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Abstract

Significance: Inflammasomes are multiprotein complexes localized within the cytoplasm of the cell that are
responsible for the maturation of proinflammatory cytokines such as interleukin-1b (IL-1b) and IL-18, and the
activation of a highly inflammatory form of cell death, pyroptosis. In response to infection or cellular stress,
inflammasomes are assembled, activated, and involved in host defense and pathophysiology of diseases.
Clarification of the molecular mechanisms leading to the activation of this intracellular inflammatory ma-
chinery may provide new insights into the concept of inflammation as the root of and route to human diseases.
Recent Advances: The activation of inflammasomes, specifically the most fully characterized inflammasome—
the nucleotide-binding oligomerization domain (NOD)-like receptor containing pyrin domain 3 (NLRP3) in-
flammasome, is now emerging as a critical molecular mechanism for many degenerative diseases. Several
models have been developed to describe how NLRP3 inflammasomes are activated, including K+ efflux,
lysosome function, endoplasmic reticulum (ER) stress, intracellular calcium, ubiquitination, microRNAs, and,
in particular, reactive oxygen species (ROS). Critical Issues: ROS may serve as a ‘‘kindling’’ or triggering
factor to activate NLRP3 inflammasomes as well as ‘‘bonfire’’ or ‘‘effector’’ molecules, resulting in patho-
logical processes. Increasing evidence seeks to understand how this spatiotemporal action of ROS occurs during
NLRP3 inflammasome activation, which will be a major focus of this review. Future Directions: It is im-
perative to know how this dual action of ROS works during NLRP3 inflammation activation on different stimuli
and what relevance such spatiotemporal redox regulation of NLRP3 inflammasomes has in cell or organ
functions and possible human diseases. Antioxid. Redox Signal. 22, 1111–1129.

Introduction

Through pattern recognition receptors (PRRs), the
human innate immune system identifies exogenous

pathogen-associated molecular patterns (PAMPs) and en-
dogenous danger signals or damage-associated molecular
patterns (DAMPs) derived from injured tissue or cells, by
which a host defense reaction or an inflammatory response is
activated. Multiple families of PRRs exist and include C-type
Lectin receptors, toll-like receptors (TLRs), and pentraxins
that survey the extracellular milieu as well as the nucleotide-
binding domain leucine-rich repeats (NLRs) and RIG-I-like
receptors (RLRs) which detect intracellular signals. Al-
though these multiple PRR families converge in the regula-
tion of cytokine and chemokine transcription, the NLR

family is more specifically responsible for maturation of pro-
inflammatory cytokines interleukin-1b (IL-1b) or IL-18.
Among the NLR family, the nucleotide-binding oligomeri-
zation domain (NOD)-like receptor containing pyrin domain
3 (NLRP3, also known as NALP3, CIAS1, cryopyrin, or
PYPAF1) inflammasome, has been more fully characterized
compared with others, and is now considered a key mediator
in the activation of the innate immune system in response to a
wide range of danger signals derived from disease and in-
fection, including PAMPs and DAMPs (10, 78, 100, 106,
149). It has been shown that oligomerization of the NLRP3
protein, the adaptor molecule apoptosis-associated speck-like
protein containing a CARD (caspase recruitment domain)
(ASC), and the cysteine protease caspase-1 form this cyto-
solic multiprotein complex, causing the maturation of IL-1b
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and IL-18. NLRP3 inflammasomes instigate the innate im-
mune response in different cells, and its activation is partic-
ularly critical for the sterile inflammatory reaction to DAMPs
during chronic degenerative diseases (81, 122).

More recently, NLRP3 inflammasome activation has also
been reported to directly trigger other cell injury responses
through noninflammatory actions (147). These noninflam-
matory actions of NLRP3 inflammasome activation may in-
clude mechanisms related to pyroptosis, glycolysis, lipid
metabolism, and cell survival (65). These actions, concurrent
with the initiation of the innate immune response, may result
in dysfunction or loss of structural integrity of cells or tissues
during chronic diseases such as atherosclerosis, Alzheimer’s
diseases, diabetes mellitus, metabolic disorders, and gout
(82). In particular, the role of inflammasomes in the patho-
genesis of metabolic syndrome is considered rather com-
plicated and the notion that inflammasome activation
contributes only to the inflammatory progression of disease
may be oversimplified (49), especially when caspase-1-
mediated cleavage of glycolytic enzymes has been shown to
also regulate adipocyte metabolism and energy pathways
(118). With 121 substrates identified for caspase-1, a recent
review by Denes et al. describes the extensive potential of
inflammasome and caspase-1 activation far beyond the ca-
nonical inflammatory responses and into other pathways re-
lated to cell death, cytoskeletal arrangement, and metabolism,
undoubtedly contributing to altered cell function (31).

Over the last 5 years, our laboratory has extensively
studied the role of NLRP3 inflammasomes in the develop-
ment of atherosclerosis during hyperlipidemia and in the
progression of glomerular sclerosis during hyperhomocys-
teinemia (hHcys). We have elucidated the redox mechanisms
regulating its activation, which involve ‘‘kindling’’ reactive
oxygen species (ROS) serving as a trigger to its local acti-
vation in cells of glomeruli or in arterial endothelial cells.
NLRP3 inflammasome activation and subsequent infiltration
of inflammatory cells, such as T-cells or macrophages, in
these tissues exacerbate the production of ROS, causing se-
vere local oxidative stress or ‘‘bonfire’’ ROS, ultimately
developing into tissue fibrosis or sclerosis (4, 18). In addition,
we found that activation of the inflammasome produced a
number of actions independent of inflammation which also
contribute to the development of atherosclerosis or glomer-
ular sclerosis, including acute injury of endothelial function
(readers are directed to an article in this forum by Zhang
et al.), enhanced capability of lipid deposition within mac-
rophages (69), and reduced nephrin synthesis in podocytes
(150). Our findings along with an analysis of the literature
will be integrated throughout this forum review as we discuss
the background of NLRP3 inflammasomes, the possible
mechanisms of its activation, the specific origins and roles of
ROS as a trigger or effector, and the relevance of these
findings to human disease. We hope this forum review will
provide a comprehensive picture of the NLRP3 inflamma-
some and its redox regulation under physiological and
pathological conditions.

Different Types of Inflammasomes

The pro-inflammatory cytokine IL-1b, a powerful in-
flammatory mediator, is one of the most studied cytokines
related to the innate immune response (32). Jurg Tschopp and

his group identified the inflammasome as the molecular
platform required for the activation of caspase-1, previously
known as IL-converting enzyme, which is responsible for the
maturation of IL-1b from its precursor form (79). Various
types of inflammasomes are centered on different members of
the NLR family, and although 23 NLR genes have been
identified to date, only a few form oligomeric complexes
result in post-translational activation of caspases (13). Al-
though caspases are generally thought to be pro-apoptotic,
there is a subclass of inflammatory caspases that is respon-
sible for the maturation of inactive cytokine precursors such
as IL-1b and IL-18 (32). The major caspase-processing in-
flammasomes currently found throughout the literature in-
clude the NLRP1, NLRC4, AIM2 (absent in melanoma 2),
and NLRP3 inflammasomes (Fig. 1).

The NLRP1 inflammasome was the first discovered and
characterized NLR, and was initially related to direct cas-
pase-5 as well as to caspase-1 processing in the presence of
ASC (79). Extensive studies in macrophages and in recon-
stituted systems have demonstrated that NLRP1 is sensitive
to both bacterial cell wall component muramyl dipeptide
(MDP) and Bacillus anthracis lethal toxin (19, 38). However,
more recent work in murine macrophages has shown lethal
toxin, but not MDP, to be NLRP1 dependent (63). The
NLRC4 inflammasome, also recognized as IL-1b-converting
enzyme protease-activating factor (IPAF), is most associated
with caspase-1 activation and IL-1b production in response
to various gram-negative bacteria. It is hypothesized that
NLRC4 activates caspase-1 on sensing the presence of
bacteria-specific and conserved proteins: flagellin, rod, and
needle (62, 88, 153). In an agonist-dependent manner, it is
reported that NLR family apoptosis inhibitory proteins
(NAIPs), homologs of NLRC4, actually bind to the stimuli
and associate to NLRC4 to activate caspase-1 processing
(62, 64, 71). AIM2 inflammasomes contain a HIN200 do-
main, which preferentially binds to cytosolic double-stranded
DNA, and a pyrin domain for ASC recruitment, leading to the
proteolytic cleavage of caspase-1 through CARD-CARD
interactions (111).

NLRP3 inflammasomes

The most characterized member of the NLR family is the
NLRP3 inflammasome. Before being recognized as a cas-
pase-activating molecular platform, mutations in NLRP3
were first identified in patients with familial cold urticaria
(FCU) and Muckle–Wells syndrome (MWS) (5). Agostini
et al. later demonstrated that the spontaneous secretion of
IL-1b in patients with MWS derived from oligomeric
complexes comprised NLRP3, ASC, and caspase-1, which
was termed the inflammasome (6). Since then, the NLRP3
inflammasome has been shown to respond to a very diverse
range of activators, including those of microbial origin,
endogenous danger signals, and exogenous nonmicrobial
stimuli; of particular interest is the fact that the NLRP3
inflammasome is considered a general sensor of DAMPs,
which may be important in sterile inflammation observed in
many human diseases. This led to great interest in the sci-
entific community to identify activators of the NLRP3 in-
flammasomes and an attempt to understand how such a
broad range of stimuli can activate the same molecular
platform (24).
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With regard to exogenous NLRP3 inflammasome acti-
vators, many studies have provided evidence of NLRP3 in-
flammasome activation in response to a whole host of foreign
danger signals and microbes, including the influenza virus,
adenoviruses, Staphylococcus aureus, Escherichia coli, Neis-
seria gonorrhoe, and Candida albicans (36, 55, 59, 76, 95,
125). Although the ability of these microbial toxins to form
membrane pores is linked to their ability to activate NLRP3, it
still remains unknown whether a single or a combination of
PAMPs is directly responsible for its activation. Another group
of NLRP3 stimulators are the nonmicrobial phagocytosed
materials, where monosodium urate (MSU) crystal accumu-
lation associated with gout was one of the first inflammatory
diseases linked to the activation of NLRP3 (80). In a similar
manner, silica, asbestos, and aluminum salts have also been
shown to trigger caspase-1 cleavage and IL-1b production via
NLRP3 activation (33, 53).

However, the activation of NLRP3 inflammasomes to a
very wide range of endogenous danger signals or DAMPs
is what sets NLRP3 apart from other inflammasomes. It
is proposed that the formation and activation of this in-
flammasome may be a critical pathogenic mechanism medi-
ating many degenerative diseases such as atherosclerosis,
Alzheimer’s disease, glomerular sclerosis, lung fibrosis, and
liver cirrhosis (30, 50, 69, 150). For example, excessive levels
of ATP were described as one of the first endogenous DAMPs
to induce NLRP3 inflammasome formation and activation, a

mechanism involving high concentrations of extracellular
ATP binding to the purinergic P2X7 receptor (104). The ag-
gregation of endogenous peptides such as amyloid-b are also
sensed by NLRP3 (44), leading to the production of pro-in-
flammatory cytokines, which explains the elevation of IL-1b
detected in the brains of patients with Alzheimer’s disease
(43). Cholesterol crystals are known to cause phagolysosomal
damage, and have been shown to lead to the early activation of
NLRP3 and the promotion of a pro-atherosclerotic phenotype
(35); while an endogenous danger signal of trauma, hyalur-
onan, also triggers chemokine release in affected tissues
through NLRP3 (146). Damage to pancreatic islet cells by
hyperglycemia caused NLRP3 inflammasome activation,
glucose intolerance, and insulin resistance in a murine model
of diabetes (154). Our recent studies demonstrated that ele-
vated levels of homocysteine (Hcys), a thiol-containing amino
acid derived from methionine, stimulate NLRP3 inflamma-
some formation and activation, leading to podocyte cell injury
and, eventually, glomerular sclerosis in the kidney (150). In-
hibition of the inflammasome via ASC short hairpin RNA
(shRNA) or the caspase-1 inhibitor, WEHD (peptide sequence
Ac-Tyr-Val-Ala-Asp-CHO), prevented Hcys-induced detri-
mental effects on glomerular structure and function, signifying
a critical role for NLRP3 in the pathogenesis of end-stage renal
disease (ESRD) related to hHcys (150). In the coronary arterial
wall, we also showed that endothelial NLRP3 inflammasomes
were activated on stimulation with the adipokine visfatin,

FIG. 1. Four major types of inflammasomes and their known stimulators. Nucleotide-binding oligomerization domain
(NOD)-like receptor containing pyrin domain 3 (NLRP1), proposed to be activated by bacterial cell wall component
muramyl dipeptide (MDP) and Bacillus anthracis lethal toxin, can directly cause caspase-5 processing, but the presence of
adaptor protein apoptosis-associated speck-like protein containing a CARD (ASC) results in more robust activation. NLRC4
activation is mostly associated with gram-negative bacteria components and can also directly process caspase-1 through its
caspase recruitment domain (CARD). Double-stranded DNA (dsDNA) binds preferentially to the HIN200 domain of AIM2
(absent in melanoma 2), and requires ASC for caspase-1 processing. NLRP3 also requires ASC and caspase-1, is activated
in response to both exogenous and endogenous danger signals, and is mostly recognized for its role in sterile inflammation.
To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars
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which may be an initiating factor resulting in vascular in-
flammation and injury leading to atherosclerosis (143). Ta-
ken together, NLRP3 inflammasomes have contributed to a
paradigm shift in how we understand the pathogenesis of
different human degenerative diseases and develop new
therapeutic strategies for its treatment.

NLRP3 Inflammasome Activation Models

The activation of NLRP3 inflammasomes has been im-
plicated in a growing number of diverse pathological con-
ditions, ranging from bacterial infections to cardiovascular
dysfunction and metabolic syndrome (17, 35, 48, 102). De-
spite rapid and extensive efforts in identifying various agents
that stimulate the NLRP3 inflammasome, the underlying
mechanisms by which these diverse danger signals activate
the same molecular machinery remain poorly understood.

This section will discuss some current models hypothesized
to facilitate NLRP3 inflammasome activation, which is
summarized in Figure 2.

ATP and K + efflux

ATP, an endogenous DAMP, was one of the first described
NLRP3 inflammasome activators, where high extracellular
concentrations resulted in the depletion of cytosolic K + ,
leading to NLRP3- and ASC-dependent caspase-1 activation
and IL-1b secretion (76). K + efflux was the first model de-
scribed that linked all known NLRP3 activators at the time,
including ATP, nigericin, MSU crystals, and pore-forming
toxins (93, 107). K + efflux and low intracellular K + con-
centration caused by activation of the P2X7 purinergic re-
ceptor in response to ATP is now considered an important
signaling pathway to activate NLRP3 inflammasomes

FIG. 2. Models of NLRP3
inflammasome activation.
Considered to be a two-step
mechanism, the primary sig-
nal comes from the activa-
tion of toll-like receptors
(TLRs) and is responsible for
the upregulation of NLRP3
and pro-interleukin-1b (IL-1b)
in an NF-kappaB (NF-jB)-
dependent manner. Secondary
signals come from multiple
pathways: K+ efflux via P2X7
receptor activation, endoplas-
mic reticulum (ER) stress,
mitochondrial dysfunction,
NADPH oxidase, frustrated
phagocytosis, and lysosomal
rupture pathways, all of which
appear to converge in the
production of reactive oxygen
species (ROS). Together, these
primary and secondary signals
activate the NLRP3 in-
flammasome, resulting in pro-
teolytic cleavage of caspase-1
and the maturation of IL-1b.
To see this illustration in col-
or, the reader is referred to the
web version of this article at
www.liebertpub.com/ars
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(76, 121). ATP has also been demonstrated to cause transient
pore formation through pannexin-1, enabling NLRP3 stim-
ulators to cross the plasma membrane and directly promote
inflammasome assembly and activation (104).

Lysosome destabilization and frustrated phagocytosis

Another activating mechanism of NLRP3 inflammasomes
is related to the actions of lysosomal enzymes in response to
phagosomal stimulations that are too large to cross the
membrane and instead are taken up into the cell via phago-
cytosis. Martinon et al. were the first to demonstrate that
insoluble uric acid, which accumulates at the joints of pa-
tients with hyperuricemia to form MSU crystals, activated
NLRP3 inflammasomes, causing IL-1b maturation, produc-
ing the inflammatory phenotype typically seen in patients
suffering from gout (80). Dostert et al. furthered this study,
finding that incomplete phagocytosis of crystals leads to ly-
sosome swelling and destabilization, causing lysosomal
rupture and the release of cathepsin B, a lysosomal enzyme
shown to activate NLRP3 inflammasomes (33). Much evi-
dence supports a crucial role for lysosome stability in
downstream caspase-1 activation and IL-1b release in re-
sponse to MSU crystals, as inhibition of cathepsin B greatly
abrogated these effects (53). These mechanisms extended not
only to other endogenous crystalline structures such as cho-
lesterol crystals (35) but also to environmentally derived
crystals such as asbestos, silica, and aluminum salts typically
used in vaccine adjuvants (33, 53). However, the mechanism
of how cathepsin release results in NLRP3 activation still
remains unknown.

Reactive oxygen species

Although NLRP3 was originally hypothesized to be a
cytosolic receptor, with such a broad range of stimuli dem-
onstrated to cause its activation, it seems highly improbable
that NLRP3 acts as a receptor to directly bind to all of these
diverse stimuli. ROS, produced by many known activators
of NLRP3 inflammasomes, are shown to be a critical mech-
anism triggering NLRP3 inflammasome formation and acti-
vation in response to many exogenous stimuli as well as
endogenously produced or secreted molecules from damaged
cells such as DAMPs (127). The hypothesis of ROS as an
NLRP3-activating trigger arose when inhibition of NADPH
oxidase-derived ROS prevented ATP-induced caspase-1 ac-
tivation and IL-1b production in alveolar macrophages (28).
Further substantiating this hypothesis, knockdown of the
p22phox subunit of NADPH oxidase significantly suppressed
IL-1b release in THP1 cells in response to asbestos and MSU
challenge (33). Interestingly, incomplete phagocytosis of
crystalline particulates by phagocytic cells such as macro-
phages is a source of ROS as well as reactive nitrogen species
(41). The crystal structure of NLRP3 contains a highly con-
served disulfide bond connecting the PYD domain and the
nucleotide-binding site domain, which is highly sensitive to
altered redox states (9). The presence of this unexpected
disulfide bond between Cys-8 and Cys-108 spans across six
species, including humans, monkeys, and mice, and the strict
conservation of this bond is indicative of a crucial redox role
for NLRP3. The production of ROS offers a link as to how
many different stimuli, including frustrated phagocytosis,
can activate the same molecular platform.

Endoplasmic reticulum stress and unfolded
protein response

With the NLRP3 inflammasome being more widely ac-
cepted as a general sensor for alterations in cellular homeo-
stasis, it is logical that endoplasmic reticulum (ER) stress,
generated in response to the accumulation of misfolded
proteins and an indicator of metabolic disturbances, could
also be a trigger to activate NLRP3 inflammasomes. Induc-
tion of ER stress promoted IL-1b secretion in human mac-
rophages, suggesting that the generation of ER stress alone
was sufficient to activate NLRP3 inflammasomes (87). In-
terestingly, this activation occurred independently of the
unfolded protein response (UPR), but required the production
of ROS as well as K + efflux (87). Contradictorily, the UPR
and the IRE1a and PERK pathways are necessary for IL-1b
secretion in pancreatic b cells, where thioredoxin-interacting
protein (TXNIP) acts as the link between ER stress, NLRP3
inflammasome activation, and inflammation related to dia-
betes (66, 101). Genetic deletion of TXNIP suppressed IL-1b
release from islet cells and prevented ER stress-induced b
cell death, verifying its role as a key mediator in NLRP3
activation and the detrimental effects associated with un-
controlled ER stress. Currently, the effect of ER stress and
the role of UPR appear to be cell type specific, and require
further studies to clearly understand its role in inflammasome
activation.

Ca2 + signaling

The first implication of intracellular Ca2 + ([Ca2 + ]i) sig-
naling in NLRP3 inflammasome activation came from a
study by Brough et al. that demonstrated reduced IL-1b
production by Ca2 + chelator BAPTA-AM in ATP-treated
murine macrophages (20). More recently, it was discovered
that ATP induced Ca2 + mobilization from both intracellular
and extracellular stores, and that both inhibition of intracel-
lular ER Ca2 + stores by thapsigargin and incubation with
Ca2 + -free media to inhibit extracellular Ca2 + entry were able
to prevent ATP-induced caspase-1 activation and IL-1b se-
cretion (94). The same was required of nigericin, MSU,
and alum-induced NLRP3 inflammasome activation in
macrophages. Excessive Ca2 + can lead to an increase in
mitochondrial ROS (mtROS) production, collapse of the
mitochondrial membrane potential, and eventual mitochon-
dria rupture (34). Thus, Murakami et al. further hypothesized
that mitochondrial damage and dysfunction caused by
sustained levels of high [Ca2 + ]i may be the link to NLRP3
inflammasome activation (94). Further substantiated by Tri-
antafilou et al., the complement membrane attack complex
instigates NLRP3 activation via increased [Ca2 + ]i, which
accumulates in the mitochondrial matrix, leading to loss of
membrane potential (126). Importantly, blocking mitochon-
drial Ca2 + uniporter prevented not only accrual of mito-
chondrial Ca2 + but also IL-1b production.

Deubiquitination

In some cells such as neutrophils or macrophages, there is
evidence that NLRP3 inflammasome activation is a two-step
mechanism requiring a primary TLR-mediated signal which
activates NF-kappaB (NF-jB) to drive transcription of
NLRP3 and pro-IL-1b; while a second triggering signal
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results in pro-IL-1b caspase-1-dependent cleavage (13). Prim-
ing, typically by lipopolysaccharide (LPS), has been shown
to take approximately 2 h to upregulate NLRP3 expression
(16). However, recent reports have suggested a rapid, non-
transcriptional priming mechanism that occurs within min-
utes. Through coimmunoprecipitation studies in mouse and
human macrophages, it was demonstrated that there exists
a basal level of ubiquitinated NLRP3 which on LPS or ATP
treatment is rapidly deubiquitinated (60). This process was
found to be essential for NLRP3 inflammasome activation, as
inhibition of deubiquitinases by small-molecule inhibitors
completely blocked IL-1b production (73). Breast cancer 1 or
2 protein (BRCA1/BRCA2)-containing complex subunit 3,
BRCC3 is an NLRP3-specific deubiquitinase enzyme that
has recently been identified as the critical regulator of NLRP3
ubiquitination and its subsequent activation (110).

MicroRNAs

Specific to myeloid cells, a genome-wide microRNA
(miRNA) screen identified miRNA-223 as a strong candidate
specifically binding to the 3¢ untranslated region of NLRP3
and negatively regulating NLRP3 expression (15). During
differentiation of monocytes to macrophages, miR-233 in-
versely correlated with NLRP3 expression where miR-233
mRNA expression was higher in monocytes and NLRP3
protein expression was higher in macrophages (45). Coin-
ciding with a clear involvement in NLRP3 inflammasome
regulation, it is interesting that mice deficient in miR-233
have previously been shown to exhibit serious sterile in-
flammation similar to that of NLR-derived autoimmune
diseases (58). In addition, in a less direct fashion, activation
of IRE1a through ER stress pathways caused rapid reduction
of another miRNA, miR-17. miR-17 negatively regulates
TXNIP mRNA stability; therefore, the lack of miR-17 in-
creased stability of TXNIP mRNA and promoted NLRP3
inflammasome activation (66).

Redox Activation of NLRP3 Inflammasomes

Due to the leucine-rich repeats found in the C-terminus of
NLRP3, it was originally hypothesized to act as a cytosolic
receptor and directly bind to a ligand. However, this hy-
pothesis was neglected after the discovery of many diverse
stimuli which were found to activate NLRP3, and it became
much more accepted that NLRP3 senses molecular inter-
mediates generated by these broad activators. The generation
of ROS was one of the first intermediates discovered to be
common to ATP, MSU, asbestos, and silica-induced NLRP3
activation (33). Since then, there have been many conflicting
reports regarding the role of ROS in this process, creating
much controversy in understanding the regulation of NLRP3
inflammasome activation. Evidence describing the role of
ROS as an activator or regulator of NLRP3 inflammasomes
on different stimuli is given next.

ROS as a requirement for NLRP3 ‘‘priming’’

Particularly in phagocytes such as macrophages, it has
been shown that NLRP3 inflammasome activation requires
two signals—a ‘‘priming’’ transcriptional step that involves
TLR/NF-jB signaling, followed by post-translational regu-
lation responsible for the oligomerization of the inflamma-

some components and the secretion of IL-1b (16, 75). This
TLR-dependent signal is necessary for the activation of the
transcription factor NF-jB and the downstream induction
of pro-IL-1b expression, while NLRP3 inflammasomes
control its proteolytic maturation. Specific activation of
TLR2, TLR3, TLR4, and TLR7 induced NLRP3 priming,
which occurred in an adaptor protein MyD88-dependent
manner (16). Furthermore, specific blockade of NF-jB ac-
tivity by inhibitor Bay11-7082 revealed its necessity for
NLRP3 priming and enhancement of expression. This TLR
and NF-jB-dependent priming was required for NLRP3 in-
flammasome activation in response to pore-forming toxin
nigericin, ATP, as well as crystalline stimuli such as MSU.
This two-step mechanism that first requires activation of
PRRs in response to danger signals followed by an activating
stimulus may be an evolutionarily conserved process to help
prevent uncontrolled NLRP3 activation and excessive IL-1b
release. However, in other cell types such as endothelial cells
and podocytes, a two-step signal may not be needed, where
constitutive or basal expression of pro-IL-1 and other asso-
ciated molecules may be adequate to form and activate
NLRP3 inflammasomes, albeit to a lesser extent than those in
phagocytes, but sufficient enough to produce pathological
changes in chronic degenerative diseases (98). In this regard,
NLRP3 inflammasome activation may hinge on the strict
requirement of NLRP3 priming by a proinflammatory sig-
nal, a step that is blocked by ROS inhibitors. Studies in
mouse macrophages demonstrated that TLR4 with Myd88
can rapidly and nontranscriptionally prime NLRP3 through
its deubiquitination. This process is dependent on mtROS
production and can be inhibited by antioxidants. Pharmaco-
logical inhibition of NLRP3 deubiquitination completely
blocked NLRP3 activation in both mouse and human cells,
indicating that deubiquitination of NLRP3 is required for its
activation. It has been suggested that NLRP3 is activated by a
two-step deubiquitination mechanism initiated by TLR sig-
naling and mtROS (60).

NADPH oxidase-derived ROS

Due to the role of ROS being limited specifically to the
priming step, there are studies supporting the dispensability
of ROS in the activation of NLRP3 inflammasomes. Mac-
rophages isolated from gp91phox - / - mice or patients with
chronic granulomatous disease (CGD) and deficient NADPH
oxidase displayed normal inflammasome function when
challenged with NLRP3 agonists (53, 128). Caspase-1 acti-
vation and IL-1b secretion in response to cyclic stretch was
undisturbed in murine alveolar macrophages, even in those
isolated from gp91phox - / - mice, demonstrating the dispens-
ability of NADPH oxidase to NLRP3 activation in this par-
ticular mechanism (142). This leads to arguments of whether
ROS are truly involved in the activation of NLRP3 in-
flammasomes, but instead are derived from TLRs and con-
tribute to the priming mechanism (14). Wu et al.
demonstrated that mechanical ventilation causes IL-1b re-
lease in the lung; however, there was no inhibitory effect on
released IL-1b in cyclic-stretched mouse alveolar macro-
phages isolated from gp91phox - / - mice (142). Instead, it
was concluded that ROS derived from mitochondria were
necessary for NLRP3 inflammasome activation induced
by cyclic stretch. Furthermore, some studies showed that
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peripheral blood mononuclear cells (PBMCs) isolated from
patients with CGD exhibited normal secretion of IL-1b and
even exacerbated caspase-1 activation when compared with
healthy controls (86, 128, 129). Interestingly, human neu-
trophils with mutations in the gp91phox subunit of NADPH
oxidase, also isolated from patients with CGD, displayed
impaired IL-1b release but displayed no difference in the
ability to activate caspase-1 when compared with neutrophils
from control patients (42). This suggested that NADPH ox-
idase, specifically gp91phox, and the production of ROS are
dispensable for NLRP3 inflammasome activation, but crucial
for IL-1b secretion, specifically in neutrophils but perhaps
not in PBMCs. In addition, an emerging role for antioxidants
as opposed to ROS has been implicated in mediating NLRP3
activation. It has been shown that superoxide dismutase 1
(SOD1) regulates caspase-1 activation, as macrophages iso-
lated from SOD1-deficient mice displayed constitutively
higher O2

� - levels but inhibited caspase-1 activation (85).
Similarly, the oxidant stress-responsive transcription factor
Nrf2, which is responsible for induction of major antioxidant
enzymes, is necessary for cholesterol crystal-induced NLRP3
activation (39).

Despite the evidence of ROS being dispensable and lim-
ited to the priming of NLRP3 inflammasomes, there are
considerable reports supporting the contrary, showing the
elevation of ROS, and in particular NADPH oxidase-derived
ROS, to be critical for NLRP3 inflammasome activation.
Some of the very early inflammasome studies reported the
importance of NADPH oxidase-derived ROS in activating
NLRP3 in response to ATP, asbestos, and silica (28, 33, 51).
The first study of this kind demonstrated inhibited caspase-1
activation and IL-1b release in monocyte THP-1 cells in re-
sponse to asbestos, MSU, and silica on specific knockdown
of NADPH oxidase subunit p22phox or use of general ROS
scavengers such as N-acetylcysteine and antioxidant ammo-
nium pyrrolidine dithiocarbamate (33). Furthermore, ATP
induced NADPH oxidase complex aggregation in these same
cells, and diphenylene iodonium (DPI) treatment inhibited
both ATP- and nigerin-induced IL-1b and caspase-1 pro-
cessing (51). Through the use of either NADPH oxidase in-
hibitors or general ROS scavengers, additional studies
have demonstrated that IL-1b production in response to even
more diverse stimuli could be prevented (23, 72, 105). This
has ever since been extended to more recent reports, where
NADPH oxidase inhibition via DPI or more specifically
through gp91phox subunit blockade can prevent free fatty
acid, TNFa, and atheroprone oscillatory flow-induced
NLRP3 inflammasome activation (7, 140, 145). A central
role for NADPH oxidase and gp91phox was further estab-
lished in ATP-induced NLRP3 inflammasome activation in
LPS-primed murine macrophages, where general NADPH
oxidase inhibitors DPI and apocynin as well as specific
gp91phox siRNA inhibited caspase-1 activation and IL-1b
secretion (70).

Studies from our laboratory have demonstrated a major
contribution of NADPH oxidase-derived ROS, specifically
gp91phox, in the development of hHcys-induced glomerular
damage (151). As mentioned earlier, we have established the
important involvement of NLRP3 inflammasome activation
in the pathogenesis of hHcys-induced glomerular sclerosis,
where locally silencing the ASC gene in the kidney signifi-
cantly reduced NLRP3 inflammasome formation and IL-1b

production in glomeruli of mice with hHcys. Pathologically,
hHcys-associated albuminuria, foot process effacement of
podocytes, loss of podocyte slit diaphragm molecules, and
late-stage glomerulosclerosis were significantly improved by
local ASC gene silencing or by caspase-1 inhibition (150). In
agreement with the aforementioned studies revealing the
important contribution of ROS, we too have attributed this
activation of NLRP3 inflammasomes to NADPH oxidase and
the production of O2

� - (4). Substantiating the importance of
NADPH oxidase redox signaling, we found that over-
expression of the guanine nucleotide exchange factor Vav2
and consequent activation of NADPH oxidase, independent
of elevated Hcys, were also able to produce NLRP3 in-
flammasome-activating effects, suggesting that NADPH
oxidase activation alone was sufficient to initiate the cascade,
leading to NLRP3 inflammasome activation and downstream
glomerular injury (1). In addition, we found that ATP can
activate NLRP3 inflammasomes in renal tubular cells, re-
sulting in the production of inflammasome-derived IL-1b,
which acts directly on tubular cells to enhance sodium re-
absorption and reduce medullary blood flow. All of these
effects were inhibited by SOD mimetic 4-Hydroxy-2,2,6,6-
tetramethylpiperidine-1-oxyl (TEMPOL), suggesting an
important contribution of ROS to ATP-induced NLRP3 in-
flammasome activation (4). In vascular endothelial cells, the
formation and activation of NLRP3 inflammasomes by
the adipokine visfatin served as an important initiating
mechanism to turn on the endothelial inflammatory response,
leading to arterial inflammation and endothelial dysfunction
in mice during early-stage obesity (143); this action of vis-
fatin may also be associated with the activation of NADPH
oxidase (144). In our laboratory, we have defined a novel
mechanism mediating NADPH oxidase activation in re-
sponse to many different stimuli, termed lipid raft (LR) redox
signalosomes. These LR signalosomes use membrane rafts as
a platform to conduct redox signaling, and are centered on the
enzymatic NADPH oxidase subunits clustering and activat-
ing to produce O2

� - (57). NADPH oxidase-derived ROS can
act downstream to conduct transmembrane or intracellular
signaling, leading to the redox regulation of cell and organ
function (67). As shown in Figure 3, we have reported that
stimuli such as Hcys, visfatin, or ATP act on the cell mem-
brane, stimulate acid sphingomyelase to produce and form
ceramide-enriched LR platforms, and increase NADPH ox-
idase-dependent O2

� - production from cells (4, 18, 57, 143,
150). As mentioned earlier, we have reported these stimuli to
also activate the NLRP3 inflammasome and in this regard,
this redox signaling platform may provide the O2

� - neces-
sary to trigger NLRP3 inflammasome activation.

This controversy regarding the precise role of ROS may be
explained through the biphasic redox response and the ho-
meostatic balance between pro- and antioxidant systems. First
described by Tassi et al., an initial increase in oxidant stress
followed by a delayed antioxidant response are two necessary
steps required for IL-1b processing and secretion in human
monocytes stimulated by PAMPs such as LPS, MDP, S. aureus,
and zymosan (124). The basal redox state of different myeloid
cells also contributes greatly to potential IL-1b production (22).
Primary human monocytes displayed low levels of ROS and
antioxidants that resulted in efficient IL-1b secretion on TLR
stimulation. However, THP-1 cells or cultured macrophages
exhibited an upregulation of antioxidant systems that buffered
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and suppressed TLR-triggered IL-1b processing, suggesting
the importance of the redox state in understanding the specific
effects of ROS on NLRP3 inflammasome activation.

Mitochondrial ROS

Alternatively, there is an emerging role for mtROS in the
mechanism of NLRP3 inflammasome activation (21, 155).
Mitochondrial complex I inhibitor rotenone or complex III
inhibitor antimycin robustly increased mtROS production
and, as a result, increased NLRP3 activation (21, 155). Ad-
ditional evidence suggested that NLRP3 localized to the
cytosol and ER during rest, but relocalized to the mito-
chondria on stimulation. This recruitment of NLRP3 to the
mitochondria was mediated by mitochondrial anti-viral sig-
naling protein (MAVS) and was required for IL-1b produc-
tion in response to nigericin stimulation (120). In addition to
mtROS, mitochondrial DNA (mtDNA) has also been re-
ported to directly cause NLRP3 inflammasome activation
(116). In an NF-jB-dependent manner, a second inflamma-
some-activating signal resulted in mitochondrial dysfunction,
apoptosis, and release of mtDNA into the cytosol, which
bound to and caused activation of NLRP3. As previously
mentioned, Wu et al. revealed that specific inhibition of
mtROS by mitochondrial antioxidant SS-13, and not inhibi-
tion of NADPH oxidase, prevented cyclic stretch-induced IL-
1b in alveolar macrophages (142). The roles of ROS from
membrane NADPH oxidase and mitochondria in activation
of NLRP3 inflammasomes are summarized in Figure 4.

Other sources and species of ROS

Apart from NADPH oxidase and mitochondria, there are
many enzymatic systems that contribute to the production of
ROS, including xanthine/xanthine oxidase (X/XO), lipox-

ygenases (LOXs), cyclooxygenases (COXs), and cytochrome
P450s, and, thus, we cannot discount the role of these other
sources. Although many of these systems remain to be explored
in NLRP3 inflammasome activation, there exists some evi-
dence suggesting the involvement of COXs, X/XO, and LOXs,
as well as more specific species of reactive oxygen such as
peroxynitrite (ONOO- ) and hydrogen peroxide (H2O2). In
response to P2X7 receptor stimulation by ATP, which is known
to increase the generation of ROS, COX-2-derived prosta-
glandin E2 (PGE2) release was necessary for IL-1b release
(12). In response to bacteria, PGE2 is a central component in an
inflammasome-mediated ‘‘eicosanoid storm’’ that contributes
to the pathogenesis associated with bacterial infection (132).
Moreover, leukotriene B4 derived from 5-lipoxygenase (5-
LOX) is involved in NLRP3 inflammasome activation and
tissue inflammation related to gout (8). 5-LOX, although not
necessary for the recruitment of neutrophils in response to
MSU, is required for IL-1b production. In addition, uric acid as
another well-established activator of NLRP3 is usually gener-
ated via xanthine oxidase accompanying the generation of
O2
� - . In human THP-1 cells, activation of TLR7/8 by ligand

R848 resulted in increased ROS production, caspase-1, and IL-
1b processing, all of which were abrogated by xanthine oxidase
inhibitor allopurinol (97). This source of O2

� - may also be
involved in NLRP3 inflammasome activation.

In addition to O2
� - , an important role for ONOO - and

H2O2 in NLRP3 activation has also been reported. ONOO -

scavenger 5,10,15,20-Tetrakis(4-sulfonatophenyl)porphyr-
inato iron (III) chloride (FeTPPS) reduced nigericin-induced
caspase-1 activation and IL-1b secretion in human mono-
cytes (51). Jurg Tschopp’s group demonstrated that direct
treatment of THP-1 cells with H2O2 resulted in mature IL-1b
release (154). Studies from our laboratory have also at-
tempted to dissect the specific contribution of various species

FIG. 3. Membrane NADPH oxidase assembly and activation through lipid raft (LR)-mediated clustering to form
redox signaling platforms. Under rest condition, all subunits of NADPH oxidase are separated and the enzyme may not be
active. When vascular or kidney cells are stimulated by inflammatory stimuli such as Hcys or visfatin, the formation of LR
platforms occurs. In such platforms, NADPH oxidase subunits such as gp91phox and p47phox and other proteins become
aggregated, clustered, or recruited, resulting in a rapid assembling of NADPH oxidase into an enzyme complex, producing
O2
� - and ROS that conduct transmembrane or intracellular signaling. To see this illustration in color, the reader is referred

to the web version of this article at www.liebertpub.com/ars
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of ROS to the activation of NLRP3 inflammasomes. Through
specific scavenging studies using SOD mimetic TEMPOL
and H2O2 decomposer catalase, we further demonstrated the
importance not only of O2

� - but H2O2 as well (3). TEMPOL
and catalase administration attenuated in vitro Hcys-induced
NLRP3 inflammasome formation, caspase-1 activity, and IL-
1b production, as well as protected from proteinuria and
damaged glomerular morphology related to hHcys in vivo.
These greatly varying effects between the involvement of
certain species and sources of ROS demonstrate the profound
complexity of the redox system and suggest that the mech-
anisms contributing to NLRP3 activation may perhaps be a
cell-selective and stimuli-specific phenomenon (4).

Mediators of ROS action to activate
NLRP3 inflammasomes

While there is a plethora of evidence supporting ROS ac-
tivation of NLRP3 inflammasomes, the exact mechanisms by
which NLRP3 senses these changes in oxidative stress are
still largely unknown. In this regard, two distinct proteins
have been demonstrated to associate with NLRP3–TXNIP
and MAVS. The canonical work done by Zhou et al. provided
strong evidence of TXNIP as a binding partner to NLRP3,
where association between these two proteins was necessary
for downstream inflammasome activation in pancreatic islet
cells in response to high glucose (154). TXNIP, the negative
regulator of the antioxidant thioredoxin (TRX), may time
dependently dissociate from TRX to bind with NLRP3,
leading to inflammasome formation and activation. Since

then, multiple studies have confirmed the requirement of
TXNIP to NLRP3 inflammasome activation (37, 89, 136).
We have also demonstrated the involvement of TXNIP in
Hcys-induced NLRP3 activation, where Hcys treatment was
able to stimulate TXNIP association with NLRP3 in podo-
cytes (2). Inhibition of TXNIP by local kidney shRNA
transfection or through calcium channel blocker verapamil,
demonstrated to be a potent TXNIP inhibitor (25), prevented
TXNIP-NLRP3 binding in hyperhomocysteinemic mice and
subsequent inflammasome activation and hHcys-induced
glomerular injury. However, TXNIP involvement may also
be specific to these nonphagocytic cells, as the converse has
been shown in bone marrow-derived macrophages isolated
from TXNIP-deficient mice where there was no difference in
IL-1b secretion compared with wild-type macrophages (83).
This evidence suggests that in a cell-type specific manner,
TXNIP may act as a sensor to the changing levels of these
ROS signaling molecules.

As previously mentioned, MAVS is a mitochondrial
adaptor protein shown by Subramanian et al. to mediate
the relocalization and association of NLRP3 to mitochon-
dria (120). However, shown in the same study, this effect
appeared to be specific to ATP and nigericin stimulation, as
NLRP3 inflammasome activation appeared normal in
MAVS-deficient macrophages on crystalline stimulations
such as alum and silica. More recently, through coimmuno-
precipitation studies, MAVS also associates with NLRP3
to facilitate its oligomerization with ASC and caspase-1 in
response to Sendai virus challenge (103). Interestingly,
the mitophagic process may help scavenge ROS, thereby

FIG. 4. Primary activat-
ing pathways of NLRP3
inflammasomes. It was dem-
onstrated that in the kidney
and vasculature, NLRP3 in-
flammasomes are activated
by NADPH oxidase-derived
ROS through LR clustering.
Some stimuli such as ATP
also alter K + efflux or lyso-
some stability to activate
NLRP3 inflammasomes. To
see this illustration in color,
the reader is referred to the
web version of this article at
www.liebertpub.com/ars
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blocking activation of inflammasomes (74). The actions of
TXNIP and MAVS as possible mediators of ROS derived
from NADPH oxidase or mitochondria to activate NLRP3
inflammasomes are summarized in Figure 5.

NLRP3 Inflammasomes in Oxidative Injury
and Chronic Degenerative Diseases

‘‘Kindling’’ and ‘‘Bonfire’’ ROS

As discussed earlier, ROS can serve as a redox signaling
molecule to activate or regulate NLRP3 inflammasome ac-
tivation. This action is similar to the findings in many other
cellular processes that use ROS as a messenger to mediate or
regulate cell–cell communication and intracellular signal
transduction (11, 117, 135). It is well known that under
physiological or pathological conditions, ROS can be pro-
duced as a signaling messenger to maintain cell and organ
function or can be increasingly generated and released in
response to various stimuli. Meanwhile, these active mole-
cules are also constantly scavenged by endogenous antioxi-
dant systems mainly composed of enzyme-mediated
pathways such as SOD, catalase, glutathione peroxidase,
glutathione-S-transferase, TRX/TRX reductase, and other
peroxidases. In addition, the direct reactions between ROS
and different molecules such as nitric oxide, thiols, vitamin E,
b-carotene, ceruloplasmin, ferritin, transferin, hemoglobin,
and ascorbate may also have antioxidant action (11, 117,
135). Being tightly regulated under normal conditions, in-
tracellular and extracellular ROS are maintained at very low
levels, which play physiological signaling roles (less than 1%

of produced ROS) (41, 61, 77, 108, 138). With regard to
NLRP3 inflammasomes, early ROS production may be a
signaling mechanism to activate the formation and activation
of this intracellular machinery. We have demonstrated that
increased O2

� - derived from NADPH oxidase precedes the
assembly of NLRP3 inflammasomes due to its action on
TXNIP binding (2). This NADPH oxidase-produced O2

� - or
ROS may serve mainly as ‘‘kindling’’ signaling molecules,
but may not yet have large injurious effects on cell function or
activities.

When NLRP3 inflammasomes are activated on different
stimuli such as hHcys, hypercholesterolemia, or DAMPs,
the local inflammatory response occurs, and on recruitment
and activation of inflammatory cells such as macrophages
and T-cells, ‘‘bonfire’’ O2

� - and cytokines are produced,
resulting in chronic sterile inflammation and leading to
tissue injury and sclerosis (4, 69, 150). If the generation of
ROS is largely in excess of its scavenging during the local
inflammatory response, intracellular and extracellular oxi-
dative stress occurs; damage of DNAs, proteins, lipids, and
glycols is inevitable, and, eventually, leads to the progres-
sion of various pathophysiological processes and respective
diseases (11, 41, 61). Therefore, ROS derived from in-
flammasome activation and downstream immune cell re-
cruitment may be important pathogenic factors in many
chronic degenerative diseases. However, IL-1b or other
inflammasome products may also directly act on cells such
as podocytes or endothelial cells to decrease functional
protein expression and NO availability, further contributing
to local tissue fibrosis (4, 69, 143, 150).

FIG. 5. Mediators of ROS
action to activate NLRP3
inflammasomes. Two dis-
tinct proteins have been
demonstrated to be associ-
ated with NLRP3–thioredox-
in-interacting protein
(TXNIP) and mitochondrial
anti-viral signaling protein
(MAVS). TXNIP as a bind-
ing partner to NLRP3 time
dependently dissociates from
thioredoxin (TRX) and then
binds with NLRP3, leading
to inflammasome formation
and activation. MAVS also
associates with NLRP3 to
facilitate its oligomerization
with ASC and caspase-1. To
see this illustration in color,
the reader is referred to the
web version of this article at
www.liebertpub.com/ars
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NLRP3 inflammasome activation in chronic
degenerative diseases

It has been reported that mutations in NLRP3 are associ-
ated with autoinflammatory disorders such as MWS, FCU,
Familial Mediterranean fever, and neonatal-onset multisys-
tem inflammatory disease (5, 96). Typical symptoms include
fever after exposure to cold, skin lesions and rashes, neu-
trophilia, painful arthritis, sensorineural deafness, conjunc-
tivitis, and Amyloid A amyloidosis (91). Those with
mutations in the NACHT domain of NLRP3 have constitu-
tively activated NLRP3 complexes and display exaggerated
IL-1b secretion, especially in response to LPS when com-
pared with healthy controls (6). MWS patients respond re-
markably well to IL-1b antagonist, anakinra, implicating a
crucial role of IL-1b in the pathogenic phenotype observed in
these patients (46). In addition to IL-1b, NLRP3 inflamma-
some activation releases IL-18 and DAMP high mobility
group box-1 (HMGB1). Release of HMGB1 is dependent on
NLRP3 inflammasome processing, with its release attenuated
in NLRP3 - / - as well as ASC - / - macrophages during bac-
terial infection (141). However, although HMGB1 alone was
not sufficient to activate NLRP3 inflammasomes or caspase-1
cleavage, HMGB1 treatment of THP-1 macrophages led to an
upregulation in the synthesis of pro-IL-1b and pro-IL-18 (47),
thus creating a vicious cycle of inflammasome activation po-
tentiating both the synthesis and secretion of these powerful
cytokines. Aberrant IL-1b secretion, HMGB1 release, and
NLRP3 inflammasome activation has extended to many tra-
ditionally considered noninflammatory disorders, including
diabetes, obesity, silicosis, liver toxicity, and kidney diseases
(33, 80, 99, 133, 137, 139). Here, we will briefly focus on the
role of NLRP3 in disorders associated with metabolic abnor-
mality, including hHcys, hypercholesterolemia, and obesity.

Redox activation of NLRP3 inflammasomes in chronic
kidney disease

It has been reported that NLRP3 mRNA levels inversely
correlate with renal function in patients with chronic kidney
disease (CKD), and IL-1b and IL-18 levels are increased in
both animal models and patients with CKD (84, 131). In
mice, NLRP3 gene knockout has been shown to protect from
both renal ischemic acute tubular necrosis and the progres-
sion of CKD in the unilateral ureteral obstruction model (56,
131). In addition, glomerular IL-1b mRNA is enhanced after
the first day of the mouse model of streptozotocin-induced
diabetic glomerulosclerosis (114). These studies strongly
support a crucial role for NLRP3 inflammasome involvement
in the progression of ischemic kidney injury and CKD.

Efforts in our laboratory have focused on understanding the
molecular pathogenesis of glomerular injury related to ele-
vated Hcys, which, if left unattended, has the potential to
progress to CKD and, eventually, ESRD (148). These dam-
aging and sclerotic effects of hHcys have been associated with
an inflammatory response mediated by the upregulation of
proinflammatory molecules such as MCP-1, NF-jB, and IL-8,
and adhesion molecules VCAM-1 and E-selectin (29, 134) and
in the recruitment of lymphocytes (109). With podocytes being
a major site of IL-1b synthesis (98), hHcys-induced activation
of NLRP3 inflammasomes may explain how hHcys initiates
the innate immune system in glomeruli (150). As summarized
in Figure 6, when plasma Hcys levels increase, NADPH oxi-

dase in podocytes or glomerular endothelial cells is activated
via LR clustering to produce O2

� - , which results in the for-
mation of NLRP3 inflammasomes, activation of caspase-1,
and the proteolytic cleavage of IL-1b and IL-18 into their
biologically active form, which produce other DAMPs. These
factors may recruit inflammatory cells such as macrophages
and T-cells in glomeruli, contributing to the ‘‘bonfire’’ O2

� -

and cytokine production associated with chronic sterile glo-
merular inflammation and leading to tissue injury and sclero-
sis. IL-1b or other inflammasome products may also directly
act on podocytes to decrease expression of podocyte-specific
proteins such as nephrin and podocin, resulting in slit dia-
phragm derangement and proteinuria. In addition, excessive
production of active caspase-1 may directly damage podocytes
through pyroptosis, leading to foot process effacement and
developing into glomerular sclerosis and ESRD.

Interplay of NLRP3 inflammasomes and ROS
in cardiovascular diseases

Recent studies have demonstrated that the activation of
NLRP3 inflammasome pathways is linked to the pathogen-
esis of cardiovascular diseases such as atherosclerosis, is-
chemic injury, cardiomyopathy, myocardial infarction, and
Kawasaki disease. While the primary roles for NLRP3 in-
flammasomes are mostly related to the inflammatory re-
sponses due to the production of IL-1b and IL-18 or DAMPs
such as HMGB1 (68, 123), emerging evidence has also
revealed that inflammasome activation may also exert non-
canonical effects, which are distinct from inflammasome-
secreted cytokines that induce the activation and recruitment
of inflammatory cells. As mentioned earlier, these mecha-
nisms may potentially include other downstream targets of
caspase-1 independent of IL-1b or IL-18, such as pyroptosis,
inhibition of glycolysis, noninflammatory cell death, and
activation of lipid biogenesis pathways (49, 65, 90, 115). In
addition, recently elucidated pathways involving IL-1a and
the innate immunity complement system during inflamma-
some activation may also contribute to such noncanonical
actions (40, 113). These noninflammatory pathways may be
importantly implicated in the development of atherosclerosis,
glomerular disease, and other chronic degenerative diseases,
and solely targeting inflammatory pathways may not elimi-
nate the root of these inflammasome-related diseases. This is
exemplified by the recent failure of clinical trials that only
targeted inflammatory pathways such as phospholipase A2
and COX-2 to treat cardiovascular diseases (27, 92, 112).

In a recent study, we demonstrated that activation of
NLRP3 inflammasomes impaired the ability of macrophages
to properly handle lipid metabolism or transport and en-
hanced their migration capacity (69). The formation and
activation of NLRP3 inflammasomes by nonatherogenic
danger factors, ATP or MSU crystals resulted in abnormal
lysosomal cholesterol deposition, impaired postlysosomal
trafficking of glycosphingolipids, and increased macro-
phage migration ability (69). These novel actions of in-
flammasomes in regulating macrophage functions may occur
even before vascular inflammation contributes to athero-
sclerosis. Since endothelial dysfunction develops at the very
early stages of vascular disease in response to risk factors
such as hypertension, dyslipidemia, obesity, diabetes melli-
tus, or hHcys, we tested the redox activation of NLRP3
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inflammasomes and its implication in endothelial injury. In
particular, we revealed that the adipokine visfatin induced
the formation and activation of NLRP3 inflammasomes
in endothelial cells in vitro, which was dependent on mem-
brane raft redox signaling platform-derived ROS and con-
sequent TXNIP-NLRP3 interaction (143). As shown in
Figure 7, activation of endothelial NLRP3 inflammasomes
was markedly observed in the intima of partially ligated ca-
rotid arteries, which locally induced vascular injury and in-
flammation. IL-1b production in the intima was almost
completely blocked by caspase-1 inhibitor and ASC gene
knockout or silencing. Visfatin markedly decreased the ex-
pression of tight and adhesion junction proteins and increased
vascular permeability in the coronary arterial endothelium of
mice fed a 6 week high-fat diet (HFD) (26). These visfatin-
induced changes in endothelial cells depend on HMGB1/
RAGE signaling, which contributes to the vascular perme-
ability leading to the onset of metabolic vasculopathy that,
ultimately, results in atherosclerosis.

In addition, some in vivo studies in our laboratory dem-
onstrated that increased plasma cholesterol (hypercholester-
olemia) impaired endothelial dysfunction as assayed by

endothelium-dependent vasodilator response in mouse cor-
onary arteries, which were also associated with endothelial
NLRP3 inflammasome activation and HMGB1 signaling
(152). It is plausible that in addition to the classical inflam-
matory injury linked to the activation and recruitment of in-
flammatory cells such as macrophages and T-cells in the
arterial wall leading to atherogenesis, the initial injurious re-
sponse of coronary arteries due to the activation of endothelial
inflammasomes by endogenous danger signals may be related
to very early endothelial dysfunction. These data imply that
endothelial inflammasome activation may represent a novel
early event that leads to endothelial dysfunction and injury,
and, if targeted, may prevent initiation or exacerbation of
atherosclerosis during obesity or hypercholesterolemia.

ROS activation of NLRP3 inflammasomes in obesity

Accumulating evidence demonstrated that NLRP3 in-
flammasomes are implicated in the development of obesity
and associated pathologies. Knockout of the NLRP3 in-
flammasome (NLRP3- / - , ASC - / - , and caspase-1 - / - ) sig-
nificantly protected mice from HFD-induced obesity, increased

FIG. 6. Implications of NLRP3 inflammasomes in podocyte injury and ultimate glomerular sclerosis. In response to
pathological stimuli, NADPH oxidase in podocytes or glomerular endothelial cells is activated via LR clustering to produce
O2
� - , which results in the formation of NLRP3 inflammasomes to produce IL-1b, IL-18, and other molecules such as

damage-associated molecular patterns (DAMPs). These factors may recruit and activate inflammatory cells such as mac-
rophages (MF) and T-cells in glomeruli, where ‘‘bonfire’’ O2

� - and cytokines are produced to initiate typical chronic
sterile glomerular inflammation, leading to tissue injury and sclerosis. Coinciding with other direct actions of IL-1b or other
inflammasome products, this sterile inflammatory response leads to podocyte loss and foot process effacement, progressing
into glomerular sclerosis and end-stage renal disease (ESRD). To see this illustration in color, the reader is referred to the
web version of this article at www.liebertpub.com/ars
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adiposity, insulin resistance, glucose intolerance, and inflam-
mation (52, 119, 130). The expression of the NLRP3 in-
flammasome subunits in adipose tissue correlates directly with
body weight in mouse models and obese individuals with type 2
diabetes mellitus (130). In our recent studies, mice lacking
the ASC gene demonstrated significant attenuation of HFD-
induced obesity compared with ASC+ / + mice, and were also

protected from obesity-associated glomerular and podocyte
injury (18). The mechanism of HFD-induced inflammasome
activation may be due to the high production of the fatty acid
metabolites ceramide and palmitate, as saturated fatty acids
have been shown to induce inflammasome activation through a
mechanism that involves defective autophagy and the accu-
mulation of mtROS (140). Vandanmagsar et al. showed that
adding ceramide to adipose tissue explants led to NLRP3-
dependent IL-1b production, suggesting that ceramide acts a
danger signal to stimulate the NLRP3 inflammasome (130). In
general, obesity is associated with perturbations of major cel-
lular homeostatic pathways, such as ER stress, mitochondrial
dysfunction, and autophagy deficiency, that are linked to ROS
accumulation and oxidative stress (54). Thus, multiple mech-
anisms may contribute to oxidative stress pathways to activate
the NLRP3 inflammasome in obese animals. Further studies are
required to explore whether abnormal activation of NLRP3
inflammasomes occurs in adipose tissue of obese individuals to
reveal new therapeutic targets for interventions in the preven-
tion or treatment of obesity and related pathologies.

Conclusions

Here, we reviewed the major mediating and modulatory
mechanisms thought to regulate NLRP3 inflammasome ac-
tivation, including the involvement of K + , lysosomes, ER
stress, Ca2 + , ubiquitination, miRNAs, mitochondria, and
ROS. All these studies have provided innovative insights into
ways to prevent aberrant inflammasome signaling and IL-1b
release with the ultimate goal of preventing the pathogenesis
of a very broad range of chronic degenerative diseases. In our
attempt to more fully and specifically understand the role of
ROS in NLRP3 inflammasome pathologies, we reveal much
more complex and interlaced mechanisms, where perhaps
anti-inflammatory therapies would not be sufficient enough
in treating the root of the disease. A majority of these ther-
apies target the later ‘‘bonfire’’ ROS stages of disease, a
consequence of immune cell activation and infiltration during
the inflammatory response. However, the ultimate goal is to
target early ‘‘kindling’’ ROS events, such as NLRP3 in-
flammasome activation, that would not only prevent insti-
gation of the innate immune response but, as we have shown,
also prevent direct injurious effects to host cells. Despite the
rapid burst of literature regarding NLRP3 inflammasomes in
just the previous 5 years and despite the strong evidence for
the involvement of ROS, deeper investigation is of utmost
importance to understand how these various activating
pathways interact to mediate the activity of this cytoplasmic
protein complex, especially the complexity of redox pertur-
bations and its role in NLRP3 inflammasome activation.
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Abbreviations Used

AIM2¼ absent in melanoma 2
ASC¼ apoptosis-associated speck-like protein

containing a CARD
[Ca2+]i¼ intracellular Ca2+

CARD¼ caspase recruitment domain
CGD¼ chronic granulomatous disease
CKD¼ chronic kidney disease

COXs¼ cyclooxygenases
DAMPs¼ damage-associated molecular patterns

DPI¼ diphenylene iodonium
dsDNA¼ double-stranded DNA

ER¼ endoplasmic reticulum
ESRD¼ end-stage renal disease

FCU¼ familial cold urticaria
H2O2¼ hydrogen peroxide
Hcys¼ homocysteine
HFD¼ high-fat diet

hHcys¼ hyperhomocysteinemia
HMGB1¼ high mobility group box-1

IL-1b¼ interleukin-1b
IPAF¼ interleukin-1b-converting enzyme

protease-activating factor
LPS¼ lipopolysaccharide

LOXs¼ lipoxygenases
LR¼ lipid raft

MAVS¼mitochondrial anti-viral signaling protein
MDP¼muramyl dipeptide

miRNAs¼microRNAs
MSU¼monosodium urate

mtDNA¼mitochondrial DNA
mtROS¼mitochondrial ROS

MWS¼Muckle–Wells syndrome
NAIPs¼NLR family apoptosis inhibitory proteins
NF-jB¼NF-kappaB
NLRP3¼NOD-like receptor containing pyrin domain 3

NLRs¼ nucleotide-binding domain leucine-rich
repeats

ONOO-¼ peroxynitrite
PAMPs¼ pathogen-associated molecular patterns
PBMCs¼ peripheral blood mononuclear cells

PGE2¼ prostaglandin E2
PRRs¼ pattern recognition receptors
RLRs¼RIG-I-like receptors
ROS¼ reactive oxygen species

shRNA¼ short hairpin RNA
SOD¼ superoxide dismutase

TEMPOL¼ 4-Hydroxy-2,2,6,6-tetramethylpiperidine-
1-oxyl

TLRs¼ toll-like receptors
TRX¼ thioredoxin

TXNIP¼ thioredoxin-interacting protein
UPR¼ unfolded protein response

X/XO¼ xanthine/xanthine oxidase
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