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BACKGROUND AND PURPOSE
Non-competitive drugs that confer allosteric modulation of orthosteric ligand binding are of increasing interest as therapeutic
agents. Sought-after advantages include a ceiling level to drug effect and greater receptor-subtype selectivity. It is thus
important to determine the mode of interaction of newly identified receptor ligands early in the drug discovery process and
binding studies with labelled orthosteric ligands constitute a traditional approach for this. According to the general allosteric
ternary complex model, allosteric ligands that exhibit negative cooperativity may generate distinctive ‘competition’ curves:
they will not reach baseline levels and their nadir will increase in par with the orthosteric ligand concentration. This behaviour
is often considered a key hallmark of allosteric interactions.

EXPERIMENTAL APPROACH
The present study is based on differential equation-based simulations.

KEY RESULTS
The differential equation-based simulations revealed that the same ‘competition binding’ pattern was also obtained when a
monovalent ligand binds to one of the target sites of a heterobivalent ligand, even if this process is exempt of allosteric
interactions. This pattern was not strictly reciprocal when the binding of each of the ligands was recorded. The prominence of
this phenomenon may vary from one heterobivalent ligand to another and we suggest that this phenomenon may take place
with ligands that have been proposed to bind according to ‘two-domain’ and ‘charnière’ models.

CONCLUSIONS AND IMPLICATIONS
The present findings indicate a familiar experimental situation where bivalency may give rise to observations that could
inadvertently be interpreted as allosteric binding. Yet, both mechanisms could be differentiated based on alternative
experiments and structural considerations.

Abbreviations
ATCM, allosteric ternary complex model
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Introduction
It is important to determine the mode of interaction of newly
identified receptor ligands early in the drug discovery process
in order to select the most appropriate mechanism for a given
therapeutic benefit. In this respect, drugs that confer allosteric
modulation of orthosteric ligand binding and/or function is of
increasing interest to the drug discovery industry as it offers
the potential advantages of a ceiling level to the drug effect
and greater receptor-subtype selectivity (Christopoulos and
Kenakin, 2002). As the altered functional properties have been
extensively covered in the recent review articles (Kamal and
Jockers, 2009; Valant et al., 2012; Lane et al., 2013a), we will
focus our attention on the binding properties. A particular
attribute of allosteric ligands is that their effects are saturable,
that is once they saturate their binding site on the receptor
there is no further effect on the orthosteric ligand. In Schild-
type functional experiments this results in only limited shifts
of the concentration-response curves of orthosteric agonists.
In competition-binding studies with radiolabelled orthostatic
ligands, the same phenomenon could produce only partial
maximal inhibition in the case of negative cooperativity
(Christopoulos and Kenakin, 2002; Hoare, 2007).

The general allosteric ternary complex model (ATCM,
Model 1 in Figure 1) provides the simplest means to con-
ceptualize these phenomena (Stockton et al., 1983;
Christopoulos, 2002; Christopoulos and Kenakin, 2002). This
model stipulates that each ligand may trigger a conforma-
tional change within the target and thereby modulate the
affinity of the other ligand and vice versa. Of note is that
ligand affinity depends on its even more fundamental asso-
ciation and/or dissociation rate constants. This is why allos-
teric phenomena may be better detected by determining the
rate of radioligand dissociation in wash-out experiments. If
the dissociation is faster in the presence of an excess of
unlabelled ligand than in fresh wash-out medium alone, it is
often attributed to negative allosteric modulation (Kostenis
and Mohr, 1996; Springael et al., 2006; De Meyts et al., 2009).

However, allosteric modulation of receptor conformation
is not the only explanation for such experimental observa-
tions. Especially for accelerated dissociation, it has been
shown that it may also reflect the ability of unlabelled com-
petitive ligands to effectively prevent the rebinding of freshly
dissociated radioligand molecules to their targets, especially
when their free diffusion away is hindered by physical obsta-
cles such as in synapses (Perry et al., 1980; Sadée et al., 1982;
Goldstein and Dembo, 1995; Fierens et al., 1999; Coombs and
Goldstein, 2004; Vauquelin and Charlton, 2010). An even
more severe form of rebinding may take place with bivalent

radioligands when their target sites are sufficiently close to
one another to allow their simultaneous occupancy by both
pharmacophores of the radioligand (Model 2 in Figure 1)
(Vauquelin, 2013; Vauquelin and Charlton, 2013). In this
case, the binding of the first pharmacophore will prompt the
second one to stay proximal to its cognate target site, thereby
increasing its probability to bind, or bind again when freshly
dissociated (Kaufman and Jain, 1992; Plückthun and Pack,
1997; Kramer and Karpen, 1998). The resulting synergy pro-
duces a significant increase in the bivalent radioligand’s
overall affinity (a phenomenon often denoted as avidity) as
well as in its overall residence time. Here again, unlabelled
ligands are able to accelerate the dissociation process, even
when they can only occupy one of the target sites (Kramer
and Karpen, 1998; Vauquelin and Van Liefde, 2012;
Vauquelin and Charlton, 2013).

Much less attention has hitherto been devoted to expla-
nations that transcend the level of mere experimental arte-
facts with regard to other experimental manifestations of
allostery, namely the limited shifts of agonist concentration-
response curves and incomplete competition in radioligand
binding experiments. Yet, the potential existence of such
alternatives has been hinted at by Hoare (2007) for class B
GPCRs. According to the two-domain model that this author
proposed, peptide agonists should first bind to the extracel-
lular N-terminal domain of such receptors and, by acting as
an affinity trap, this initial interaction should promote the
subsequent binding of a distinct portion of the peptide with
a juxtamembrane, ‘J’, domain of the receptor. Equations that
were based on this model brought to light that unlabelled
ligands that only bind to this J domain should also only be
partially competitive in binding studies with the labelled
peptide and vice versa and, most importantly, that this
should take place in the absence of any allosteric interaction.
To explain this behaviour, Hoare invoked the ‘Charnière’
effect that originally accounted for the behaviour of antago-
nists that bear two functional groups connected by a hinge
region (Rocha e Silva, 1969). Of note is that this effect also
plays a central role in the ‘exosite’ model that has been
particularly invoked to conceptualize the behaviour of the β2

adrenoceptor agonist salmeterol (Johnson et al., 1993; Clark
et al., 1996; Coleman et al., 1996).

The two-domain model and the exosite models require the
affected ligands, be it large peptides or small synthetic mol-
ecules, to be heterobivalent. The hitherto most comprehen-
sive description of (hetero)bivalent ligand-target interactions
are provided by a thermodynamic cycle model that allows
each one of the pharmacophores to initiate the binding
process (Daum et al., 2007; Steinfeld et al., 2007; Vauquelin

Tables of Links

TARGET

β2-adrenoceptor

LIGAND

Salmeterol

These Tables list key protein target and ligand in this article which are hyperlinked to corresponding entries in http://
www.guidetopharmacology.org, the common portal for data from the IUPHAR/BPS Guide to PHARMACOLOGY (Pawson et al., 2014) and are
permanently archived in the Concise Guideto PHARMACOLOGY 2013/14 (Alexander et al., 2013).
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and Charlton, 2013). Such models have been modified to
allow a monovalent ligand to compete with the binding of
only one of the pharmacophores and differential equation-
based simulations were recently carried out to explore hetero-
bivalent ligand behaviour at any incubation time as well as in
different experimental settings (Vauquelin, 2013; Vauquelin
and Charlton, 2013). By adopting this approach, we here show
that partial competitivity such as described by Hoare (2007)
also complies with the general thermodynamic cycle model
and that the prominence of this effect may vary from one
labelled heterobivalent ligand to another.

Models, general methodological
considerations and nomenclature

The two ligand-target interaction mechanisms that will be
considered here are schematically represented in Figure 1 and
documented in the legend thereof. They have in common
that the binding of each ligand/pharmacophore (‘a’, ‘b’ and
‘c’) to its cognate target site (‘A’, ‘B’ and ‘A’, respectively) is a
simple, reversible bimolecular process that obeys the law of
mass action. Association and dissociation rate constants are

Figure 1
Schematic representation of (A) the general allosteric ternary complex model (ATCM) and (B) heterobivalent ligand-target site interactions in the
presence of a competing monovalent ligand. The abbreviated notation for the free and bound target species is presented in the right panels. Free
ligands are not included in the model for the sake of simplicity. (A) ATCM (Stockton et al., 1983; Christopoulos, 2002; Christopoulos and Kenakin,
2002): two monovalent ligands, ‘a’ and ‘b’, bind to distinct, non-overlapping binding sites, ‘A’ and ‘B’, which are located on the same molecule
or molecular complex. All binding events are bimolecular and obey the law of mass action; k1 and k2 (in M−1·min−1) are the association and k−1

and k−2 (in min−1) the dissociation rate constants for a-A and b-B binding respectively. Each binding event modulates the other ligand’s binding
affinity via a conformational change in the complex. The modulation is reciprocal and is quantified by the cooperativity factor α. Positive
cooperativity (α > 1) implies a mutual increase in affinity and negative cooperativity (α < 1) implies a mutual decrease in affinity. (B)
Thermodynamic cycle model (Kaufman and Jain, 1992; Plückthun and Pack, 1997; Kramer and Karpen, 1998; Vauquelin and Charlton, 2013)
relating the interaction of a heterobivalent ligand ‘ab’ to the target ‘AB’. The pharmacophores of ‘ab’, ‘a’ and ‘b’, are linked by a flexible spacer
arm and the distance ‘r’ refers to their maximal separation. Their respective binding sites at ‘AB’, ‘A’ and ‘B’, are separated by less than ‘r’ so that
both binding events can take place alongside each other. Each binding event is a reversible bimolecular process obeying the law of mass action
and ‘a’ can only bind to ‘A’ and ‘b’ can only bind to ‘B’. k1 and k2 (in M−1·min−1) are the association, and k−1 and k−2 (in min−1) are the dissociation
rate constants for a-A and b-B binding respectively. When only one pharmacophore (either ‘a’ or ‘b’) is bound, the local concentration, [L], of the
other pharmacophore will correspond to that of one molecule in half of a sphere with radius ‘r’ (Kaufman and Jain, 1992; Plückthun and Pack,
1997). A penalty factor, ‘f’, which deals with, for example, limited rotational freedom of this latter pharmacophore was introduced along with the
ability of two bivalent ligands to simultaneously occupy the target to form the trimeric a‘ABb’ complex (Vauquelin, 2013; Vauquelin and Charlton,
2013). The monovalent ligand ‘c’ can only bind to ‘A’. The c-A interaction is also a reversible bimolecular process obeying the law of mass action
with k3 (in M−1·min−1) and k−3 (in min−1) as the respective association and dissociation rate constants. It is further assumed that ‘a’ and ‘c’ bind to
‘A’ in a competitive fashion and that both binding events leave the b-B interaction undisturbed and vice versa.
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denoted as k1 (in M−1·min−1) and k−1 (in min−1) for the a-A
interaction, k2 and k−2 for the b-B interaction and k3 and k−3

for the c-A interaction.
In the general ATCM (Model A in Figure 1), the coopera-

tivity factor, α, corresponds to the value by how much the
affinity of the ligands change as a result of the allosteric
process. As the affinity of a monovalent ligand is governed by
its association and dissociation rate constants, α may reflect
changes in one of them or even both together. For the present
simulations, α = 0.1 (i.e. negative cooperativity) and only
affects k−1 and k−2. No such cooperativity is involved in the
presently used heterobivalent ligand binding model (Model B
in Figure 1). All binding events are bimolecular and obey the
law of mass action. The concentration of ‘a’ and ‘b’ corre-
sponds to that the concentration of ‘ab’ in solution (i.e. [ab]),
except for the final step in the formation of aABb. The local
concentration, [L], of the involved pharmacophore will cor-
respond to that of one molecule in half of a sphere with
radius ‘r’. To deal with, for example, limited rotational
freedom of this pharmacophore, its association is handi-
capped by a penalty factor, ‘f’ (Valant et al., 2012; Vauquelin
and Charlton, 2013). For all present simulations: [L] =
7.1 mM and f = 30. The equations also permit the binding of
two heterobivalent ligands to occupy a single target to yield
a’ABb’ (Vauquelin and Charlton, 2013). This possibility is
presently included in the model but it only produces a sig-
nificant contribution to the total binding of ‘ab’ when [ab] >
10 μM.

Comparing the behaviour of an allosteric or a heterobiva-
lent ligand allows the comparison of the impact of specific
parameters on their binding properties and also potentially
suggests which of the two mechanisms is more likely in
circumstances where there is ambiguity. To this end, differ-
ential equations allow the quantification of how much each
mode of target occupancy will change over very small time
intervals and these are presented in Table 1A. Explicit formu-
las that govern the binding of a non-competitive ligand
‘a’ under equilibrium conditions in the ATCM (from
Christopoulos and Kenakin, 2002) and of ‘ab’ and ‘c’ under
equilibrium conditions in the heterobivalent ligand binding
model are also presented in Table 1B. For the heterobivalent
ligand binding model, therewith-simulated binding data are
presented in the Supporting Information section. However, as
already addressed elsewhere (Vauquelin and Charlton, 2013)
and as also shown in the Supporting Information section, it
usually takes an extremely long time for bivalent ligands to
even near equilibrium. Therefore, real-life experimental con-
ditions are most likely to yield non-equilibrium conditions
and simulations which reflect those conditions are thus rel-
evant for the understanding/interpretation of experimental
observations. Compared with the formidable challenge to
derive explicit formulas for the evolution of the present
heterobivalent/monovalent interaction mechanism with
time, a differential equation-based approach (Vauquelin
et al., 2001) is tailored for this purpose. By consecutively
solving these equations in parallel (Vauquelin et al., 2001) it
becomes possible to follow how the prevalence of each of
these bound species changes with time, and thus also to
mimic non/hemi-equilibrium conditions. Of note is that, at
equilibrium, both approaches yield the same outcome:
binding values of ‘ab’ and ‘c’ under the conditions shown in

Supporting Information Fig. S2 and S4 differ by less than
0.1% of [AB]tot.

The rate constants mentioned earlier only apply to indi-
vidual ligand/pharmacophore-target site interactions. The
present simulations allow a passage from those parameters to
those that can be obtained by analysing the overall/
experimental binding of the allosteric, ‘a’, monovalent ‘c’
and heterobivalent, ‘ab’, ligands in question. To highlight
this distinction and in agreement with the IUPHAR guide-
lines (Neubig et al., 2003), the parameters that describe the
overall/experimental binding behaviour are categorized as
‘macroscopic’ and those that describe the constituent indi-
vidual binding events as ‘microscopic’. At the macroscopic
level, binding of those ligands refers to the sum of all modes
of target occupancy and is expressed as percentage of the total
target population, [A∼B]tot or [AB]tot (Equations 5, 13 and 14 in
Table 1A). Of note is that a’ABb’ contributes twice to ‘ab
bound’ as two labelled heterobivalent ligand molecules are
bound to a single target; ‘ab bound’ may thus exceed [AB]tot.
The macroscopic association and dissociation rate constants
of ‘ab’ are denoted as kon (in M−1·min−1) and koff (in min−1)
respectively. Finally, while KD refers to the genuine macro-
scopic equilibrium dissociation constant of ‘ab’ (as defined by
koff/kon), KDapp refers to the concentration at which such ligand
produces half-maximal target occupancy after a given incu-
bation period (here 60 min). KDapp will exceed KD when equi-
librium is not yet reached.

Results and discussion

The general ATCM (Model A in Figure 1) describes the non-
competitive interplay between the binding of two ligands to
their corresponding sites on the same target molecule or
molecular complex. As already documented elsewhere
(Hedlund et al., 1999; Christopoulos and Kenakin, 2002), the
saturation binding curve of one of those ligands, say ‘a’, will
undergo a rightward shift in the presence of a single concen-
tration of ‘b’ in case of negative cooperativity. This shift will
increase on par with [b] until a limit is attained. Based on the
differential equations that specify the ATCM, the present
simulations illustrate this peculiar conduct for α = 0.1
(Figure 2A). Relevant binding parameters of these simulated
curves are presented in Table 2. When transposing this
conduct in terms of a ‘competition’ binding experiment, it is
found that ‘b’ is able to decrease the binding of ‘a’
concentration-wise with nH = 1 but, contrary to competitive
monovalent interactions, some binding of ‘a’ may remain
even at very high concentrations of ‘b’ (Christopoulos and
Kenakin, 2002). The simulations shown in Figure 2B illustrate
this particular behaviour and also show that the amount of
this residual binding depends on [a]. While the binding of ‘a’
is nearly completely displaceable at low [a] (i.e. when only a
small fraction of the target sites are initially occupied), less
and less binding becomes displaceable when [a] increases.
Concomitantly, the IC50 of ‘b’ also increases. At the highest
concentration of ‘a’ examined (300 nM), nearly all of the sites
are initially occupied and ‘b’ produces no more than a 25%
decrease thereof.

Closer examination of the nature of the bound species
(Figure 2C and D) reveals that [aA∼B] (i.e. binding of ‘a’
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Table 1
(A) Differential equations to follow the time (t)-dependent changes in target occupancy for the different binding modes shown in Figure 1 and
(B) explicit formulas

A: Differential equations

Model Equation

(1) Non-competitive ligands

d[A∼B]/d(t) = k−1 × [aA∼B] + k−2 × [A∼Bb] − k1 × [A∼B] × [a] − k2 × [A∼B] × [b] 1

d[aA∼B]/d(t) = k1 × [A∼B] × [a] + (k-2/α) × [aA∼Bb] − k−1 × [aA∼B] − k2 × [aA∼B] × [b] 2

d[A∼Bb]/d(t) = k2 × [A∼B] × [b] + (k−1/α) × [aA∼Bb] − k−2 × [A∼Bb] − k1 × [A∼Bb] × [a] 3

d[aA∼Bb]/d(t) = k1 × [A∼Bb] × [a] + k2 × [aA∼B] × [b] − (k−1/α) × [aA∼Bb] − (k−2/α) × [aA∼Bb] 4

‘a bound’ = ([aA∼B] + [aA∼Bb])/ ([A∼B] + [aA∼B] + [aA∼Bb] + [A∼Bb]) 5

(2) Heterobivalent and monovalent ligands

d[AB]/d(t) = k−1 × [aAB] + k−2 × [ABb] + k-3 × [cAB] − (k1 + k2) × [AB] × [ab] − k3 × [AB] × [c] 6

d[aAB]/d(t) = k1 × [AB] × [ab] + k−2 × [aABb] + k-2 × [a’ABb’] − k-1 × [aAB] − (k2/f) × [aAB] × [L] − k2 × [aAB] × [ab] 7

d[ABb]/d(t) = k2 × [AB] × [ab] + k−1 × [aABb] + k−1 × [a’ABb’] + k−3 × [cABb] − k−2 × [ABb] − (k1/f) × [ABb] × [L] − k3 ×
[ABb] × [c] − k1 × [ABb] × [ab]

8

d[aABb]/d(t) = (k1/f) × [ABb] × [L] + (k2/f) × [aAB] × [L] − (k−1 + k−2) × [aABb] 9

d[a’ABb’]/d(t) = k1 × [ABb] × [ab] + k2 × [aAB] × [ab] − (k−1 + k−2) × [a’ABb’] 10

d[cAB]/d(t) = k3 × [AB] × [c] + k−2 × [cABb] − k−3 × [cAB] − k2 × [cAB] × [ab] 11

d[cABb]/d(t) = k3 × [ABb] × [c] + k2 × [cAB] × [ab] − k−2 × [cABb] − k−3 × [cABb] 12

‘ab bound’ = ([aAB] + [aABb] + [ABb] + [cABb] + 2 × [a’ABb’])/([AB] + [aAB] + [aABb] + [ABb] + [cABb] + [cAB] + [a’ABb’]) 13

‘c bound’ = ([cAB] + [cABb])/([AB] + [aAB] + [aABb] + [ABb] + [cABb] + [cAB] + [a’ABb’]) 14

B: Explicit formulas

(1) Non-competitive ligands*
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Abbreviations of the molecules/complexes involved are denoted at the right side of the figure. Ligands are assumed to be largely in excess
over the targets, so that their concentration in the bulk of the aqueous phase remains constant over time. Equations 1 to 5: ‘α’ is the
cooperative factor when the non-competitive ligands ‘a’ and ‘b’ bind to their respective binding sites according to the allosteric ternary
complex model (ATCM). ‘a bound’ Includes all the species in where ‘a’ is bound to the target. Equations 6 to 14: ‘f’ Is a penalty factor for
binding of the (still free) second pharmacophore when the first one is already bound and [L] is the local concentration of this second
pharmacophore near its target site: it corresponds that of one molecule in a volume (=2 × π × r3/3) corresponding to that of half of a sphere
with radius ‘r’, the maximal distance between the two pharmacophores of a bivalent ligand. ‘ab bound’ And ‘c bound’ include all the species
in where (respectively) ‘ab’ and ‘c’ is bound to the target. Of note is that ‘ab bound’ may exceed the total target concentration because of
the double contribution of a’ABb’ to the binding of this heterobivalent ligand. (B) Explicit formulas that govern the binding of the
non-competitive allosteric ligand ‘a’ under equilibrium conditions in the ATCM (from Christopoulos and Kenakin, 2002) and of ‘ab’ and ‘c’
under equilibrium conditions in the heterobivalent ligand binding model. Equilibrium constants refer to the a-A interaction (i.e. Ka = k1/k−1),
the b-B interaction (i.e. Kb = k2/k−2) and the c-C interaction (i.e. Kc = k3/k−3). [A∼B]T and [AB]T refer to the total concentration of the target.
Derivation of the formulas and simulated binding data are presented in the Supporting Information section. * for binding of ‘b’, please
transpose [a] and Ka by [b] and Kb.
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alone) decreases when [b] increases until it completely van-
ishes. Conversely, [A∼Bb] (i.e. binding of ‘b’ alone) and
[aA∼Bb] (i.e. binding of ‘a’ and ‘b’ together) increases con-
comitantly until a plateau is attained. By contributing to the
binding of ‘a’, aA∼Bb may be held responsible for the only
partial character of the ‘competition’ curves shown in
Figure 2B and, as expected, the plateau value of [aA∼Bb] aug-
ments when [a] increases. The simulated data in Figure 2 are
based on the paradigm that α only affects the dissociation
rate of both ligands. Additional simulations in where only the
association rate is affected yield the same outcome (data not
shown).

The model we used to describe the binding of the hetero-
bivalent ligand, ‘ab’, (Model 2 in Figure 1; Vauquelin and

Charlton, 2013) is adapted from the one that was initially
proposed by Kaufman and Jain (1992) and Plückthun and
Pack (1997). In this model, the two pharmacophores of the
heterobivalent ligand, ‘a’ and ‘b’, are able to bind simultane-
ously to their target sites ‘A’ and ‘B’ and ‘c’ only bind to ‘A’.
Moreover, the a-A and c-A binding events are strictly com-
petitive in nature and both leave the b-B interaction undis-
turbed and vice versa. To get a better insight into the factors
that promote partial competitivity, we will compare the inter-
play between two such heterobivalent ligands and ‘c’. For the
first ligand, ‘abI’, the b-B interaction takes place with the
highest microscopic association rate constant, k2 = 2 ×
106 M−1·min−1 and the lowest microscopic dissociation rate
constant, k−2 = 0.1 min−1, and consequently with higher

Figure 2
Allosteric ternary complex model (ATCM; i.e., Model A in Figure 1): effect of negative cooperativity between ligands ‘a’ and ‘b’ (α = 0.1) on
simulated saturation and ‘competition’ binding experiments. ‘a bound’ refers to all modes of target occupancy by ‘a’ as defined by equation 5
in Table 1A. Rate constants for ‘a’ and ‘b’: association k1 = k2 = 1 × 107 M−1·min−1, dissociation k−1 = 0.1 min−1 and k-2 = 0.3 min−1. Co-incubation
of the target with ‘a’ and ‘b’ lasts for 60 min; [a] and [b] remain steady throughout the incubation. Panel A: Saturation binding by ‘a’. Curves
represent ‘a bound’ for increasing [a] (abscissa) either alone (contr) or in the presence of fixed [b] (listed in the panel). Simulated data (symbols)
are analysed by GraphPad Prism 4.0 (GraphPad Software Inc., San Diego, CA, USA) according to a variable-slope saturation paradigm. The most
informative binding parameters are listed in Table 2. Panel B: ‘Competition’ binding curves represent ‘a bound’ for a fixed [a] (values listed at the
right side of each curve) in the presence of increasing [b] (abscissa). Simulated data (symbols) are analysed according to a one-site competition
paradigm. Panels C and D: Prevalence of the indicated bound species as a function of [b] in the presence of a fixed, low value of [a] (10 nM, Panel
C) or higher value of [a] (300 nM, Panel D). Denominations of bound species are given in Model 1 in Figure 1.
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potency than for the a-A interaction (i.e. k1 = 1 ×
105 M−1·min−1, k−1 = 1 min−1). The binding characteristics of
both pharmacophores are reversed for the second ligand,
‘abII’; that is, the a-A interaction now takes place with the
highest affinity.

In simulations with ‘abI’ or ‘abII’ as the radioligand,
binding does comprise all species where ‘a’ and/or ‘b’ partici-
pates, such as defined by equation 13 in Table 1A. To present
a realistic picture from the experimental point of view, the
simulations shown in Figures 3 and 4 depict the situation
after 60 min incubation. As shown in Figure 3A and B, the
saturation curves of ‘abI’ and ‘abII’ without ‘c’ are steep (i.e. nH

= 1.32) under this condition. As shown in the Supporting
Information section, these curves will undergo a gradual left-
ward shift with time. After about 10 h incubation, this shift
levels off and the nH value is now close to unity, indicating
that equilibrium is nearly reached. This observation endorses
recent presumptions that hemi-equilibrium situations may
be quite common in saturation binding experiments with
bivalent ligands, unless unrealistically long incubations are
implemented (Vauquelin, 2013; Vauquelin and Charlton,
2013). The explicit formula that governs the binding of ‘ab’ at
equilibrium (equation 16 in Table 1B) allows the elaboration
of a saturation binding curve and, hence, the calculation of
the macroscopic KD of such category of ligands (Table 3).
Alternatively, their macroscopic KD can also be estimated
based on their macroscopic kon and koff values. Those can
easily be obtained by analysing simulated association and
dissociation binding curves (Table 3, data not shown). The
simulations shown in Figure 3A reveal that the saturation
binding curve of ‘abI’ undergoes a rightward shift in the
presence of ‘c’. Such curves also become gradually sigmoidal
(i.e. with nH progressing to unity) when ‘c’ increases, a situa-
tion that does not arise when binding is at equilibrium (see
Supporting Information section). Similar to the aforemen-
tioned negative cooperativity situation (Figure 2A), this shift
stalls when [c] increases beyond a certain limit (here ∼ 1 ×
10−5 M). Relevant binding parameters of the simulated satu-
ration curves are provided in Table 2. Figure 3C presents
these data in terms of a ‘competition’ binding paradigm.
Here again, ‘c’ is able to decrease the binding of ‘abI’
concentration-dependently; this decrease is only partial and
becomes less and less pronounced when [abI] increases.

Compared with the only modest maximal shift of the
saturation curve of ‘abI’ and the rather low concentration of
‘c’ at which this maximum is attained, a quite different
picture is observed for ‘abII’ (Figure 3B). While the control
curves (i.e. in the absence of ‘c’) of ‘abI’ and ‘abII’ overlap, the
shift by ‘c’ stays sustained over a much larger concentration
interval; it only starts to stall when [c] reaches ∼ 1 × 10−3 M.
Consequently, the maximal shift itself is appreciably larger
as well. A distinction between ‘abI’ and ‘abII’ is also clearly
evident in the ‘competition’ binding representation. While
the partial competitive effect of ‘c’ is already clearly discern-
ible at a medium initial level of target occupancy by ‘abI’ (e.g.
65% in Figure 3B), no less than 99.8% target occupancy is
needed to observe a comparable effect with ‘abII’ (Figure 3D).
Also, the competition curve only starts to reach its nadir
when [c] is appreciably higher with ‘abII’ than with ‘abI’ (i.e.
at about 1 × 10−3 M versus 1 × 10−5 M; Figure 3B and D).

The heterobivalent ligand binding model stipulates that
‘c’ competes with ‘a’ for binding to A, but leaves the b-B
interaction undisturbed and vice versa. This should allow ‘c’
to shift the saturation binding curves of ‘abI’ and ‘abII’ by
decreasing to contribution of ‘a’ to their avidity until it com-
pletely vanishes. At this end-point, the KDapp of the hetero-
bivalent ligand should equal the KD (i.e. k-2/k2) of the b-B
interaction. In agreement with this, the highest recorded
KDapp values for the curves shown in Figure 3A and B (i.e. 5.0
× 10−8 M for ‘abI’ and 8.9 × 10−6 M for ‘abII’) approach this
theoretical upper limit (i.e. 5.0 × 10−8 M for ‘abI’ and 1.0 ×
10−5 M for ‘abII’). Taken together, partial competitivity of ‘c’
will be most discernible when the a-A interaction only pro-
vides a modest contribution to the avidity of ‘ab’. Of note is
that the different binding profiles of ‘abI’ and ‘abII’ are some-
what reminiscent of allosteric ligands with, respectively, low
and high degrees of negative cooperativity (Christopoulos
and Kenakin, 2002).

We next examined the effect of unlabelled ‘abI’ and ‘abII’
on the binding of ‘c’, both in saturation (Figure 4A and B,
respectively) and competition binding (Figure 4C and D,
respectively) conditions. Similar to the situation with
labelled ‘abI’ (Figure 3A and C), increasing [abI] will produce a
rightward shift of the saturation binding curves of labelled ‘c’.
Yet, rather than reaching a genuine limit, the shift will tem-
porarily stall when [abI] is within the 1 × 10−7 to 1 × 10−4 M

Table 2
Saturation binding parameters of labelled ligands in medium alone (KDapp and nH on the left) or in the presence of unlabelled ligand (KDapp and
nH on the right) at a concentration that causes the largest shift in the saturation curves

Figure Labelled ligand KDapp in M nH

Unlabelled ligand
(concentration in M) KDapp in M nH

2A a 1.0 × 10−8 1.00 b (1 × 10−5) 1.0 × 10−7 1.00

3A abI 6.3 × 10−9 1.32 c (1 × 10−4) 5.5 × 10−8 1.00

3B abII 6.2 × 10−9 1.34 c (1 × 10−2) 9.7 × 10−6 1.01

4A c 1.0 × 10−7 1.00 abI Only transient halt in shift –

4B c 1.0 × 10−7 1.00 abII Only brief decline in shift −

Binding parameters were obtained by analysing the relevant simulated data (symbols) in Figures 2–4 by GraphPad Prism 4.0 (GraphPad
Software Inc.) according to a variable-slope saturation paradigm.

BJP G Vauquelin et al.

2306 British Journal of Pharmacology (2015) 172 2300–2315



range and then increase again (Figure 4A). As a result, ‘abI’
will also decrease the binding of ‘c’ in a concentration-
dependent fashion until a temporary plateau is attained, after
which the binding of ‘c’ decreases again (Figure 4C). Of note
is that the present plateau/inflection is only clearly percepti-
ble within a limited concentration range of ‘c’. Similar to the
situation with labelled ‘abII’ (Figure 3B and D), increasing
[abII] will produce a rightward shift of the saturation binding
curves of labelled ‘c’ (Figure 4B). In comparison with the
effect of ‘abI’, this shift also remains unabated until much

higher levels of [abII] but, rather than observing a distinct
stall, the shift will only temporarily decline when [abII] is
within the 1 × 10−5 to 1 × 10−4 M range. Likewise, ‘abII’ will also
decrease the binding of ‘c’ in a concentration-dependent
fashion but an inflection is only barely perceptible and only
takes place when [c] is in 1000-fold excess over its KD.
(Figure 4D).

While the present ligand binding model stipulates that,
at a very high concentration of ‘c’, the KDapp of the hetero-
bivalent ligand cannot exceed the microscopic KD of the b-B

Figure 3
Heterobivalent ligand and competing monovalent ligand binding model (Model B in Figure 1): effect of ‘c’ on binding of ‘ab’ in simulated
saturation and ‘competition’ binding experiments. ‘ab bound’ refers to all modes of target occupancy by ‘ab’ as defined by equation 13 in
Table 1A. ‘a’ and ‘c’ bind to ‘A’ in a competitive fashion and both binding events leave the b-B interaction undisturbed and vice versa.
Co-incubation of the target with ‘ab’ and ‘c’ lasts for 60 min; [ab] and [c] remain steady throughout the incubation. Rate constants for ‘c’: k3 =
1 × 107 M−1·min−1, k−3 = 1 min−1. Other parameters: r = 48 nm, [L] = 7.1 mM and f = 30. Panel A: Saturation binding by ‘abI’ whose b-B interaction
is more potent than the a-A interaction (i.e. k1 = 1 × 105 M−1·min−1, k−1 = 1 min−1, k2 = 2 × 106 M−1·min−1, k−2 = 0.1 min−1). Curves represent ‘ab
bound’ for increasing [ab] (abscissa) either alone (contr) or in the presence of fixed [c] (listed at the right side of panel B). Simulated data (symbols)
are analysed according to a variable-slope saturation paradigm. The most informative binding parameters are listed in Table 2. Panel B: Saturation
binding by ‘abII’ whose a-A interaction is more potent than the b-B interaction. The microscopic binding parameters of ‘a’ and ‘b’ in ‘abI’ have
been permuted for ‘abII’ (i.e. k1 = 2 × 106 M−1·min−1, k−1 = 0.1 min−1, k2 = 1 × 105 M−1·min−1, k−2 = 1 min−1). Same presentation and analysis as in
Panel A. Panel C: ‘Competition’ binding curves represent ‘abI bound’ for a fixed [abI] in the presence of increasing [c] (abscissa). Simulated data
(symbols) are analysed according to an unconstrained variable-slope competition paradigm. Panel D: Similar ‘competition’ binding curves for
‘abII’. Values of [abI] and [abII] are listed at the right side of panel D.
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interaction (see earlier text), this limit does not apply when
the binding of ‘c’ is measured instead. Indeed, in contrast to
the lack of c-b interplay, the binding of ‘c’ will always be
competed away by ‘ab’ provided that its concentration is
high enough. The influence of ‘abI’ and ‘abII’ on the binding
of ‘c’ only differs from the quantitative point of view. To get
a better insight into this issue, we performed additional
simulations to compare the concentration of each bound
species (within square brackets and expressed as % of [AB]tot

further on) after 60 min incubation for 49 combinations of
[ab] and [c], ranging from 1 nM to 1 mM each. The simu-
lated data are shown in Figures 5B for ‘abI’ and Figures 6B
for ‘abII’. Both have in common that [aAB] and [ABb] never
reach significant levels (<4% of [AB]tot) and that, in the
absence of ‘c’, [aABb] represents the vast majority of the
binding for [ab] up to 1 × 10−5 M. At higher concentrations,
[a’ABb’] will contribute significantly and eventually pre-

dominantly (at the expense of [aABb]). When ‘c’ is included
in the medium, the contribution of [cAB] and [cABb] will
also become significant and even predominant and, as
expected, [cAB] will gradually give way to [cABb] when [ab]
increases.

Interestingly, a half-maximal decline of [aABb] and
[a’ABb’] and increase of [cAB] and [cABb] takes place at closely
the same [c] (differences may show up at low [c] but, as
further shown in the Supporting Information section, this is
related to hemi-equilibrium conditions). This concentration
(further denoted at C50) corresponds to half-maximal binding
of labelled ‘c’ in saturation binding studies. The C50 versus
[ab] plots of ‘abI’, ‘abII’ and related bivalent ligands shown in
Figure 7 shed light on a common pattern. C50 will initially
increase in step with [ab], attain a plateau when [ab] nears the
microscopic KD of the b-B interaction (i.e. k-2/k2) and increase
sharply again when [ab] exceeds [L]/f. This latter observation

Figure 4
Effect of ‘abI’ (panels A and C) and ‘abII’ (panels B and D) on the binding of ‘c’ in simulated saturation (panels A and B) and ‘competition’ binding
(panels C and D) experiments. ‘c bound’ Refers to all modes of target occupancy by ‘c’ as defined by equation 14 in Table 1A. Simulated saturation
data (symbols) are analysed as in Figure 3 and simulated competition data (symbols) are analysed according to a two-site competition paradigm.
Saturation binding: values of [abI] and [abII] are listed at the right side of panel B. Binding parameters for ‘c’ in the absence of a heterobivalent
ligand are listed in Table 2. ‘Competition’ binding: values of [abI] and [abII] are listed at the right side of panel D. Binding parameters of the ‘high
affinity’ component are listed in Table 5.
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already suggests that the plateau/inflection of labelled ‘c’ in
saturation and competition experiments is ruled by the com-
petition between ‘c’ and ‘a’ for binding to AB as long as [ab]
remains below [L]/f. In agreement with this, the theoretical
C50 value (Table 4) that is associated with this plateau/
inflection (i.e. (k−3/k3) × (1 + ([L] × k1)/(f × k−1)) closely corre-
sponds to the observed value for each of the bivalent ligands
investigated. These simple rules link the stalled shift of the
saturation curves of ‘c’ over an extended range of [abI]
(Figure 4A) to the large difference between the k−2/k2 and [L]/f
ratios (Figure 7 and Table 4). On the other hand, the modest
difference between those ratios (because of a high k−2/k2

value) explains why this shift only briefly decelerates upon
increasing [abII] and also that this phenomenon only takes
place at high [abII] (Figure 4B). Finally, additional simulations
reveal that variants of ‘abI’ with a 10-fold higher or lower f
also modulate the saturation curves of ‘c’ as expected. Their
concentration at which the shift starts to stall is the same as
for ‘abI’ (as it is governed by the b-B interaction only), the C50

of the temporarily halted shift complies with the theoretical
C50 value given in Table 4 and the concentration of the ‘abI’
variants at which the shift starts again is within the same
range as [L]/f.

The Cheng and Prusoff (1973) equation is more com-
monly used to obtain the equilibrium dissociation constant
(denoted as Ki) of unlabelled competitors. As ‘c’ only
competes with ‘a’ for binding to ‘A’, it is of interest to find out

if the Ki values that correspond to the upper/high affinity
portion of the competition curves shown in Figure 4C and D
equal the microscopic KD of the a-A interaction (i.e. k−1/k1 =
10 μM for ‘abI’ and 50 nM for ‘abII’). As depicted in Table 5,
the calculated Ki(app) values are well below this theoretical
value. Somewhat counterintuitively, these findings rather
suggest that the Ki(app) values provide a coarse estimate of the
overall/macroscopic affinity of the heterobivalent ligands for
the target.

Macroscopic association and dissociation rate constants
of heterobivalent ligands can also be calculated more directly
by splitting the thermodynamic cycle model into two sepa-
rate lanes that ‘ab’ can engage to form the doubly linked
aABb complex. As outlined in Vauquelin (2013) (and summa-
rized in the Supporting Information section), it is the lane
with the highest kon (and consequently also koff) that is chiefly
solicited. Those lanes are highlighted for ‘abI’ and ‘abII’ in
Figure 6. The corresponding kon and koff values are provided in
Table 3 and the macroscopic KD values calculated are identical
for ‘abI’ and ‘abII’ and also close to the values that were
obtained based on simulated association and dissociation
curves (Table 3).

Of note is that the two-domain model (Hoare, 2007) only
invoked a single lane to describe the binding of peptide
agonists to class B GPCRs. Interestingly, this lane corresponds
to the one that is chiefly solicited by ‘abI’. Similarly, drugs
that are thought to interact with their receptor according to

Table 3
Macroscopic binding parameters for ‘abI’ and ‘abII’ were obtained by analysing simulated association and dissociation data (not shown) and by
calculating kon and koff by the simplified equations that govern the prevailing lanes that link free AB to the tightly bound aABb species

Macroscopic parameter ‘abI’ ‘abII’

(A) From simulations based on differential equations
(listed in Table 1A)

koff (in min−1) 4.3 × 10−3 4.3 × 10−3

kobs (in min−1) 2.5 × 10−2 2.5 × 10−2

[ab] for association experiment (in M) 1.0 × 10−8 1.0 × 10−8

kon = (kobs − koff)/[ab] (in M−1·min−1) 2.1 × 10−6 2.1 × 10−6

KD = koff/kon (in M) 2.0 × 10−9 2.0 × 10−9

(B) From simulations based on equation 16 in Table 1B

KD (in M) 2.1 × 10−9 2.1 × 10−9

(C) From the ‘induced fit’ model

koff (in min−1) 4.2 × 10−3 = k−1 × k−2 × f/([L] ×k1) 4.2 × 10−3 = k−1 × k−2 × f/([L] × k2)

kon (in M−1·min−1) 2.1 × 10−6 = k2 2.1 × 10−6 = k1

KD = koff/kon (in M) 2.0 × 10−9 2.0 × 10−9

(A) Simulated dissociation experiment: the target is incubated for 60 min with ‘ab’ ([ab] = KDapp). [ab] Is then set to 0 and the incubation
(usually denoted as wash-out) is then continued to simulate the time-wise decrease in ‘ab bound’. Values are recorded every 6 min until
60 min. The data were analysed by GraphPad Prism 4.0 (GraphPad Software Inc.) according to a one-phase exponential dissociation
paradigm to yield the dissociation rate constant, koff. Simulated association experiment: the target was incubated with 10−8 M ‘ab’ and ‘ab
bound’ was recorded every 6 min until 60 min. The saturation data were analysed according to a one-phase exponential association paradigm
to yield the pseudo first-order association rate constants, kobs. (B) KD values were obtained by analysing simulated saturation binding data by
GraphPad Prism 4.0 according to a variable-slope sigmoidal dose-response model. (C) The prevailing lanes are highlighted in Figure 5A for
‘abI’ and in Figure 6A for ‘abII’. They almost fully account for the macroscopic rate constants for ‘ab’ binding when k1 and k2 differ 10-fold
or more (Vauquelin, 2013), such as is presently the case. These rate constants can be calculated by equations that are mathematically similar
to those that apply to the ‘induced fit’ model (Tummino and Copeland, 2008; Copeland, 2011).
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the ‘Charnière’ principle (Rocha e Silva, 1969; Stewart et al.,
1976; Johnson et al., 1993; Clark et al., 1996; Coleman et al.,
1996; Christopoulos et al., 1998; Shimizu et al., 2001) also
bear close resemblance to ‘abI’ as one of their functional
groups is thought to bind tightly/persistently to an exosite
‘home base’ and the other functional group can rapidly
engage and disengage its cognate binding site at the receptor.
Based on their similarity with ‘abI’, these latter drugs should
also be quite susceptible to only partial competition in radio-
ligand binding experiments by ligands that can only bind to
this second site and vice versa. Such binding experiments
could be especially interesting for the β2 adrenoceptor agonist
salmeterol, as partial competitivity for or by classical β2

adrenoceptor ligands could favour the exosite hypothesis
over alternatives that are based on different molecular
mechanisms (Coleman, 2009; Szczuka et al., 2009; Patel et al.,
2011; Slack et al., 2012).

Concluding comments

According to the general ATCM, negative cooperativity
among allosteric ligands will generate distinctive ‘competi-
tion’ binding curves (Christopoulos, 2002; Christopoulos and
Kenakin, 2002). When one of those participants acts as the
radioligand, the ‘competition’ curves of the second ligand
will be unable to reach baseline levels and the nadir will
increase in par with the radioligand concentration (Figure 2).
This ‘partial competitive’ behaviour is often considered to
represent a key hallmark of allosteric interactions and suffi-
cient to ascribe that mode of action. The present differential
equation-based simulations reveal that this peculiar compe-
tition binding pattern may also be observed when a mono-
valent ligand binds to one of the target sites of a labelled
heterobivalent ligand, even if no allosteric mechanism/

Figure 5
Effect of ‘c’ on individual bound species of ‘abI’. Panel A: Thermody-
namic cycle model for ‘abI’ and ‘c’ binding. Prevailing species of ‘abI’-
and/or ‘c’- bound AB after 60 min incubation are highlighted in bold.
a’ABb’ can be ignored when [abI] < < [L]/f (presently when [ab] ≤
10 μM). The thermodynamic cycle model for ‘abI’ binding can be
split into two lanes/pathways that link free AB to the tightly bound
aABb species (Vauquelin, 2013). The lane that is chiefly solicited
(highlighted by the yellow background) is engaged by the binding of
the pharmacophore with the highest association rate constant (and
therefore allows the fastest bidirectional ‘transit’). Panel B: Prevailing
species of ‘abI’- and/or ‘c’-bound AB (shown in separate panels) after
60 min incubation as a function of [c] (abscissa) and [abI] (listed at
the right side of the panels). Data points (not shown for the sake of
clarity) are simulated for [c] = −9, −8 . . . Log(M) and curves were
obtained by analysing them according to a variable-slope saturation/
competition paradigm. Curves that overlap are also highlighted by
filled circles with the appropriate colour code.

Figure 6
Effect of ‘c’ on individual bound species of ‘abII’. Panel A: Thermo-
dynamic cycle model for ‘abII’ and ‘c’ binding. The model is pre-
sented as in Figure 5A. Panel B: Prevailing species of ‘abII’- and/or
‘c’-bound AB (shown in separate panels) after 60 min incubation as
a function of [c] (abscissa) and [abII] (listed at the right side of the
panels). Simulated data are presented and analysed as in Figure 5B.
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cooperativity is involved (Figure 3). A similar pattern could
also be observed with ligands whose binding was explained
by a two-domain model (Hoare, 2007) and the Charnière
model (Rocha e Silva, 1969), as both are merely special cases
of the general thermodynamic cycle model for heterobivalent
ligand binding (Vauquelin, 2013).

Strictly speaking, this peculiar binding pattern is not
reciprocal (Figure 4). In ‘competition’ experiments, binding
of the labelled monovalent ligand will not reach a genuine
plateau above baseline, but will temporarily stall and then
drop again. Similarly, the rightward shift of its saturation
curves will only stop/decline temporarily. Because radioli-
gand concentrations have to be kept low for practical reasons,
comparative ‘competition’ binding studies with both labelled
ligands are best suited to differentiate between the allosteric
and the bivalent ligand binding mechanisms. Yet, to find out
whether a plateau above baseline is temporary or not, it is

necessary to add the unlabelled heterobivalent ligand at high
enough concentrations. Failure to do so or carrying out ‘com-
petition’ binding experiments with the labelled heterobiva-
lent ligand only may yield observations that could be
inadvertently interpreted as allosteric binding. Especially for
bivalent ligands, steep saturation binding curves may also
merely reflect a hemi-equilibrium situation instead of allos-
teric binding (Vauquelin and Charlton, 2013). However, as
shown in the Supporting Information section, prolonging the
incubation more likely shifts the curves to the left in the first
eventuality. This hemi-equilibrium is related to the very long
residence of bivalent ligands at their target. Yet, to measure
such residence time, wash-out experiments with labelled
bivalent ligands have to be carried out in medium only, as
even unlabelled monovalent ligands are likely to enhance
their dissociation dramatically (a phenomenon which can
also be misinterpreted as an allosteric manifestation)
(Vauquelin and Van Liefde, 2012; Weber et al., 2012;
Vauquelin and Charlton, 2013).

Taken together, the considerations mentioned earlier
illustrate that due care should be exercised when confronted
with radioligand binding data that seemingly point at an
allosteric mechanism (Vauquelin and Van Liefde, 2012). Yet,
such discrimination may become more clear-cut when based
on other attributes that are specific for allosteric models, such
as the ATCM and the allosteric two-state model of Hall
(2013). Even in the case of binding studies, positive coopera-
tivity can only be explained by allosteric models and, based
on the concept that different ligands may induce/stabilize
uniquely different receptor conformations, such probe-
dependence allows specific ligand combinations to enhance
each other’s affinity and/or residence time (Albizu et al.,
2006; Conn et al., 2009). Discrimination might be even easier
if the attention is focused on receptor function instead of
binding. Although this topic has already been extensively
documented elsewhere (e.g. Wang et al., 2009; Canals et al.,
2012), it is worth mentioning that allosteric receptor ligands
may also increase the intrinsic activity of orthostatic ligands
(a phenomenon which is subjected to a ‘ceiling’ and should
not affect the temporal pattern of receptor activation by its
natural messenger) and even change the nature of the
response profile by biasing the coupling between the receptor
and its downstream pathways. These phenomena constitute
promising avenues in clinical therapy (Wang et al., 2009)
and, unless the pharmacophores are able to bring forth allos-
teric modulation by themselves (Valant et al., 2012; Lane
et al., 2013a), they are unlikely to be observed with bivalent
ligands. However, the therapeutic/diagnostic promise of
bi/multivalent ligands is more based on their high affinity/
avidity for the target, slow dissociation of the complexes and
potential bifunctionality (Mammen et al., 1998; Schiller,
2010; Núñez et al., 2012; Kroll et al., 2013). This is particularly
sought-after when highly selective and long-lasting blockade
of the target is deemed to be all important (e.g. Kroll et al.,
2013).

Finally, structural information could also be of valuable
help for discriminating between allosteric and bi/
multivalency-based action mechanisms. Similar to some anti-
bodies, bi/multivalent synthetic ligands may be intentionally
synthesized by linking two ligands/pharmacophores together
via a long spacer (e.g. Hudson and Kortt, 1999; Mohr et al.,

Figure 7
C50 versus [ab] plots for different heterobivalent ligands. Simulated
data after 60 min incubation such as those presented in Figure 5B
(for ‘abI’) and 6B (for ‘abII’) were analysed according to a variable-
slope saturation/competition paradigm and C50 corresponds to the
concentration of ‘c’ at which [aABb], [a’ABb’], [cAB] or [cABb] is
half-maximal. C50 values of the different bound species are plotted as
a function of the concentration of ‘ab’ (abscissa) and each panel
refers to a different heterobivalent ligand. Besides ‘abI’ and ‘abII’, two
additional ligands with the same microscopic rate constants as ‘abI’
but with a 10-fold higher or lower value of f (i.e. f = 300 for ‘abIII’ and
f = 3 for ‘abIV’) are included as well. As shown for ‘abIV’ in the
Supporting Information section, diverging C50 values merely result
from hemi-equilibrium conditions at low [ab]. Parameters that
govern the temporary halt/decrease of the progression of C50 upon
increasing [ab] are listed in Table 4. This progression corresponds to
the rightward shift of saturation curves of labelled ‘c’ such as in
Figure 4C (for ‘abI’) and D (for ‘abII’). For the sake of clarity, C50 values
are shown individually when bound species are only prominent
within a limited range of [ab]; otherwise only curves are depicted.

BJP‘Partially competitive’ binding

British Journal of Pharmacology (2015) 172 2300–2315 2311



2010; Schiller, 2010; Kroll et al., 2013). Moreover, the recently
available X-ray crystal structures of receptors that are bound
by one or two ligands of interest and thereon based molecular
modelling (e.g. Kruse et al., 2013; Lane et al., 2013b) are likely
to provide useful information about the respective binding
pockets (and their potential overlap) of distinct ligands and
may also be used to find new allosteric ligands by virtual
screening of chemical libraries. Based on the present obser-
vations and considerations, we believe that any deductions
made will greatly benefit from combining diverse strategies
such as radioligand binding, functional assays, target crystal
structures and molecular modelling.
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Table 4
Parameters that govern the temporary halt/decrease in the rightward shift of saturation curves of labelled ‘c’ in the presence of increasing [ab]
(shown in Figure 4A for ‘abI’ and Figure 4B for ‘abII’)

Bivalent ligand k−2/k2 (in M) Plateau C50 (in M) f [L]/f (in M)

abI 5.0 × 10−8 2.5 × 10−6 30 2.4 × 10−4

abII 1.0 × 10−5 4.7 × 10−4 30 2.4 × 10−4

abIII 5.0 × 10−8 3.4 × 10−7 300 2.4 × 10−5

abIV 5.0 × 10−8 2.4 × 10−5 3 2.4 × 10−3

C50 is the concentration of labelled ‘c’ at which binding is half-maximal. As shown in Figure 7A to D, C50 will initially increase in step with [ab],
attain a plateau/inflection when [ab] nears k−2/k2 (i.e. the microscopic KD of the b-B interaction) and increase sharply again when [ab] exceeds
[L]/f. The C50 value for this plateau/inflection is determined by the competition between ‘c’ and ‘a’ for binding to AB and can be calculated
by the equation derived from Cheng and Prusoff (1973): that is, (k−3/k3) × (1 + ([L] × k1)/(f × k−1)).

Table 5
‘Competition’ binding parameters for ‘abI’ and ‘abII’

[c] in M

‘abI’ ‘abII’

IC50 in nM Ki(app) in nM nH IC50 in nM Ki(app) in nM nH

3 × 10−8 6.9 5.3 1.33 8.3 6.4 1.34

1 × 10−7 7.9 3.9 1.28 12.7 6.4 1.31

3 × 10−7 10.2 2.5 1.18 25 6.2 1.30

1 × 10−6 15 1.4 0.99 59 5.4 1.32

3 × 10−6 29 0.9 1.01 130 4.2 1.25

1 × 10−5 290 2.9 1.17

3 × 10−5 640 2.1 1.08

1 × 10−4 1700 1.7 1.01

The data were obtained by analysing the binding data (symbols) shown in Figure 4C and D by GraphPad Prism 4.0 (GraphPad Software Inc.)
according to an unconstrained variable-slope saturation paradigm. Ki(app) of ‘abI’ and ‘abII’ was calculated from the IC50 values according to
the Cheng and Prusoff (1973) equation. The parameters are also listed in the Supporting Information section for a situation where the binding
approaches equilibrium (for incubation times extending from 10 h to 40 h).
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Figure S1 Saturation binding curves of ‘abI’. Panel A: Curves
were constructed and analysed as in Figure 3 of the article
except that simulations were conducted for up to 20 h incu-
bation. Also shown is the evolution of the apparent KD and
the Hill coefficient (nH) of the curves with time (Panels B and
C respectively).
Figure S2 Steady-state simulations of ‘ab’ binding using
equation A15 with the parameters given in the legend to
Figure 3 of the article. Panels A and C, Ka = 10−5 M, Kb = 5 ×
10−8 M, Kc = 10−7 M, [L] = 7.1 × 10−3 M, f = 30; Panels B and D,
Ka = 5 × 10−8 M, Kb = 10−5 M, Kc = 10−7 M, [L] = 7.1 × 10−3 M, f
= 30. Panels A and B illustrate saturation binding isotherms
for ‘ab’ in the presence and absence of ‘c’, while panels C and
D show the corresponding inhibition curves for ‘c’ at differ-
ent concentrations of ‘ab’.
Figure S3 Panels A and B: comparison of the apparent
macroscopic KD values (with P = −Log) and of the nH values
for the saturation binding curves of ‘abI’ and ‘abII’ either in
medium only or in the presence of increasing concentra-
tions of ‘c’ (abscissa) after 60 min (Figure 3A and B of the
article) and at equilibrium (Figure 2A and B). Panels C and
D: saturation binding curves of ‘abI’ and ‘abII’ over wider
concentration ranges than presented in the article, either in
medium only or in the presence of selected concentrations
of ‘c’.
Figure S4 Steady-state simulations of ‘c’ binding using equa-
tion A17 with the parameters given in the legend to Figure 4
of the article. Panels A and C, Ka = 10−5 M, Kb = 5 × 10−8 M, Kc

= 10−7 M, [L] = 7.1 × 10−3 M, f = 30; Panels B and D, Ka = 5 ×
10−8 M, Kb = 10−5 M, Kc = 10−7 M, [L] = 7.1 × 10−3 M, f = 30.
Panels A and B illustrate saturation binding isotherms for ‘c’
in the presence and absence of ‘ab’, while panels C and D
show the corresponding inhibition curves for ‘ab’ at different
concentrations of ‘c’.
Figure S5 C50 versus [abIV] plot at equilibrium. Simulated
data for different ‘abIV’-‘c’ combinations similar to those pre-
sented in Figure 5B but for 10 to 20 h incubation are analysed
according to a variable-slope saturation/competition

BJP G Vauquelin et al.

2314 British Journal of Pharmacology (2015) 172 2300–2315

http://dx.doi.org/10.1111/bph.13053


paradigm. C50 values (corresponding to the concentration of
‘c’ at which [aABb], [a’ABb’], [cAB] or [cABb] is half-maximal)
are plotted as a function of [abIV]. Data are presented as in
Figure 7 of the article.
Table S1 Ki values of abI’ and ‘abII’. ‘abI’ and ‘abII’ ‘competi-
tion’ versus binding curves versus labelled ‘c’ are simulated

such as for Figure 4C and D of the article but for 10 to 20 h
incubation. The high affinity portion of the curves is
then analysed according to a variable-slope saturation/
competition paradigm. Ki values for ‘abI’ and ‘abII’ were cal-
culated from the IC50 values according to the Cheng and
Prusoff (1973) equation.
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