4 T cell responses. 

Alternatively, APCs can engulf infected cardiomyocytes and induce both CD4 and/or CD8 T 

cell responses via cross-priming. Upon activation, antigen-sensitized CD4 T cells secrete 

Th1 and Th17 cytokines that favor heart autoimmunity by activating macrophages and 

promoting neutrophil infiltration, thereby aggravating cardiac damage while providing help 

to CD8 T cells and B cells via cytokines and chemokines. CD8 T cells can contribute to 

myocarditis in two ways: 1) secretion of cytokines similar to those secreted by CD4 T cells 

with identical consequences; and 2) killing of cardiomyocytes infected with cardiotropic 

pathogens (e.g., CVB3) via MHC class I-dependent pathway. In the meantime, pathogen-

specific T cells, neutralizing antibodies and antiviral cytokines such as IFN-α, IFN-β can be 

generated, which facilitate elimination of the microbe. Nonetheless, the newly generated 

cardiac-reactive CD4 and CD8 T cells can persist and contribute to chronic inflammation. In 
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these scenarios, however, presence of efficient Treg cells can dampen autoimmune 

responses, as they are highly critical for maintenance of self-tolerance.
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Table 1

List of agents tested in various mouse models of CVB3 infection

Agent Outcome Ref.

Anti-viral agents

2-(3,4-dichlorophenoxy)-5-nitrobenzonitrile Reduced viral titers; suppressed myocardial inflammatory foci [142]

CVB3 3C protease inhibitor Inhibited viral replication; attenuated myocardial inflammation and 
fibrosis

[143]

Histone deacetylase inhibitors Suppressed viral replication in vitro [144]

Recombinant CAR4/7 Suppressed CVB3 infection; myocardial inflammation was aggravated, 
likely as a secondary event

[145]

Ribavirin, and recombinant IFN-α Inhibited myocardial viral replication; reduced myocardial damage [146]

Short hairpin (Sh) RNA specific to 2B gene Improved survival rate, reduced viral titers; attenuated tissue damage [147]

Sh RNA to 2C protein Reduced viral titers, suppressed myocarditis, and proinflammatory 
cytokine production

[148]

Soluble CAR-Fc fusion protein Reduced viral infection, myocardial damage, and inflammation [149]

Soluble viral traps (CAR-DAF-Fc) Attenuated viral infection, myocardial inflammation, and fibrosis [150]

Pharmacological agents/herbal compounds

20 (S)-protopanaxtriol Antiviral effects in vitro and reduced disease severity [151]

α-bromo-4-chlorocinnamaldehyde Reduced disease severity and viral titers; inhibited nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-kB) activation

[152]

β1 blocker (NO-metoprolol) Cardioprotective [153]

Aqueous extract of Spatholobus suberectus Dunn Reduced viral titers and suppressed disease severity [154]

Astragaloside IV Decreased viral titers, necrosis and cellular infiltrations; attenuated 
myocardial fibrosis via inhibition of transforming growth factor beta -β1 
signaling

[155]

Calycosin-7-O-P-D-glucopyranoside from Astragalus 
membranaceus var. Mongholicu

Improved survival rate; alleviated cardiac damage and reduced virus 
titers in the heart

[156]

Curcumin Attenuated disease severity by inhibiting Phosphoinositide 3-kinase 
(PI3K)/Akt/NF-kB signaling

[157]

Phyllaemblicin B, extract from Phyllanthus emblica Reduced viral titers; inhibited virus-mediated apoptosis and cardiac 
muscle damage

[158]

Immunological agents

Adoptive transfer of Treg cells Protected against disease through IL-10 production [159]

Anti-4-1BBL Reduced cardiac damage and inflammation [160]

Anti-B7.1 and anti-B7.2 Anti-B7.1 prolonged the survivability of myocarditic mice; anti-B7.2 
abrogated the protective effect of anti-B7.1

[161]

Anti-FAS Reduced caspase-3 expression, viral replication and cardiomyocyte 
apoptosis and myocardial injury

[162]

Atorvastatin Attenuated myocardial injury by enhancing the expression of gap 
junction proteins

[163]

CD40-Ig fusion protein Relieved myocardial injury and inhibited viral replication [164]

CpG nucleotides Inhibited viral infection [165]

CTLA-4-Ig fusion protein Reduced mortality and IFN-γ production [166]

CXCL10 Inhibited viral replication by recruiting NK cells [167]

Galectin-9 Ameliorated the disease by decreasing Th1 cytokines and promoting 
Treg and Th2 phenotypes

[168]

IFN-β and IFN-α 2 Mediated anti-viral effects and protected from disease [169]

IL-1 receptor antagonist encoded in plasmid DNA Attenuated inflammation [170]
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Agent Outcome Ref.

IL-17 receptor A delivered through adenoviral vector Decreased mortality by downregulating production of inflammatory 
mediators

[171]

IL-35 Protected from disease via reduced IL-17 production [172]

IL-4 Improved cardiac function by promoting anti-inflammatory effects and 
downregulation of matrix metalloproteinases

[173]

IL-4 gene therapy Protected from disease through Th2 polarization [174]

miR-21 Conferred resistance by inhibiting programmed cell death 4 expression [175]

Nasal cardiac myosin or OX40 blockade Ameliorated disease by enhancing Treg and IL-10 production [129]

Plasmid DNA encoding soluble TNF receptor-Fc Attenuated inflammation and myocardial fibrosis [176]

Polyclonal Ig therapy Protected from disease [177]

Proteasome inhibitors Reduced myocardial damage

Recombinant CVB3/IFN-γ Conferred protection [178]

Thrombospondin-2 Inhibited cardiac inflammation [179]

TNF-α-induced protein 3 Alleviated the disease by inhibiting NF-kB signaling [180]

Truncated monocyte chemoattractant protein-1 Ameliorated the disease via reduced infiltrations [181]

α-Galactosylceramide Protected from disease by modulating inflammatory cytokines and anti-
vial immune responses

[182]
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