
Eluding catastrophic shifts
Paula Villa Martína, Juan A. Bonachelab,1, Simon A. Levinb, and Miguel A. Muñozc,2

aDepartamento de Electromagnetismo y Física de la Materia, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain; bDepartment of
Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544-1003; and cDepartamento de Electromagnetismo y Física de la Materia
and Instituto Carlos I de Física Teórica y Computacional, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain

Edited by George Sugihara, Scripps Institution of Oceanography, La Jolla, CA, and accepted by the Editorial Board March 4, 2015 (received for review
August 1, 2014)

Transitions between regimes with radically different properties
are ubiquitous in nature. Such transitions can occur either smoothly
or in an abrupt and catastrophic fashion. Important examples of the
latter can be found in ecology, climate sciences, and economics, to
name a few, where regime shifts have catastrophic consequences
that are mostly irreversible (e.g., desertification, coral reef collapses,
and market crashes). Predicting and preventing these abrupt transi-
tions remains a challenging and important task. Usually, simple
deterministic equations are used to model and rationalize these
complex situations. However, stochastic effects might have a pro-
found effect. Here we use 1D and 2D spatially explicit models to
show that intrinsic (demographic) stochasticity can alter deterministic
predictions dramatically, especially in the presence of other realistic
features such as limited mobility or spatial heterogeneity. In partic-
ular, these ingredients can alter the possibility of catastrophic shifts
by giving rise to much smoother and easily reversible continuous
ones. The ideas presented here can help further understand cata-
strophic shifts and contribute to the discussion about the possibility
of preventing such shifts to minimize their disruptive ecological,
economic, and societal consequences.
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Catastrophic shifts are natural phenomena of paramount im-
portance (1, 2). For instance, socioeconomic and socioecological

systems (3, 4) as well as ecosystems such as lakes, savannas, or
oceans (with their embedded fisheries or coral reefs) can experi-
ence, as a consequence of small changes in environmental condi-
tions, sudden collapses after which recovery can be extremely
difficult (5–9). Hereinafter, we refer to these transitions as “abrupt”
or “sudden” because there is a radical change in the steady-state
properties once the threshold is crossed (regardless of the velocity
of environmental variations).
Abrupt catastrophic transitions from vegetation-covered states to

desertic ones in semiarid regions constitute an illustrative example
(10–17). The latter habitats are characterized by positive feedback
loops between vegetation and water: the presence of water fosters
plant growth that, in turn, fosters water accumulation in plant-
covered regions by, for instance, reducing evaporation rates. The
fate of the ecosystem is determined by the overall precipitation
rate, with a green or a deserted stable state for high and low rates,
respectively. There is an intermediate bistable precipitation regime
compatible with either a barren or a vegetated landscape. Thus, as
a response to some small environmental change, or if the feedback
loop is incidentally interrupted, there can be a regime shift, im-
plying a collapse of the vegetation cover and the mostly irreversible
emergence of a deserted landscape (1, 10–12, 18).
This mechanism, in which population growth (or, more generally,

activity generation) is reinforced by a positive feedback, constitutes
the basic ingredient for multistability and for possible catastrophic
regime shifts, also called tipping points or critical transitions. Sim-
ilar facilitation mechanisms appear in a vast variety of examples in
population ecology (Allee effect) (19); neuroscience (synaptic fa-
cilitation) (20); systems biology (21); and, in general, climate, bi-
ological, and social sciences (1, 22, 23).

Opposite to abrupt shifts, many other systems in nature and
society exhibit much smoother transitions between active and qui-
escent states, with a more easily reversed progressive deterioration.
Examples of the latter appear in epidemic spreading, fixation of
alleles in population genetics, computer virus propagation, and
autocatalytic chemical reactions, to name a few (24–28).
Predicting and anticipating catastrophic regime shifts and dis-

tinguishing them from their smoother counterparts constitutes a
timely subject with a vast number of important applications, in-
cluding the prevention of biodiversity collapse or radical climate
changes as the result of anthropogenic pressures (21, 29–32). In-
deed, early warning indicators of regime shifts (such as increasingly
slower return rates from perturbation and rising variance) have
been proposed, and some of them have been empirically tested (9,
14, 30, 31), even if their degree of robustness and reliability is still
under debate (33, 34). Most of these approaches rely on un-
derstanding derived from simple deterministic equations in which
spatial dependence is averaged out (21, 29–32). Recently, spatially
explicit versions of these deterministic approaches have also been
considered in the literature (35). In particular, ingredients such as
spatial heterogeneity and mobility (e.g., diffusion) have been in-
corporated into those models, leading to interesting consequences
and a much richer phenomenology that includes patchiness and
pattern formation (31, 36–44). Moreover, it has been suggested
that emerging spatiotemporal patterns could be potentially used as
early indicators of tipping points or that transitions in these im-
proved models can become more gradual (15–17, 45–47).
However, common to most previous studies is the fact that

stochastic effects such as demographic or intrinsic noise—an
unavoidable feature of real systems—are typically left out of the
picture (see, however, e.g., refs. 10, 37, 47, and 48). Stochasticity
or noise is known to play a fundamental role in complex problems
with many degrees of freedom, inducing nontrivial effects such
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as noise-induced transitions, stochastic resonance, and stochastic
amplification of fluctuations (49, 50). In particular, demographic
noise can have dramatic effects in spatially explicit low-dimensional
systems, profoundly influencing the features of the expected tran-
sitions (51). Thus, although external or environmental noise could
also play an important role (52, 53), here we focus on analyzing
explicitly the effects that demographic or internal noise may have
on abrupt shifts.
Spatially explicit stochastic differential equations (such as

Langevin equations) constitute the most appropriate mathe-
matical formalism to study the role of stochasticity on phase
transitions (54). Alternatively, individual-based models could be
also used (see, e.g., refs. 10 and 37 and refs. therein), but Lan-
gevin equations can be usually derived from these individual-
based approaches by using standard techniques (55). Further-
more, Langevin equations provide a much more generic and
robust framework, highlighting universal features and therefore
transcending the specificities of particular systems (54). Thus,
beyond the theory of dynamical systems, the language and tools
of statistical mechanics prove to be best suited for shedding light
upon stochastic problems with many degrees of freedom. Within
this framework, simple bifurcations exhibited by deterministic [or
mean field (51)] systems are just fingerprints of true phase tran-
sitions. Catastrophic shifts stand for first-order or discontinuous
(i.e., abrupt) transitions showing bistability and hysteresis (56),
whereas smooth bifurcations correspond to continuous or second-
order phase transitions, in which the system reaches scale-
invariant (fractal) organization with diverging characteristic lengths
and times and other remarkable and distinct features (51).
In this paper, we study spatially explicit stochastic systems that

are susceptible a priori to exhibiting catastrophic transitions, i.e.,
systems for which deterministic approaches would predict al-
ternative stable states and abrupt transitions between them. We
focus on the more ecologically relevant 2D case but briefly dis-
cuss also the cases of one and three spatial dimensions. Our goal
is to scrutinize how intrinsic stochasticity influences these systems,
in particular, to explore whether stochasticity in combination with
other realistic mechanisms such as limited diffusion and spatial
(quenched) heterogeneity may alter the nature of phase transi-
tions. By using a combination of computational and analytical
techniques, together with known results from the statistical me-
chanics of phase transitions, we show that these realistic in-
gredients can potentially round up abrupt discontinuities, giving
rise to more predictable, progressive, and easy-to-reverse tran-
sitions. As a possible application of our results, we speculate that
basic and widespread aspects of natural systems could be po-
tentially exploited to prevent abrupt regime shifts and their
undesired consequences.

Results
Model Building. Mathematically, smooth regime shifts into qui-
escent states are usually described and understood in terms of
simple deterministic equations such as the logistic equation,
∂tρðtÞ= aρðtÞ− bρ2ðtÞ. In the latter, ∂t stands for time derivative,
ρ≥ 0 is the relevant variable (e.g., population density) that we
call henceforth “activity,” a is the growth rate, and b> 0 fixes
the maximal activity density (e.g., carrying capacity) (24). This
equation describes a smooth (transcritical) transition between an
active and a quiescent state as a is varied beyond a critical value
(Fig. 1 A and C). This equation can be easily modified to include
a generic facilitation term, representing the positive feedback
mechanisms discussed in the previous section. In its simplest
form, facilitation alters linearly the growth rate a, enhancing it in
the presence of activity: a→ a+ αρ, with α> 0. This variation
generates an effecttive quadratic term −αρ2, which is fully
equivalent to leaving the growth term unaltered and replacing
b→ b− α in the logistic equation. Thus, the coefficient of the
resulting quadratic term—which, for simplicity, we continue to

call b—can potentially change its sign, and the new equation
takes the form

∂tρðtÞ= aρðtÞ− bρ2ðtÞ− cρ3ðtÞ; b< 0: [1]

A new higher-order (cubic) term has been added to enforce a
finite carrying capacity (i.e., to prevent the population density to
diverge when b< 0). Eq. 1 is the simplest equation used to study
catastrophic shifts at a deterministic level (1, 2, 22–24) (Fig. 1).
This equation admits two alternative stable solutions (bistability)
as well as an abrupt, discontinuous (i.e., fold) bifurcation (Fig. 1
B and D) (24, 25, 57). As the figure illustrates, the right-hand
side (rhs) of Eq. 1 can be interpreted as the gradient of a poten-
tial (58), and the sign of the parameter b controls the nature of
the transition at the deterministic level: continuous for b> 0 or
abrupt for b< 0. This observation is essential for the discussion
that follows.
Aiming at capturing the relevant phenomenology of cata-

strophic shifts in a parsimonious yet complete way, we extend the
equation above to include explicit spatial dependence and de-
mographic or intrinsic stochasticity,

∂tρðx; tÞ= aρðx; tÞ− bρ2ðx; tÞ− cρ3ðx; tÞ
  +D∇2ρðx; tÞ+ ηðx; tÞ; b< 0;

[2]

where ρðx; tÞ quantifies the activity at position x and time t. This
equation, similar to the one used to describe the strong Allee
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Fig. 1. Bifurcation diagrams and deterministic potential VðρÞ for continu-
ous (A and C) and abrupt (B and D) transitions. (A and B) Lines represent the
steady-state solutions of _ρðtÞ= aρðtÞ−bρ2ðtÞ− cρ3ðtÞ as a is varied, with b
either positive (A) or negative (B), displaying continuous and abrupt transi-
tions, respectively. Four particular values of a are highlighted with spheres
(blue for quiescent states and increasingly more reddish for active ones).
(C and D) Effective potential VðρÞ=−
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, from which the de-

terministic forces above are derived, plotted as a function of the activity, ρ,
for the same values of a highlighted above. In C, b> 0, and the transition is
smooth and continuous (transcritical bifurcation), whereas in D, b< 0, and
there is an abrupt jump in the location of the potential absolute minimum,
a*=−b2=4c, as the control parameter a is varied corresponding to a discon-
tinuous transition (fold bifurcation). In summary, the sign of b in Eq. 1 controls
the nature of the transition at the deterministic or fluctuation-less level.
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effect (19), consists of three different contributions: (i) a local
deterministic force (with b< 0), which coincides at each location
x with the rhs in Eq. 1; (ii) diffusion, represented by the Lap-
lacian term D∇2ρðx; tÞ, with proportionality constant D> 0 (this
term accounts for dispersal of activity to neighboring locations);
and (iii) demographic stochasticity, encoded in the Gaussian
(white) noise ηðx; tÞ with zero mean and variance proportional to
σ2ρðx; tÞ (this multiplicative noise ensures that demographic fluc-
tuations do not exist in the bulk of regions deprived of activity).
Eq. 2, with b< 0, could a priori—i.e., thinking in a de-

terministic or mean field way (51)—be expected to capture the
behavior of catastrophic shifts in spatially extended systems.
However, as a result of the presence of noise, its emerging
phenomenology might not be straightforwardly inferable from
the mean field reasoning. Therefore, we first need to provide
an overview of the actual properties of systems described by Eq.
2 with b< 0 under standard circumstances. Afterward, we shall
scrutinize how these results might be altered once other in-
gredients such as large demographic noise, limited diffusion, and/or
environmental disorder are introduced. Here we resort to ex-
tensive computational analyses as well as renormalization group
calculations to discuss aspects of Eq. 2 that are relevant to our
discussion. For other (fundamental) aspects of this equation, such
as existence and uniqueness of solutions as well as more formal
analytical approaches including small-noise calculations, we refer
the reader to the existing vast mathematical literature (59–67).

Computational Results. Integrating numerically Eq. 2 is not a
trivial task owing to the presence of multiplicative noise. How-
ever, as described in Methods, there exists to this end an exact
integration scheme (68) that has already been successfully used
to study spatially explicit problems in ecology (69). As a note of
caution, let us remark that determining numerically the nature of
a phase transition in an extended system can be a difficult enter-
prise; the literature is plagued with claims of discontinuous transi-
tions in systems with quiescent states (70) that eventually were
proven to be continuous ones once sufficiently large sizes and times
and enough statistics were collected (26). Thus, to avoid any am-
biguity in our conclusions, we performed very extensive large-scale
computer simulations and different types of numerical experiments.
We considered discrete square lattices of size up to 1; 024× 1; 024
with either periodic or open boundary conditions, averaged over up
to 106 realizations, for each of the different types of computational
experiments we performed (Methods): (i) decay experiments from
an initial homogeneously active state, (ii) spreading experiments
from an initially localized seed of activity in an otherwise quiescent
state, and (iii) interfacial experiments in which the evolution of an
initially half-empty/half-occupied lattice—with a planar interface in
between—is investigated.
Catastrophic shifts can appear in 2D noisy systems. A summary of the
main features shown by a 2D system described by Eq. 2 with
typical parameter values is presented in Fig. 2. In particular, Fig.
2A shows the averaged activity in the steady states as a function
of the control parameter a revealing the existence of two alter-
native homogeneous stable solutions: an active one with ρ> 0
and a quiescent one with ρ= 0, with an intermediate regime of
bistability and all of the characteristic signs of a discontinuous
transition. In particular, as illustrated in the inset of Fig. 2A,
which steady state is reached may depend upon initial conditions
revealing the existence of bistability and hysteresis, i.e., trade-
marks of first-order phase transitions.
Regarding probabilistic aspects, which are essential here, let

us remark that small systems—even in the active phase—may fall
into the quiescent state owing to rare demographic fluctuations;
however, the averaged time for this to happen grows exponen-
tially with system size in the active phase (55), and it is much
larger than computational times for the sizes we have consid-
ered. On the other hand, different routes to extinction—all of

them of stochastic nature—exist in the regime of bistability (these
have been studied computationally by some of us in ref. 71 and
analytically in ref. 66 for a discrete version of our model) con-
firming the discontinuous nature of the transition.
As a visual illustration, Fig. 2 B and C shows examples of how

an island of one of the phases may propagate, invading a sea of the
other, when the latter phase is close to the threshold of instability.
We have found no evidence of the existence of an intermediate
critical behavior with a nontrivial power law exponent—as would
correspond to a continuous transition—in any of the numerical
(spreading or decay) experiments we have performed.
Finally, we have also conducted interfacial experiments to

determine the relative stability of both phases. If the system
described by Eq. 2 shows a catastrophic shift, there should be a
value of a for which the interface separating two perfect halves of
the system—each half in one of the two coexisting states—does
not move on average; this is the so-called Maxwell point (39). As
shown in Fig. 2D, there indeed exists a Maxwell point for the
system described by Eq. 2.
Hence, all this evidence allows us to safely conclude that Eq. 2

experiences a true discontinuous, first-order phase transition in
two dimensions, in agreement with deterministic expectations.
This conclusion is quite robust against changes in parameter
values, but as detailed in what follows, it may eventually break
down in the presence of certain additional mechanisms, giving
rise to very different scenarios.
Factors preventing catastrophic shifts in 2D noisy systems.

The role of enhanced (demographic) noise. The noise amplitude, σ2,
is a measure of the level of demographic stochasticity present in
the system. This factor is, thus, a straightforward indicator of
how far the actual stochastic system is from its deterministic
counterpart. To explore the consequences of high stochasticity,
we have carried out the same type of computational experiments
described above but now enhancing the noise amplitude (from
σ2 = 1 above to σ2 = 4) while keeping fixed the remaining pa-
rameters. As illustrated in Fig. 3A, the situation is very different
from the one in the previous section. In particular, now there is a
continuous phase transition at a specific value of the control
parameter, ac. At this point, the relevant quantities in spreading
and decay experiments exhibit power law (scale-free) behavior,
characteristic of continuous transitions (see inset). Moreover,
the associated critical exponents coincide within numerical pre-
cision with the expected values in standard continuous transi-
tions into quiescent states, i.e., those characteristic of the well-
known directed percolation (DP) universality class (Methods)
(26–28, 72). For completeness, we have also verified that there is
no bistability, and as a consequence, a Maxwell point cannot
possibly be identified. Further computational experiments con-
firmed that for any parametrization, it is possible to find a
threshold for the noise amplitude that alters the character of the
transition, therefore leading to the same conclusions. This pro-
vides strong evidence that Eq. 2 exhibits a continuous (more
specifically, a DP) phase transition if demographic stochasticity is
large enough. This conclusion is in contrast with the deterministic
expectation and thus manifests that strong demographic fluctua-
tions play an essential role in these low-dimensional spatially
explicit systems.

The role of limited diffusion. Similarly, we have scrutinized the
effect of reducing the diffusion constant,D, in Eq. 2, while keeping
fixed all other parameters. Limited diffusion is very widespread in
ecological systems. For example, under certain conditions, plants
may restrict their range of seed dispersal as an evolutionary
strategy to enhance survival (73). When limited diffusion occurs,
one could expect spatial effects to be enhanced, and thus, de-
partures from mean field behavior are more likely to occur; at the
opposite extreme of very large diffusion (e.g., long-ranged seed
dispersal), results are expected to be much closer to the de-
terministic limit. Indeed, for small D (e.g., D= 0:1 in Fig. 3B),
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computational evidence reveals the existence of a continuous
transition in the DP class, in contrast to the catastrophic shift
reported above for D= 1.

As an explicit illustration of the probabilistic nature of the
discussed phenomena, the inset of Fig. 3B includes results for the
surviving probability as a function of time PsðtÞ in spreading

A

D

C

B

Fig. 2. Computational results for Eq. 2 in a 2D lattice, showing an abrupt regime shift. Parameter values are D= c= 1, σ2 = 1, and b=−2. (A) Steady-state
averaged activity as a function of the tunable parameter a (different colors correspond to different type of initial conditions: light green for small initial
activities and dark green for large initial activities). There are two distinct stable solutions: one with an associated large stationary activity (which disappears
around a≈−0:98) and a trivial or quiescent one with ρ= 0 (which becomes unstable at some point near a≈−0:95). These two alternative steady states are
separated by a line of unstable solutions (dashed gray). In the interval between the two limits of stability, two alternative stable states compete. The existence
of bistability is confirmed by results in the inset, showing that the steady state depends upon initial conditions (a=−0:9640). B illustrates how an initially
localized seed of activity expands throughout the system (spreading experiment) near the threshold of instability of the quiescent phase. Similarly, C illus-
trates the decay of an initially homogeneous state toward the quiescent state (decay experiment). (D) In interfacial experiments, half of the system is initially
occupied and half is empty (Left); either the active phase invades the quiescent one (Center) or vice versa (Right). These two regimes are separated by a
Maxwell point at which the interface does not move on average. In B–D, arrows indicate the direction of system’s advance with time.

CA B

Fig. 3. Realistic ingredients can alter the nature of potentially catastrophic shifts in 2D environments. Using the same parametrization as in Fig. 2, we study
separately the effects induced in Eq. 2 by (A) enhanced demographic noise (σ2 = 4, D=1), (B) limited diffusion (D= 0:1, σ2 =1), and (C) spatial heterogeneity
[b→bðxÞ]. In all three cases, the transition becomes continuous, with no sign of bistability nor discontinuous jumps. In A and B, power law behavior is ob-
served (see insets) for all of the computed time-dependent (decay and/or spreading) quantities right at the critical point (ac ≈−0:708 in A and ac ≈−0:5236 in
B). Moreover, the corresponding exponent values (both of them close to 0.45) coincide with the expected values for the directed percolation class (Methods).
Curves in the insets correspond to values of a between −0:702 and −0:718 in A and between −0:5234 and −0:5238 in B, both in equal intervals. In C, alongside
the continuous transition, there appears a broad region within the quiescent phase, called a Griffiths phase, characterized by an extremely slow decay of
activity, i.e., by power laws with continuously varying exponents, as illustrated in the inset (values of a between −0:250 and −0:300 in equal intervals).
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experiments, showing a smooth continuous change in its asymp-
totic behavior and a DP-like power law decay at criticality. Simi-
larly to the enhanced stochasticity case, there always can be found
a threshold for D below which Eq. 2 exhibits a continuous tran-
sition (Methods).

The role of (quenched) spatial heterogeneity. A relevant ingredient
which is unavoidably present in real systems is spatial hetero-
geneity. Here we focus on cases where disorder does not change
with time (i.e., quenched disorder). Local differences in envi-
ronmental conditions can generate regions that are more prompt
to collapse and others that are more resilient, giving rise to
patchy and irregular activity patterns. A general result in statis-
tical mechanics proves that discontinuous transitions cannot
possibly occur in 2D disordered systems at thermodynamic
equilibrium (74–76). This conclusion has been recently extended
to more general systems, not necessarily at equilibrium, including
transitions into quiescent states if stochasticity is present (71).
On the basis of this result, one could expect abrupt transitions to
be smoothed once both heterogeneity and noise are considered.
To study explicitly the consequences of heterogeneity in a sys-
tem described by Eq. 2, we assume b to be position-dependent,
i.e., b→ bðxÞ. The value of bðxÞ at each location x is randomly
extracted from a uniform distribution in the interval ð−2; 0Þ, es-
sentially ensuring a different b< 0 at each location. Results of
extensive computer simulations, summarized in Fig. 3C, show that
any amount of spatial heterogeneity induces a smooth transition.
In this transition, the collapse from the active phase to the qui-
escent one occurs in a rather gradual way, with a progressive
deterioration of the less favorable regions. Furthermore—and
differently for the two previous cases—spatial disorder induces a
broad region around the transition point in which power law
scaling is generically observed. In particular, the averaged activity
decays in a very slow (power law) fashion as a function of time
toward the quiescent state, not just at the critical point (as usually
happens) but rather for a whole range of values of the control
parameter a. This region, with generic scale-free behavior, is
usually dubbed “Griffiths phase” and stems from the fact that
unfavorable zones are emptied first and then, progressively, more
and more resilient zones collapse in a step-by-step fashion (77).
Therefore, we have confirmed that spatial random heterogeneity
is a sufficient ingredient to destroy abrupt regime shifts in 2D
stochastic systems, giving rise to smooth transitions, in agree-
ment with ref. 71.
The role of spatial dimensionality. All of the results above have been
obtained for 2D systems. However, some of the reported noise-
induced effects might depend profoundly on the system di-
mensionality. Thus, we now discuss the 1D and 3D cases.
For 1D systems, fluctuation effects are expected to be extremely

severe (51). Indeed, existing analytical arguments predict that
stochasticity completely washes away discontinuous transitions
into absorbing states, converting them into continuous ones (26).
Thus, catastrophic shifts into quiescent states cannot possibly oc-
cur in 1D systems (26, 48). We have verified computationally this
prediction: our simulations show clearly a continuous phase
transition in all 1D cases.
In 3D systems, the combined effect of amplified demographic

noise and limited diffusion still affects the nature of the transition,
even if to a lesser extent (as shown by our analytical calculations;
see below). On the other hand, and contrarily to the 2D case, spatial
random heterogeneity combined with demographic stochasticity
does not suffice to destroy abrupt regime shifts in 3D systems: al-
ternative stable states and abrupt shifts can survive the introduction
of spatial disorder (71). In consequence, catastrophic shifts can
occur more easily in 3D systems than in their 2D counterparts.
In summary, the smaller the spatial dimension, the more likely

fluctuations play a fundamental role, potentially breaking de-
terministic predictions, preventing catastrophic shifts and gen-
erating much more gradual and smooth transitions.

Analytical Results. In addition to the strong numerical evidence
presented so far, we now provide analytical understanding on why
the transition may become continuous under the above-discussed
circumstances, in particular, for low diffusion as well as for the
large noise case. To this end, we rely again on statistical mechanics
and use renormalization group theory (Methods) (26, 51).
In fluctuating spatially extended systems, crucial information

about large-scale features—including the nature of possible
phase transitions—cannot be derived from the associated de-
terministic potential (Fig. 1). The reason is that the true (or
renormalized) effective potential includes fluctuation effects,
which are lacking in such deterministic or bare potential (51, 78).
Therefore, to rationalize the previous numerical conclusions, we
need to think in terms of the (true) renormalized potential,
VRðρÞ. In particular, fluctuations have the net effect of shifting
the effective parameter values characterizing the potential, from
their original deterministic or bare values to their renormalized
or dressed variants.
Renormalization group techniques were devised to compute

analytically VRðρÞ as the scale of description is enlarged (26, 78).
To illustrate how this works, we have computationally measured
the probability distribution for the local activity, ProbðρmÞ, in the
stationary steady state, where ρm is the activity averaged in square
boxes of progressively larger linear size, m (i.e., at coarser and
coarser scales). In this way, it is possible to measure the renor-
malized coarse-grained effective potential as −log½ProbðρmÞ� (51,
78). The most likely value of the activity at each coarse-grained
scale lies at the minimum of the corresponding potential.
As an example, results for the limited diffusion case (D= 0:1,

σ2 = 1) are shown in Fig. 4 for different values of the control
parameter. For fine-grain scales such as m= 1, the effective
potential is expected to coincide with the deterministic one (51).
Indeed, it exhibits a discontinuous transition as its global mini-
mum jumps abruptly from 0 to a nonvanishing value in a dis-
continuous way. However, as the level of coarse-graining is
increased, a dramatic change of behavior is observed. For in-
stance, for boxes of size m= 64, it can be already seen that the
effective potential experiences a continuous transition from 0 to
arbitrarily small activity values. This illustrates the change in the
nature of the phase transition—occurring for small diffusion
constants or for large demographic noise amplitudes—once
fluctuations and spatial effects are taken into account.
These results can be understood using renormalization group

ideas. Indeed, as explained in detail in Methods, we have also
used standard procedures to perform an analytical renormali-
zation group calculation [à la Wilson (78)]. This allows us to
compute (up to first order in a perturbative expansion) how
every parameter appearing in the potential changes or flows
upon coarse-graining. In particular, Fig. 5 clearly illustrates how
an originally negative bare value of b can become positive as the
coarse-graining scale (represented here by the parameter l) is
enlarged in a 2D system. The fact that b becomes positive in-
dicates that the behavior at larger scales corresponds to a con-
tinuous DP transition.
In particular, this change in sign occurs—other parameters

being fixed (e.g., σ2 = 1)—for sufficiently small values of D,
in perfect agreement with our numerical observations, which
reported a transmutation in the nature of the transition only in
the low-diffusion limit. Similarly, keeping an intermediate dif-
fusivity value D= 1, the same phenomenon occurs for sufficiently
large noise amplitudes σ2 � 1 (Methods).
This renormalization group calculation can also be used to

illustrate that the system’s dimensionality plays an important role
in these results. In particular, fluctuation-induced corrections
vanish for spatial dimensions larger than d= 4 (where de-
terministic results are expected to hold) and are much more
severe for low dimensions (e.g., d= 1 and d= 2). Thus, discon-
tinuous transitions and catastrophic shifts are predicted to be
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much more easily found in 3D than in 2D systems, in agreement
with our numerical findings. In summary, renormalization/
coarse-graining techniques—both computationally and analyti-
cally implemented—allowed us to confirm the numerical results
above and understand how a discontinuous transition can mutate
into a continuous one once fluctuations are taken into account
and sufficiently large scales are considered.

Conclusions and Discussion
Catastrophic shifts occur when, as a consequence environmental
or external changes, a system crosses abruptly from one phase to
a radically different competing one, from which recovery may be
exceedingly difficult due to hysteresis effects. Such abrupt regime
shifts can affect the system at multiple levels, entailing, for in-
stance, important ecological and/or socioeconomic consequences.
Classical examples include studies of insect outbreaks (79),
shallow lakes, savannas, socioecological systems, and markets (1–
4). Therefore, there is an increasing interest in finding early
warning signals that may help to predict when one of these tip-
ping points is about to occur. Most studies and predictions con-
cerning catastrophic shifts and their early warning indicators have
been based on deterministic equations where demographic sto-
chasticity—a natural and unavoidable ingredient of real systems—
is left out of the picture. Statistical mechanics tells us that intrinsic
noise can play a fundamental role in the behavior of complex
systems with many degrees of freedom, generating nontrivial
effects such as stochastic resonance and noise-induced transi-
tions among many others (49). Therefore, it is important to go
beyond deterministic approaches to develop robust and reliable
predictors of the occurrence of catastrophic shifts.
In this work, we have introduced and analyzed the simplest

possible stochastic theory of catastrophic shifts in spatially ex-
tended systems, namely, Eq. 2. A simplistic deterministic analysis
of this equation would average out the noise and would lead, in
general, to the prediction of alternative stable states and an
abrupt transition between them (Eq. 1). Here we have studied
instead the full stochastic model, including demographic noise, by
using a combination of computational and analytical tools and
have explored the effects of stochasticity. First, we have verified
that for low or moderate levels of demographic noise, 2D systems
may truly exhibit a bona fide first-order transition, with bistability

and hysteresis. Thus, catastrophic shifts can actually appear in
noisy systems. However, we also show that adding any of the
following ingredients, (i) enhanced demographic variability,
(ii) limited dispersal/diffusivity, and/or (iii) spatial (quenched)
heterogeneity, suffices to alter the nature of the phase transition,
giving rise to a second-order (continuous) one.
Most of our results have been obtained for 2D systems, which

have obvious applications to ecological problems such as de-
sertification processes or vegetation dynamics in savannas. How-
ever, some of the reported noise-induced effects depend profoundly
on the system dimension. For example, in one spatial dimension,
relevant for the study of, e.g., the oceanic water column, or rivers,
fluctuation effects prohibit the very existence of discontinuous
transitions, as has already been suggested in the literature (26). In
three spatial dimensions the smoothing effects of limited diffu-
sion and amplified demographic noise are still present even if to
a lesser extent (Analytical Results), and contrarily to the 2D case,
discontinuous transitions can survive to the introduction of
spatial (quenched) heterogeneity. Thus, as a rule of thumb, the
smaller the spatial dimension, the more likely fluctuations play
an important role, potentially breaking deterministic predictions
and smooth abrupt transitions. However, fluctuation effects need
to be carefully analyzed in each spatial dimension to reach
robust conclusions.
In this work we have put the focus onto demographic or in-

trinsic noise, but environmental or external sources of noise can
also potentially be important factors (52, 53, 80). Preliminary
studies suggest that this type of variability could also alter the
order of phase transitions (53), but more detailed analyses of
this, as well as of the interplay between demographic and envi-
ronmental noise, would be highly desirable.
This study offers obvious opportunities for ecosystem man-

agement. All of the relevant features present in Eq. 2 and its
variations have straightforward counterparts in natural systems.
Thus, identifying these mechanisms in specific problems may
provide a reliable indicator as to when a transition is expected
and of whether it is expected to be abrupt or smooth. Moreover,
the conclusions here can potentially help prevent catastrophic
transitions from occurring by forcing their transformation into

A B

Fig. 4. The effective potential at coarse-grained scales. Effective potential for
the averaged activity ρ measured in cells of linear size m, in a square lattice
of size N= 256× 256 (segmentation of the system into boxes schematically il-
lustrated in the insets). The potential is defined for each value of m
as −log½ProbðρmÞ�, where ProbðρmÞ is the steady state probability distribution of
the activity ρ averaged in boxes of linear size m with (A) m= 1 and (B) m= 64.
Colors represent different values of a, namely, a=0:15,0:11,0:07 and a=
0:521,0:522,0:523,0:524, respectively (other parameters: b=−2,c= 1,σ2 = 1,
D= 0:1). As the coarse-graining scale m is increased, the shape of the effective
potential changes, from that typical of discontinuous transitions (for m=1) to
the one characteristic of continuous ones (at larger coarse-graining scales, e.g.,
m= 64). This is tantamount to saying that the renormalized value of b changes
sign, from b< 0 to b> 0, and that even if the deterministic potential exhibits a
discontinuous transition, the renormalized one does not.
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Fig. 5. Renormalized value of the carrying capacity-related parameter b as
a function of the coarse-graining scale l. As l increases and coarser levels of
description are achieved, an initially negative b can invert its sign for suffi-
ciently small values of the diffusion constant D. This change of sign induces a
change in the order of the transition, from discontinuous (at small scales or
deterministic level) to continuous (at sufficiently large scales). On the con-
trary, for large values of the diffusion constant D, b remains always negative,
and the transition remains abrupt. Parameter values are a= 1, c= 0:5, σ2 = 1;
initial value of b=−0:5; and diffusion constants (from bottom to top) are
from D= 2:0 to D= 0:2 in equal intervals. A very similar plot can be obtained
as a function of σ2: large noise amplitude values induce a change in the sign
of b and, thus, the nature of the phase transition.
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continuous ones. Most of the current ecosystem management
strategies focus on stopping or slowing down the ongoing change
before the shift occurs. For instance, the declaration of a species
as protected aims to prevent species extinction. In the system’s
phase diagram, this is equivalent to preventing the control pa-
rameter a (e.g., poaching pressure) from reaching its transition
value. Unfortunately, this goal is not always possible to achieve,
e.g., when the control parameter is linked to natural resource
availability, climatological factors, or hardly unavoidable human
activities. In these cases, our study offers alternative strategies
with which the catastrophic effects of those shifts can be reduced
(that is, the discontinuous shift can be transformed into a con-
tinuous one), allowing the transition to be more predictable and
even eventually reverted. Continuous transitions show a single
stable state changing progressively with environmental condi-
tions; therefore, they are easier to handle, foresee, and undo.
Some examples of ecosystem engineering that could poten-

tially take the system in that direction include introducing or
enhancing spatial disorder (e.g., grazing, watering, or burning
selected zones in the vegetation example), forcing a reduction of
effective diffusion (e.g., preventing seed dispersal by herbivores),
or artificially enhancing demographic variability. Similarly, these
ideas may be potentially useful in the design of practical pro-
grams for ecosystem restoration and management policies to
avoid the collapse of natural resources. For instance, using any of
the mechanisms we present here to smooth an abrupt transition
to extinction could potentially open the door to the existence of
low-density states of the focal species, which were not possible in
the discontinuous case. These low-density states could be ideally
used as early warning indicators and therefore help prevent such
extinctions. On the other hand, introducing these mechanisms
may enlarge the absorbing phase (i.e., shift the transition point ac
toward less negative values). Therefore, the system may become
more vulnerable because the same pressure will drive the pop-
ulation extinct. Thus, the suitability of these mechanisms for
ecosystem management depends on this important trade-off be-
tween predictability and vulnerability, which needs to be carefully
evaluated.
In summary, we have proposed a general framework under

which specific studies of potential catastrophic shifts should be
set to obtain more reliable and informative predictions. Given the
growing concerns about the effect of anthropogenic pressures on
climate and biodiversity, we hope that this framework will help to
understand better and open new research roads to explore pos-
sible strategies to mitigate the radical and harmful effects of
sudden undesirable regime shifts.

Methods
Smooth Transitions into Quiescent States. Extinctions can be seen as transi-
tions from an active to a quiescent or absorbing phase, in which essentially all
dynamics and activity cease. Most of them—in opposition to catastrophic
shifts—correspond to second-order/continuous phase transitions in which
the system changes in a much smoother way, moving gradually from one
phase to the other in a rather universal, i.e., detail-independent, fashion (26,
27, 28, 81, 82). More specifically, all these systems organize at the transition
critical point in a scale-invariant fractal way, with its concomitant power law
distributions and scaling behavior (51).

The essential properties of this broad family of transitions into absorbing
or quiescent states—customarily called DP class—are well captured by the
Langevin equation (26, 27, 28, 81, 82):

∂tρðx,tÞ= aρðx,tÞ−bρ2ðx,tÞ+D∇2ρðx,tÞ+ ηðx,tÞ,b> 0, [3]

which differs from Eq. 2 just in the sign of b and the fact that the cubic term
is, therefore, not needed (i.e., it is irrelevant). Observe that in the absence
of noise and assuming spatial homogeneity, this equation reduces to the
simple deterministic equation for continuous transitions discussed in In-
troduction. Eq. 3 has been studied both analytically [with renormalization
group techniques (81, 82) and other methods (26)] and numerically (68), and
the properties of the associated continuous transition have been well

established. The resulting phase transition is continuous, as it is at a de-
terministic level, but important quantitative aspects do not coincide with the
deterministic predictions; noise and spatial dimension are crucial aspects to
describe them. For instance, at criticality, the activity decay ρðtÞ∼ t−0:45 and
the evolution of the total activity in spreading experiments, NðtÞ∼ t0:23, are
power laws with universal exponents, defining the DP universality class in 2D
systems (72).

Integration Scheme. Integrating stochastic (partial) differential equations
with multiplicative noise, i.e., a noise depending on the system’s state, is a
nontrivial task. The key problem is that standard integration techniques do
lead to negative values of the activity variables ρ and, thus, to numerical
instabilities. Nevertheless, an efficient and accurate numerical integration
can be obtained through a split-step scheme introduced a few years ago
(68). The scheme consists of separating, at each spatial site, the integration
of some of the deterministic terms from that of the stochastic part (plus
eventually linear and constant deterministic terms), e.g., ∂tρ= aρ+ η, where
the Gaussian (white) noise ηðx,tÞ has zero mean and variance proportional to
σ2ρðx,tÞ. The scheme allows us to exactly sample, at each spatial location, the
time-dependent solution of the associated Fokker–Planck equation (55):

Pðρðt +ΔtÞÞ= λe−λðρðtÞe
at+ρÞ +

�
ρ

ρðtÞeat
�μ=2

Iμ
�
2λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðtÞρeat

p �
, [4]

where Iμ is a Bessel function of order μ, λ= 2a=σ2ðeat − 1Þ, and μ=−1. The
most important step is to realize that this equation can be rewritten, with
the help of a Taylor series expansion, as

Pðρðt +ΔtÞÞ=
X∞
n=0

ðλρðtÞeaΔtÞne−λρðtÞeaΔt
n!

λe−λρðλρðtÞÞn+μ
Γðn+ μ+ 1Þ , [5]

and noticing that ρðt +ΔtÞ can be obtained by a mixture of gamma and
Poisson probability distributions that will reconstitute, on average, all terms
of the latter equation. Thus, the method alternates two steps: (i) the in-
tegration of deterministic terms using some standard algorithm (such as an
Euler or Runge–Kutta) and then (ii) using its output, Eq. 5 is used to obtain
the final updated value of ρðt +ΔtÞ at each spatial location. More details and
applications of this numerical scheme can be found in ref. 68.

Computational Experiments. Different types of computational experiments
have been performed to ascertain the nature of phase transitions: (i) In decay
experiments the system is initialized with a homogeneously active state,
ρðx,t = 0Þ= 1, and the evolution of ρðtÞ is monitored, averaging over all sites
and over many different realizations. (ii) In spreading experiments, we fol-
low the dynamics of an initially localized seed of 100 active sites forming a
10× 10 squared box at the center of an otherwise empty lattice, measuring
how the averaged total (integrated) activity changes as a function of time.
(iii) In interfacial experiments, an initially half-empty/half-occupied lattice is
considered, and the dynamics of the interface separating the two halves is
analyzed (Fig. 2). In first-order transitions this interface moves on average in
one direction or the other depending on the value of the control parameter
and remains stable right at the Maxwell point. Instead, in second-order

Propagator

Cubic vertex Noise vertex

Diagram

ELEMENTS OF PERTURBATIVE CALCULATION

Fig. 6. Basic elements of a perturbative (diagrammatic) expansion. Propa-
gator, vertices, and novel Feynman diagram contributing to lowest-order
perturbative correction to b, as discussed in Methods. For more details and
proper definitions, see, e.g., ref. 27.
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continuous transitions the interface is quickly erased rather than moving as
a whole.

Renormalization Group Analysis. Renormalization group techniques (51, 78)
have been applied to equations such as Eqs. 3 and 2. In particular, Eq. 3—
sometimes called Reggeon field theory or Gribov process—captures the
relevant features of continuous transitions into absorbing or quiescent
phases, defining the so-called DP class (26, 81, 82). For a clear and concise
presentation of how renormalization group techniques can be applied to
Eq. 3we refer the reader to ref. 27. The calculation consists of a perturbative
expansion around the critical dimension, dc = 4, above which standard de-
terministic (mean field) results hold.

Here we just follow the calculation in ref. 27 and briefly describe the
modifications required to deal with Eq. 2 rather than with Eq. 3. All of the
basic ingredients of the perturbative theory remain unchanged (Fig. 6) (27),
but the sign of b needs to be inverted, and an additional cubic nonlinearity,
−cρ3 (which has an associated new vertex as shown in Fig. 6) needs to
be included.

Naive dimensional analysis tells us that the new cubic term is irrelevant
around four spatial dimensions (at which the perturbative expansion is
performed); however, if b is negative, then c is needed to stabilize the
theory, and thus, it is a so-called dangerously irrelevant operator, which
needs to be explicitly taken into consideration to obtain stable results.

The renormalization procedure consists of first rescaling coordinates and
fields, x→Λx, t→Λzt, and ρ→Λχρ [where Λ is an infinitesimal dilatation in
momentum space, which can be expressed as Λ=expðlÞ], and then elimi-
nating short-range fluctuations, i.e., integrating out the moments in the
shell Ω≤ jkj≤ΩΛ, where Ω is the original cutoff in momentum space (i.e., the
inverse of the underlying lattice space). By doing this, one can readily obtain
a renormalized effective theory at a coarser scale; that is, it is feasible to
compute effective values for all parameters appearing in Eq. 3 as a function
of the coarse-graining parameter l (27, 78, 81, 82).

Here we consider only the lowest-order correction in a series expansion in
the parameter c. The new leading correction to bðlÞ within this approxi-
mation stems from the combined effect of the noise vertex σ2 and the cubic
nonlinearity c (as schematically represented by the corresponding Feynman
diagram shown in Fig. 6) and yields 3cσ2lSd=½4ð2πÞdðΩ2D+ aÞ�, where Sd is

the surface of a d-dimensional hypersphere. Incorporating this additional
correction to the standard DP renormalization group flow equations and
fixing the spatial dimension to d = 2, we obtain the flow diagram shown in
Fig. 5. Starting with a negative value of b, the flow keeps it negative for
large values of D, whereas for small D values the renormalized value crosses
the line b= 0, thus becoming positive and remaining so. As soon as b be-
comes positive, the standard DP theory is recovered, the term c becomes
irrelevant, and therefore, it starts flowing to 0 at larger coarse-graining
scales. As c approaches 0, the value of b in the renormalization group
becomes identical to that of the standard directed percolation class, and in
particular, b reaches the DP fixed point.

Similarly, keeping the same value of D, the same phenomenon can be
observed by increasing the (demographic) noise variance σ2. Let us remark
that a tricritical point, at which the renormalized b vanishes, should also
appear at some value of D (located at D≈ 0:9 in Fig. 5). This point separates
continuous from discontinuous transitions and can be also investigated in
detail using renormalization group techniques (83). Similar but milder re-
sults are obtained in three spatial dimensions, d = 3. Indeed, observe that as
Sd=ð2πÞd increases with decreasing dimensionality, the effect becomes more
pronounced for low-dimensional systems: the lower the dimension, the
larger the value of D at which the transition changes nature.

In summary, a renormalization group calculation enables us to determine
analytically that for low diffusion constants and/or for large noise amplitudes,
a change in the nature of the phase transition is to be expected from a first-
order behavior at a mean field (fluctuation-less) level to a second-order one
once fluctuations have been taken into consideration, especially in low-
dimensional systems.
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