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High-throughput gene expression profiling has revealed substan-
tial leaky and extraneous transcription of eukaryotic genes, chal-
lenging the perceptions that transcription is strictly regulated and
that changes in transcription have phenotypic consequences. To
assess the functional implications of mRNA transcription directly, we
analyzed mRNA expression data derived from microarrays, RNA-
sequencing, and in situ hybridization, together with phenotype data
of mouse mutants as a proxy of gene function at the tissue level. The
results indicated that despite the presence of widespread ectopic
transcription, mRNA expression and mutant phenotypes of mamma-
lian genes or tissues remain associated. The expression-phenotype
association at the gene level was particularly strong for tissue-specific
genes, and the association could be underestimated due to data
insufficiency and incomprehensive phenotyping of mouse mutants;
the strength of expression-phenotype association at the tissue level
depended on tissue functions. Mutations on genes expressed at
higher levels or expressed at earlier embryonic stages more often
result in abnormal phenotypes in the tissues where they are ex-
pressed. The mRNA expression profiles that have stronger associa-
tions with their phenotype profiles tend to be more evolutionarily
conserved, indicating that the evolution of transcriptome and the
evolution of phenome are coupled. Therefore, mutations resulting in
phenotypic aberrations in expressed tissues are more likely to occur
in highly transcribed genes, tissue-specific genes, genes expressed
during early embryonic stages, or genes with evolutionarily con-
served mRNA expression profiles.

mRNA abundance | tissue specificity | developmental stages |
ectopic expression | molecular evolution

It is widely assumed that transcription is under tight and so-
phisticated regulation (1) and that changes in transcription

have phenotypic consequences. For example, spatial and tem-
poral regulatory changes in transcription can impart major changes
in the development of multicellular organisms (2, 3). Aberra-
tions in transcription have been linked to the onset or progression
of human diseases, including autism (4), schizophrenia (5), con-
genital heart defects (6), and cancers (7). The evolution of tran-
scription regulation was proposed to have a more profound role
than protein structural evolution in generating adaptive changes
that lead to phenotypic diversity among species (8, 9). However,
recent studies exploiting high-throughput gene expression pro-
filing methods suggested widespread ectopic (or nonfunctional)
mRNA expression (10) in eukaryotic genomes, according to the
discoveries of pervasive transcriptional activities from nongenic
regions (11, 12), coexpression in gene clusters without linkage
conservation (13) or relatedness in annotated functions (14) of
genes, neutral evolution of mRNA expression patterns among
orthologs (15), and less correlation in mRNA abundance than in
protein abundance among orthologous genes (16). Because the
association between mRNA expression and gene function had
never been directly assessed systematically and on a genome-wide
basis, the general implications in function of mRNA expression
became elusive.

The most straightforward approach to discern gene function is
mutagenesis. Among mammals, the house mouse (Mus musculus)
has been subjected to extensive mutagenesis (17), and more than
40% of mouse genes have been mutated, with the resulting mu-
tant strain phenotyped (18). Using these data, we investigate
whether genes function in the tissues where they are transcribed.
Gene function is defined by the presence of abnormal phenotypes
when a gene is mutated. Gene expression data come from oli-
gonucleotide microarray, RNA-sequencing (RNA-seq), and RNA
in situ hybridization. The combination of these phenotype data
with spatial and temporal mRNA gene expression data (below)
allows us to investigate how mRNA expression and phenotypes
are connected in the presence of ectopic transcription. In addition,
we investigate whether any association in mRNA expression and
phenotypes affects the evolutionary conservation of gene expres-
sion. Our approach enables us to understand the underlying causes
for and the biological features associated with the variations in
expression-phenotype association among genes and tissues.

Results and Discussion
Measuring Expression-Phenotype Association. Each gene has an
mRNA expression profile, defined as the mRNA expression
across the mouse tissues examined. Depending on the experi-
ment (discussed in the following sections), mRNA expression
indicates the presence or absence of detectable mRNA expres-
sion signals, mRNA expression within a certain range of abun-
dance, or mRNA expression under a specific condition. Each
gene also has a phenotypic profile, defined by the presence or
absence of abnormal phenotypes in tissues when that gene is
mutated. Similarly, each tissue has an mRNA expression profile
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defined by mRNA expression across all mouse genes surveyed.
For each tissue, there is a phenotypic profile in which there is the
presence or absence of abnormal phenotypes for each gene in
that given tissue. Using these mRNA expression profiles and
phenotypic profiles for mouse genes and tissues (Methods), we
determined the extent to which mRNA expression profiles cor-
respond to phenotypic profiles for each mouse gene or tissue.
The index for expression-phenotype connection (EPC) for each

mouse gene or each mouse tissue was defined by the statistical
deviation of the observed NEP/√(NE╳NP) from the expectation of
randomness. When EPC is computed for a gene (EPCg), NE is the
number of tissues where the gene is expressed, NP is the number of
tissues with at least one abnormal phenotype when the gene is
mutated, and NEP is the number of tissues that both have gene
expression and abnormal phenotypes when the gene is mutated.
When EPC is computed for a tissue (EPCt), NE is the number of
genes that are expressed in the tissue; NP is the number of genes
that, when mutated, result in abnormal phenotypes in the tissue;
and NEP is the number of genes that both result in mutant
phenotypes and exhibit mRNA expression. For each gene or
tissue, the distributions of NEP/√(NE╳NP) under the null hy-
pothesis of randomness were derived from 2,500 permutation
experiments, each of which has a recomputed NEP/√(NE╳NP) by
randomizing its phenotype profile while maintaining its mRNA
expression profile. EPC was then defined by the NEP/√(NE╳NP)
of the original data minus the averaged NEP/√(NE╳NP) of the
2,500 permutation experiments divided by the SD of NEP/
√(NE╳NP) derived from 2,500 permutation experiments. We
only calculated EPC when NE ≥ 1 and NP ≥ 1. EPC is equivalent
to the Z-score in the Z-test methodologically. Fig. S1A shows
the expression and phenotypic profiles of example genes, as well
as their corresponding EPCg values.

EPC at the Gene Level. To determine whether mutations in a gene
result in defects in tissues where the gene is expressed, we calcu-
lated mouse EPCg values using microarray-based mRNA expres-
sion data. Microarray expression signals were processed by the
gcRMA (GeneChip robust multiarray averaging) method (19),
and signals ≥200 indicated that a gene was expressed in a tissue
(20) and were used to define NE and NEP. GeneAtlas v2 contains
mRNA expression data from oligonucleotide array experiments
on 60 mouse tissues (“spinal cord upper” and “spinal cord lower”
expression data were merged into “spinal cord” for this study)
(20). Of these 60 tissues, 47 have phenotype entries in Mouse
Genome Informatics (MGI) from mutant strain phenotyping
(Methods and Table S1). At present, GeneAtlas v2 contains the
largest number of mouse tissues profiled for mRNA expression in
a single study, allowing us to measure EPCg with minimal biases
(below). In the distribution of EPCg from 3,859 mouse genes with
NE ≥ 1 and NP ≥ 1 in 47 tissues (Fig. 1A), 15.34% (592 of 3,859)
of the genes have EPCg ≥ 1.96 (P < 0.05, Z-test), which is sig-
nificantly greater than the percentage of genes with EPCg ≥ 1.96
in the permutation experiments (3.00 ± 0.26% SD; P < 10−300,
t test; Fig. 1A). For genes above this EPCg threshold, mRNA
expression signals are directly tied to function in the tissues where
they are expressed, and the loss of this function can result in
abnormal phenotypes. A larger EPCg threshold resulted in
a greater deviation of observed EPCg from the expectation under
randomness (Fig. S2). Focusing on 1,216 tissue-specific genes
(NE ≤ 5), the proportion of genes with EPCg ≥ 1.96 is 36.51%
(444 of 1,216 genes). Therefore, the expression-phenotype asso-
ciation was observed despite intrinsic noise in mRNA expression
(21) and measurement errors of microarrays (22) (below), and
the association was particularly strong for tissue-specific genes.
Although significantly higher than random, the percentage

of mouse genes with statistically significant EPC (15.34% of all
genes) was small. For the remaining genes, there are two possible
explanations for a lack of statistical support for EPC. First, a

mutation in a gene might not cause discernable defects in the
tissue where it is expressed. Second, there is a connection between
mRNA expression and mutant phenotypes for a gene, but it cannot
be detected due to data limitations, such as insufficient tissue
sampling, incomplete phenotyping, and errors in mRNA quantifi-
cation. A mouse has >150 cell types (23), which comprise even more
tissues, but only 47 tissues were included in this analysis (Fig. 1A).
To understand the influence of incomplete tissue sampling in esti-
mating EPCg, we randomly removed the data on a tissue one at
a time until only 20 tissues remained and recalculated EPCg after
each random tissue removal. Based on 50 replicates of random
tissue exclusion, we averaged the percentage of genes with EPCg ≥
1.96 for each number of tissues removed (Fig. 1B). If the per-
centage was not affected by incomplete tissue sampling, the
percentage should plateau to a value of ∼15.34% when the
number of tissues removed is few; after a certain stage, the per-
centage decreases as the number of tissues removed increases.
Alternatively, if the percentage was underestimated due to in-
sufficient tissue sampling, the percentage of genes with EPCg ≥
1.96 should decrease as the number of tissues removed increases
from the beginning. Consistent with the insufficient tissue sam-
pling, we found that the percentage of genes with EPCg ≥ 1.96
decreases linearly as the number of tissues removed increases
(R2 = 0.985; P < 10−300, ANOVA for linear model fits; Fig. 1B).
Because phenotype screening of mutant mice can be biased by

study design, the manifestation of a mutation in tissues unrelated
to the study focus can be overlooked and remain undescribed.
Thus, although 47 tissues are included in our analysis, for most
genes, only a fraction of these tissues were examined for
phenotypic abnormalities. To account for incomplete phenotyp-
ing, we randomly removed a proportion of phenotypic entries
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Fig. 1. EPC at the gene level, measured as EPCg. (A) Percentage of mouse
genes with EPCg ≥ 1.96 was 15.34% (arrowhead from the distribution in
Inset), which was significantly greater than the percentage of mouse genes
with EPCg ≥ 1.96 estimated from permutation experiments. (B) Percentage
of mouse genes with EPCg ≥ 1.96 decreased linearly with the number of
mouse tissues removed in calculating EPCg. Each gray line is one of 50
experiments derived from the random removal of tissues one at a time. The
solid black line is the average of the 50 gray lines. The linear regression line
(dashed line with equation given in the gray box) for the average line is
given. (C) Box plots for the percentage of mouse genes with EPCg ≥ 1.96
when a proportion of phenotypic entries were removed. Each box presents
the distribution of estimations calculated based on 50 replicates. The values
of the upper quartile, median, and lower quartile are indicated in each box,
whereas the bars outside the box indicate semiquartile ranges.
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(5–50% in 5% increments) and recalculated the percentage of
mouse genes with EPCg ≥ 1.96. Each of these 10 experiments had
50 replicates. The median percentage of genes with EPCg ≥ 1.96
decreased from 14.70% to 8.83% as the proportion of phenotypic
entries removed increased (Fig. 1C), indicating that incomplete
phenotyping leads to an underestimation of EPCg. When ex-
pression and phenotype data are available for more tissues (Fig.
1B) and when phenotyping of mutant strains is more complete
(Fig. 1C), the percentage of genes with EPCg ≥ 1.96 will likely
increase toward its true value.
Phenotyping mutant mouse strains can be biased by prior

knowledge of a gene’s expression pattern. To determine if the
significant EPCg in Fig. 1A is due to this bias, we limited the
analysis to phenotype data published before the microarray
dataset GeneAtlas v2 (20). If high EPCg values in the full dataset
are due to phenotype inspection bias, EPCg of this subset of
2,084 genes should be lower. However, 16.21% (338 of 2,084) of
phenotyped mouse genes had EPCg ≥ 1.96 (Fig. S3), which was
slightly greater but not statistically different from the full dataset
(P = 0.37, χ2 test). Therefore, the observed EPCg values were not
due to biased phenotypic screening of tissues/organs with known
gene expression signals.
Microarray signals harbor cross-hybridization noises (22). To

account for experimental errors in the estimation of EPCg, we
stochastically introduced noise within a range (±5% to ±50% of
the experimental value) into the microarray signals and recal-
culated EPCg. Regardless of the magnitude of noise introduced,
the median percentage of mouse genes with EPCg ≥ 1.96 stayed
near 15.4% (Fig. S4), indicating that microarray noise had no
effect on the estimate of EPCg.

Genes Without Overlapping Tissues of mRNA Expression and Mutant
Phenotypes.Of 3,859 genes in the full dataset, 996 genes resulted
in abnormal phenotypes in tissues where they were not expressed
(Fig. 1A; genes with NEP = 0, NE > 0, NP > 0). These genes had
an average EPCg of −0.451 ± 0.338 SD, which was smaller than
the average EPCg of the rest of the genes (1.064 ± 1.748 SD).
Incomplete phenotyping and insufficient tissue sampling that
underestimated EPCg (Fig. 1 B and C) can explain part of NEP = 0
genes. For example, although beta-1,4-N-acetyl-galactosaminyl
transferase 1 gene (B4galnt1) is expressed in many adult tissues
(Fig. S1B), only reproductive and neurological phenotypes have
been examined for the viable and fertile knockout strain (24, 25).

More complete phenotyping on B4galnt1 mutant strains across
a wider range of tissues could reveal overlap between tissues with
expression and tissues with abnormalities. All 47 tissues used to
compute EPCg were from adult mice, but many abnormal phe-
notypes are only observed during fetal or neonatal stages due to
premature death. For example, embryos from an NAD-depen-
dent methylenetetrahydrofolate dehydrogenase-methenylte-
trahydrofolate cyclohydrolase gene (Mthfd2) knockout strain
have small pale livers and die before embryonic day 15.5, sug-
gesting an important role of Mthfd2 in embryogenesis (26). Al-
though the expression dataset indicates that Mthfd2 is highly
expressed in the fertilized egg and embryonic stages (Fig. S1C),
this information was not used in the calculation of EPCg. An-
other explanation for NEP = 0 genes is a bias in abnormal phe-
notypes that affect the whole organism rather than a specific
tissue or cell type. Using Mammalian Phenotype Enrichment
Analysis (MamPhEA) (18) for phenotypic enrichment analyses
(Methods), compared with other genes (NEP > 0), NEP = 0 genes
were enriched in phenotypes associated with the nervous system,
behaviors, and cellular metabolism/homeostasis (the full results
are shown in Fig. S5). These phenotypes have organism-level
effects (e.g., behavioral changes, obesity) that cannot simply be
coded as an abnormality in specific tissues. When these abnormal-
ities are observed in tissues, they are often due to gross physiological
changes in the mutant (e.g., increased/decreased fat amount due to
changes in metabolic rate) rather than dysfunction of locally
expressed genes. These examples indicated that the importance of
mRNA transcription to gene function could be underestimated by
the data and method used in this study.

EPC at the Tissue Level. To assess the functional relevance of the
transcriptome at the tissue level to that tissue’s morphology or
physiology directly, we examined EPCt of 47 mouse tissues for
7,449 genes that have MGI phenotype entries and have mRNA
expression profiles in GeneAtlas v2. Each mouse tissue has two
gene profiles: one including genes with active (expression sig-
nals ≥200) transcription and another including genes that, when
mutated, result in abnormal phenotypes in the tissue examined.
To compute EPCt, the first expression profile was used to define
NE and the second phenotypic profile was used to define NP. The
two profiles were used together to define NEP. Of the 47 tis-
sues, 22 (46.81%) have statistically significant EPC, indicated by
EPCt ≥ 1.96 (Fig. 2A). By comparison, the average percentage of
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Fig. 2. EPC at the tissue level, measured by EPCt, in
47 mouse tissues. Comparisons of EPCt between
glandular/endocrine tissues (with and without go-
nadal tissues) vs. nonglandular/nonendocrine tissues
or between neuronal tissues vs. nonneuronal tissues
are shown (P values are from the Mann–Whitney U
test). The values of the upper quartile, median, and
lower quartile are indicated in each box, whereas
the bars outside the box indicate semiquartile ranges.
org., organ.
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tissues that had EPCt ≥ 1.96 from permuted phenotypic profiles
of each of the tissues was 2.52% (Fig. S6). A complementary ap-
proach exploiting hypergeometric tests (18) echoed the analysis
by EPCt, showing that only gene sets expressed in tissues with
high EPCt have significant statistical support for the enrichment
of abnormal phenotypes in the same tissue (Table S2). These
results suggest that genes transcribed in a tissue are often per-
forming functions linked to the development and physiology of
the tissue examined.
Tissue function likely underlies the observed variation in EPCt

(Fig. 2). If colocalization of transcription and protein activity
(either directly or indirectly) leads to high EPCt, tissues with pri-
marily endocrine or glandular functions, which produce molecules
that control the development or physiology of other tissues or
interact with external environmental factors, should have smaller
EPCt. Mutations in genes transcribed in these tissues manifest
themselves as abnormal phenotypes in other tissues. The 47
mouse tissues include 10 endocrine/glandular tissues (Fig. 2). As
predicted, these 10 endocrine/glandular tissues had lower EPCt
compared with the remaining 37 tissues, although the difference
was not statistically significant (P = 0.07, Mann–Whitney U test;
left box in Fig. 2, Top Left). The 10 endocrine/glandular tissues
include testis and ovary, which not only secrete hormones that
function outside the tissue, but are involved in reproductive ac-
tivities, such as the production of gametes. When testis and ovary
were excluded from the 10 endocrine/glandular tissues, the dif-
ference in EPCt between the eight endocrine/glandular tissues
and the 37 nonendocrine/glandular tissues was significant (P <
0.05, Mann–Whitney U test; Fig. 2). The higher EPCt of tissues
producing proteins/molecules that function locally suggests that
the location of transcription has functional implications.
Additionally, genes associated with neurological/behavioral

traits [e.g., VGF nerve growth factor inducible (Vgf); Fig. S1A]
can have global effects, which lead to lack of observable EPC
(also Fig. S5). Consistent with this observation, neuronal tissues
also tend to have lower EPCt compared with other tissues (P =
0.001, Mann–Whitney U test; right box in Fig. 2, Top Left).

mRNA Abundance and EPC. mRNA abundance can vary by several
orders of magnitude in mammalian cells. Highly expressed genes
are more easily identified experimentally (e.g., cDNA cloning) and
tend to be well studied. To understand how mRNA abundance of
a gene relates to its functional relevance, we used RNA-seq data
from five mouse tissues (cerebellum, heart, kidney, liver, and
testis) profiled in a study by Brawand et al. (27). These same
investigators also profiled the tissue “brain,” but we omitted this
organ because there was no corresponding “whole-brain” pheno-
typic code in MGI. RNA-seq data were used because RNA-seq
quantifies mRNA abundance more accurately compared with
microarrays and has low background noise to detect weakly
expressed genes (28). RNA-seq expression signals were measured
as reads per kilobase per million mapped reads (RPKM) (27). The
number of transcribed genes (RPKM > 0) in cerebellum, heart,
kidney, liver, and testis was 4,389, 4,326, 4,317, 4,022, and 4467,
respectively. For each tissue, we divided all transcribed genes into
five equal-sized bins based on mRNA abundance (1–5, lowest to
highest). For each bin of each tissue, NE and NEP were defined by
gene counts. For example, in bin 2 of the heart, NE was defined by
the number of genes transcribed in the heart bin 2 (at 20–40%
abundance rank), and the number of these genes also found to
have abnormal phenotypes in the heart was NEP. We calculated
the proportion of expressed genes showing abnormal phenotypes
(NEP/NE) and EPCt for each bin of each tissue. When computing
EPCt, 7,358 phenotyped genes with detectable RNA-seq expres-
sion signals (RPKM > 0) in at least one of the five tissues were
used for the permutation analysis (2,500 permutations).
Because protein production can be regulated posttranscrip-

tionally and proteins vary in their intrinsic range of functionally

effective abundance levels (29), highly transcribed genes in the
cell are not necessarily functionally more important than lowly
expressed genes. However, the proportion of genes expressed
resulting in abnormal phenotypes (NEP/NE) increased as the bin
number increased for all of the tissues (Fig. 3A), indicating that
genes with higher mRNA expression are more likely to be as-
sociated with mutant phenotypes. For bin 1 of all tissues (and
also for bin 2 for testis and bins 2 and 3 for cerebellum), EPCt
was <1.96 (Fig. 3B), suggesting lowly expressed genes are largely
composed of genes functionally unimportant to the tissues where
they are expressed. These results correspond to two major classes
of transcribed genes with distinct mRNA abundances in meta-
zoan cells: highly expressed, functionally important genes and
lowly expressed genes with ectopic expression (30). NEP/NE and
EPCt increased with mRNA abundance in all of the tissues, even
among the highly expressed genes (i.e., bins 3–5), indicating that
even among highly expressed genes, the absolute difference in
mRNA abundance in tissues reflects a difference in the gene’s
importance to tissue function.

Expression in Embryonic Stages and EPC. Analysis of the spatial and
temporal regulation of genes during embryogenesis is necessary to
understand developmental genes. In situ hybridization is a classic
technique used to visualize mRNA expression in embryos, although
in situ hybridization expression signals are noisy and detection
specificity is affected by probe design (31). Changes in gene regu-
lation at earlier stages in embryogenesis tend to result in more
severe phenotypes, indicated by a higher frequency of embryonic
lethality (32), and enhancers responsible for earlier stages of or-
ganogenesis are proposed to be more evolutionarily conserved (33),
suggesting that early regulatory activities are especially important.
Therefore, temporal expression during embryogenesis could be
a factor determining the influences of a gene’s expression to the
physiology or morphology of the tissue.
To test the hypothesis, we investigated two tissues: eye and

heart. These tissues have discernable primordia with distinct
developmental processes from their surrounding tissues, and their
development is observable in early embryonic stages. mRNA in
situ hybridization data from mouse embryos was retrieved from
the e-Mouse Atlas of Gene Expression (EMAGE) (34) (Methods),
which integrates in situ hybridization expression data from di-
verse sources. In the EMAGE data, Edinburgh Mouse Atlas
Project (EMAP) IDs differ for embryonic tissues at different
developmental Theiler stages. For eye and heart, expression
data for Theiler stages 12–23 were included (Table S3). If a gene
is expressed at multiple stages, the earliest stage was assigned for
that gene. The number of genes with in situ hybridization signals
in the developing eye (or heart) at each Theiler stage was de-
fined as NE, and the number of genes that also showed mutant
phenotypes in the adult eye (or heart) was defined as NEP.
Stage-specific NEP/NE and EPCt were only computed for Theiler
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stages with a sufficient sample size (NE ≥ 10). When computing
EPCt, 3,043 genes that have MGI phenotype data and EMAGE
in situ hybridization data were used for phenotypic profile per-
mutation (2,500 permutations). For both eye and heart, genes
expressed at earlier Theiler stages in primordial embryonic
tissues are more likely to result in phenotypic defects in the
corresponding adult tissue (Theiler stages vs. NEP/NE: eye:
Spearman’s correlation coefficient σ = −0.943, P < 10−3; heart: σ =
−0.824, P = 0.02; Fig. 4A). This conclusion is also supported by
EPCts, which are >1.96 for genes expressed at early embryonic
stages (before Theiler stage 18) of both eye and heart (Fig. 4B).

EPC and the Evolution of Gene Regulation. Natural selection acts on
phenotypes that have an effect on an organism’s fitness. Gene
properties tightly connected with phenotypes thus should more
often be the subject of natural selection. To examine whether genes
with a higher EPCg have more evolutionarily constrained mRNA
expression profiles, we computed expression profile divergence
between 1:1 human-mouse orthologs. Expression profile divergence
was measured by 1 − R, where R is Pearson’s correlation coefficient
between microarray expression signals across the 26 homologous
tissues between human and mouse in GeneAtlas v2 (22) (Methods).
Higher 1 − R indicates a greater expression profile divergence and
more relaxed selective constraint in expression profile. Consistent
with our expectation, 1 − R of genes with EPCg > 1.96 was sig-
nificantly lower than 1 − R of other genes (Fig. 5A). This difference
was not observed under the neutral model of transcriptome evo-
lution approximated by randomizing expression profiles of human
genes in calculating 1 − R (22, 35) (Fig. S7). Hence, mRNA ex-
pression profiles that are associated with the phenotypic profiles
tend to be more evolutionarily conserved after the rodent-primate
divergence.
Evolutionarily conserved expression profiles, indicated by high

1 − R, were found in tissue-specific genes in mammals (36). We
found that genes with high EPCg tend to be genes with high
tissue specificity, indicated by lower NE or higher τ (Methods)
(EPCg vs. NE: σ = −0.081, P < 10−4; EPCg vs. τ: σ = 0.163, P <
10−14), suggesting that tissue specificity has potentially con-
founded the relationship between EPCg and 1 − R. To measure
the direct association between EPCg and 1 − R, we performed
partial correlation analysis. In addition to τ, NE, and NP, we
examined and controlled for other gene properties potentially
governing regulatory evolution of genes, including gene essen-
tiality (Essen), microarray-based mRNA abundance (ExpAb),
number of associated Gene Ontology (GO) terms (GOM, GOB,
or GOC represents the number of terms in “molecular function,”
“biological processes,” or “cellular components,” respectively;
Methods) and number of interacting partners in the protein–
protein interaction network (KPPI). The partial rank correlation
coefficient (σp) between 1 − R and EPCg after controlling for all
of the other factors remained significantly negative (σp = −0.108,

P < 10−6) (Fig. 5B). Thus, genes with evolutionarily constrained
mRNA expression profiles tend to be associated with abnormal
phenotypes in the expressed tissues. Consistent with the previous
notion that tissue-specific genes tend to have greater EPCs, there
was a positive correlation between EPCg vs. τ and a negative
correlation between EPCg vs. NE after controlling for all of the
remaining factors (Fig. 5B).
EPCg is an approximation of how well the mRNA expression

pattern of a gene matches its physiological function, because
ectopic expression in off-target tissues and a lack of detectable
expression in tissue requiring a gene’s product decrease EPCg.
The observed pattern that gene expression profiles with higher
EPCg are more evolutionarily conserved supports the argument
that gene expression profiles are shaped by purifying selection
(22, 37). In addition to previously reported gene properties, such
as tissue specificity and mRNA expression level (36), we found
that EPCg is a factor correlated with the rate of regulatory
evolution of mammalian genes.

Summary
Despite the presence of widespread ectopic transcription, mRNA
expression and mutant phenotypes remain tightly associated at
both the gene level and tissue level in mice. The expression-
phenotype association at the gene level, indicated by EPCg, was
particularly strong for tissue-specific genes, and could be under-
estimated in the present study due to incomplete tissue sampling
and phenotyping. The variation in the association at tissue level,
EPCt, can be explained by tissue functions. Mutations on genes
expressed at higher levels or expressed at earlier embryonic stages
more often result in abnormal phenotypes in the tissues where
they are expressed. The mRNA expression profiles that have
stronger connections with their phenotype profiles tend to be
more evolutionarily conserved, indicating that the evolution of
transcriptome and phenome are coupled. Our results suggest that
changes in mRNA expression that cause more severe abnormal
phenotypes or diseases in expressed tissues are more likely to
occur in genes with abundant transcription levels, high tissue
specificities, early expressed embryonic stages, or evolutionarily
conserved expression profiles.

Methods
Phenotype Data of Mouse Genes. Mouse genes and the associated mutant
phenotypes were obtained from MGI (www.informatics.jax.org/), version
5.2. Ensembl IDs (v69) (38) of phenotyped mouse protein-coding genes
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were found at MRK_ENSEMBL.rpt, whereas the information on geno-
types and phenotypes [presented as mammalian phenotype IDs (MP IDs)]
(39) of the mutant generated was found at MGI_GenePheno.rpt. Phe-
notypes caused by mutations on multiple genes were discarded. We
obtained a dataset of 7,449 mouse genes with one or more MP IDs when
the gene is knocked out, knocked down, or mutated by transgenic
insertions or point mutations. Organs or other anatomical parts with
abnormal phenotypes are specified by MP IDs that are hierarchically
structured. A parent MP ID represents a phenotype lineage that may in-
clude several child MP IDs to describe a more detailed abnormal pheno-
type. Genes with a child MP ID were also assigned to the parent MP IDs.
MP ID terms used to define abnormal phenotypes in the 47 tissues are
listed in Dataset S1. Publication dates for the literature describing ab-
normal phenotypes for MGI annotations were obtained from PubMed IDs
(www.ncbi.nlm.nih.gov/pubmed).

mRNA Expression Data of Mouse Genes. Expression signals of mouse genes
measured by mRNA hybridization from 61 mouse tissues to the Affymetrix
microarray chip (GNF1M) were obtained from the GeneAtlas v2 dataset (20).
The processed mRNA expression signals, calculated by RPKM, for each mouse
gene derived from 76-mer RNA-seq experiments in mouse cerebellum, heart,
kidney, liver, and testis were obtained from supplementary material of a
study by Brawand et al. (27). The mRNA in situ hybridization data from mouse
embryonic tissues at various Theiler stages (40) were obtained from the
BioMart interface of the EMAGE database (41). Genes annotated with
“detected,” “strong,” “moderate,” or “weak” hybridization intensity were
considered to be “expressed” in tissues/organs identified by EMAP IDs,
according to anatomical ontology of developing mouse embryos (42). EMAP
IDs are also hierarchically structured and are Theiler stage-specific. Accord-
ingly, genes with a child EMAP ID were also assigned with the parent EMAP

ID. To understand the influence of expression in embryonic stages to the
EPC, we focused on EMAP IDs associated with eye and heart from Theiler
stages 12–23 (Table S3).

Expression Profile Conservation of Mouse Genes. Orthology relationships be-
tween human and mouse genes based on Ensembl annotation v69 were
retrieved using BioMart (www.biomart.org/). Only 1:1 orthologs were used
to compute expression profile divergence, as measured by 1 − R. The 26
homologous tissues between mouse and human used to compute 1 − R are
from Liao and Zhang (22). ExpAb is defined as the average microarray signal
across the 26 tissues. Tissue specificity of a mouse gene is calculated by

τ=
hPn

j=1

�
1−

� log2 SðjÞ
log2Smax

��i.ðn− 1Þ (36), where n = 26 and Smax is the highest
expression signal of the gene across the 26 tissues. Following Liao and Zhang
(36), we arbitrarily let S(j) be 100 if it is lower than 100. The τ value ranges
from 0 to 1, with higher values indicating higher tissue specificity. A gene is
essential (Essen = 1) when mutations on it lead to premature death or in-
fertility; otherwise, it is nonessential (Essen = 0) (43). GOM, GOB, or GOC was
defined by the number of associated GO terms at level 5 annotated by
Ensembl. The mouse protein–protein interaction network was obtained
from the mammalian protein–protein interaction database at Munich In-
formation Center for Protein Sequences (44). To identify factors contributing to
1 − R, partial correlation analysis was conducted using the “ppcor” package (45)
for R (www.r-project.org/).
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