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SUMMARY

Gibberellins (GAs) play a critical role in fruit-set and fruit growth. Gibberellin is perceived by its 

nuclear receptors GA INSENSITIVE DWARF1s (GID1s), which then trigger degradation of 

downstream repressors DELLAs. To understand the role of the three GA receptor genes (GID1A, 

GID1B and GID1C) in Arabidopsis during fruit initiation, we have examined their temporal and 

spatial localization, in combination with analysis of mutant phenotypes. Distinct expression 

patterns are revealed for each GID1: GID1A is expressed throughout the whole pistil, while 

GID1B is expressed in ovules, and GID1C is expressed in valves. Functional study of gid1 mutant 

combinations confirms that GID1A plays a major role during fruit-set and growth, whereas 

GID1B and GID1C have specific roles in seed development and pod elongation, respectively. 

Therefore, in ovules, GA perception is mediated by GID1A and GID1B, while GID1A and GID1C 

are involved in GA perception in valves. To identify tissue-specific interactions between GID1s 

and DELLAs, we analyzed spatial expression patterns of four DELLA genes that have a role in 

fruit initiation (GAI, RGA, RGL1 and RGL2). Our data suggest that GID1A can interact with RGA 

and GAI in all tissues, whereas GID1C–RGL1 and GID1B–RGL2 interactions only occur in 

valves and ovules, respectively. These results uncover specific functions of each GID1–DELLA in 

the different GA-dependent processes that occur upon fruit-set. In addition, the distribution of GA 

receptors in valves along with lack of expression of GA biosynthesis genes in this tissue, strongly 

suggests transport of GAs from the developing seeds to promote fruit growth.
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INTRODUCTION

Fruit-set is the activation of the developmental program that transforms a pistil into a 

developing fruit. It is initiated by the fertilization of ovules, which promotes synthesis and 

signaling of hormones, mainly auxin and gibberellin (GA; Dorcey et al., 2009). These 

hormones form the initial instructive signals that promote the fruit development program 

under physiological conditions (Alabadi et al., 2009).

Gibberellins are plant tetracyclic diterpenoids that control a wide range of processes 

throughout plant development, including seed germination, leaf expansion, stem and root 

elongation, floral induction, and flower development (Fleet and Sun, 2005; Swain and 

Singh, 2005; Sun, 2011). Studies also indicate that GAs are key factors for fruit-set and 

development. GA treatment of unpollinated pistils promotes fruit initiation, probably by 

mimicking GA production upon ovule fertilization (Vivian-Smith and Koltunow, 1999; 

Dorcey et al., 2009). In fact, upon pollination, GA biosynthesis genes are up-regulated, and 

bioactive GA1 and its precursor GA20 levels increase (Ben-Cheikh et al., 1997). The last 

steps of GA biosynthesis are catalyzed by GA20-oxidases (GA20ox) and GA 3-oxidases 

(GA3ox), which convert inactive GA precursors into bioactive GAs (Hedden and Thomas, 

2012). Significant progress has been made in defining the roles of both GA20ox and GA3ox 

genes during reproductive growth in Arabidopsis (Hu et al., 2008; Rieu et al., 2008; Plackett 

et al., 2012). Expression of most of the GA20ox and GA3ox genes is induced at fruit 

initiation, and each gene shows a specific temporal expression pattern; most are up-regulated 

in the ovules after fertilization (Dorcey et al., 2009). GA20ox1 and GA20ox2 play a major 

role in fertility and fruit growth (Rieu et al., 2008). Reduced fruit length in the double 

ga20ox1 ga20ox2 mutant has a maternal origin, pointing out to a defect in GA-dependent 

fruit elongation in the absence of these GA20ox activities. In a similar way, GA3ox3, 

GA3ox4, along with GA3ox1, have major roles in providing the bioactive GAs during 

flower development and fruit-set (Hu et al., 2008). GA3ox4 is involved in promoting seed-

dependent fruit elongation. Similar up-regulation of GA biosynthesis genes upon fruit-set 

has also been reported in other species (Garcia-Martinez et al., 1997; Serrani et al., 2007).

Gibberellin signaling relies on the perception of the hormone by its receptor GA 

INSENSITIVE DWARF1 (GID1). GID1 was first described in rice as a nuclear localized 

protein similar to hormone-sensitive lipase family without hydrolase activity (Ueguchi-

Tanaka et al., 2005). In Arabidopsis, there are three GID1 orthologs (GID1A, GID1B, and 

GID1C; Griffiths et al., 2006; Nakajima et al., 2006). The active GA binds to GID1 and 

promotes a conformational change in its N-terminus region (Murase et al., 2008; Shimada et 

al., 2008). The GA-GID1 complex can then bind to the GA-signaling repressor DELLA 

proteins, promoting a conformational modification, which allows their recognition by GID2 

or SLEEPY1 (SLY1) F-box proteins in rice and Arabidopsis, respectively (McGinnis et al., 

2003; Sasaki et al., 2003; Griffiths et al., 2006; Willige et al., 2007; Murase et al., 2008; 

Hirano et al., 2010). The DELLA proteins are then polyubiquitinated and degraded through 

the 26S-proteasome pathway (Sasaki et al., 2003; Dill et al., 2004; Fu et al., 2004). Studies 

using the sly1 and gid2 mutants further show that GA-GID1 binding to DELLA can also 

inhibit DELLA activity without DELLA degradation (Ariizumi et al., 2008, 2013; Ueguchi-

Tanaka et al., 2008). Both proteolysis-dependent and -independent mechanisms of GA 
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signaling call for a close interaction between GID1s and DELLAs. This interaction may 

occur only if these proteins are temporally and spatially co-expressed. In addition, GID1s 

and DELLAs showed differential binding affinity in vitro (Nakajima et al., 2006 and Suzuki 

et al., 2009), which may contribute to establishing proper GA-signaling responses in specific 

tissues during plant development.

The presence of three GID1s in Arabidopsis suggests that each GA receptor may have 

distinct roles during plant development. In contrast, gid1 mutant analysis points to partial 

redundancy. While the single mutants did not show any obvious phenotype, the doubles 

show partially reduced GA-response phenotypes: gid1a-1 gid1c-1 is a semi-dwarf and has 

compromised germination, and gid1a-1 gid1b-1 shows stamen filament shortening that 

results in reduced fertility (Griffiths et al., 2006; Nakajima et al., 2006; Iuchi et al., 2007; 

Voegele et al., 2011). The null mutation in all three genes leads to an extremely dwarf and 

GA-insensitive plant (Ueguchi-Tanaka et al., 2005; Griffiths et al., 2006; Iuchi et al., 2007). 

Therefore, GID1A and GID1C play a major role during seed germination (Voegele et al., 

2011) as well as in stem elongation (Suzuki et al., 2009). In addition, the role of GID1A and 

GID1C is consistent with their spatial expression in stems and seeds.

Fruit-set and subsequent development are controlled by GAs. This study aims to understand 

the role of GA receptors in Arabidopsis upon fertilization by a combination of expression 

and mutant phenotype analyses. We show that GID1A plays a major role during fruit-set, 

whereas GID1B and GID1C have partially redundant function with GID1A in seed 

development and pod elongation, respectively. In addition, the GA-dependent degradation of 

the endocarp during fruit senescence and maturation, necessary to pod shattering, is 

controlled mainly by GID1A. We also identified distinct co-expression patterns of GID1s 

and DELLAs, which uncover specific roles of several GID1-DELLA combinations during 

seed-set and fruit growth.

RESULTS

GID1 genes are differentially expressed in pistils and fruits

To investigate the role of each of the GID1 GA receptors during fruit-set and early fruit 

development, we first quantified their expression in pistils and fruits, by quantitative RT-

PCR (qRT-PCR). mRNAs for the three GID1 genes were detected in pistils and fruits, with 

GID1A being expressed at higher levels than GID1B and GID1C (Figures 1a and S1a). The 

expression of the three GID1s increased after anthesis in the unpollinated pistils. However, 

the expression levels of GID1A and GID1C remained unaltered, but GID1B was decreased 

upon pollination. The increased GID1 expression in unfertilized pistils may be due to the 

feedback mechanism caused by low levels of GAs in this tissue.

To determine whether GID1s are expressed in specific tissues in the pistil, we performed 

qRT-PCR analysis using hand-dissected ovules + funiculi and valves from unfertilized 

pistils. Data in Figures 1(b) and S1(b) indicated that GID1B and GID1C mRNAs were 

preferentially expressed in ovules + funiculi and valves, respectively, while GID1A was 

expressed throughout the pistil.
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GID1 proteins show specific spatial expression patterns

To finely study the localization of GID1 proteins in pistils and fruits, we analyzed their 

expression patterns using transgenic Arabidopsis lines carrying GID1 promoter:GID1-GUS 

translational fusions (Suzuki et al., 2009). GUS staining in whole pistil at anthesis clearly 

showed that GID1 proteins are differentially expressed (Figure 2a). GID1A was localized in 

the ovary and style, but was absent in the stigma. In the ovary, it was expressed in nearly all 

tissues, with the exception of the central area of the septum, the transmitting track (Figure 

2b). In contrast to the broader expression of GID1A, GID1B and GID1C showed restricted 

expression. GID1B was mainly localized in ovules and funiculi, and it was also expressed at 

much lower levels in the exocarp and endocarp a. GID1B was absent from the mesocarp, 

stigma or style (Figure 2a,b). Expression of GID1C was localized specifically in the valve 

and style, but was completely absent in the ovules and funiculi (Figure 2a,b). GID1C is the 

only GA receptor that showed some expression in stigma (Figure 2a). All three receptors are 

expressed in the medial and lateral vascular tissues of the pistil.

Expression of GID1A and GID1B in ovules showed slight variations in localization (Figure 

2b); while GID1A was localized in all tissues with stronger expression surrounding the 

embryo sac, GID1B was localized mainly in the chalaza, at the base of the embryo sac. 

GID1C expression was undetectable in ovules/seeds. In summary, GID1A and GID1C are 

expressed in valves, while GID1A and GID1B are expressed in ovules. The different spatial 

and temporal expression of GID1s may reflect their involvement in different GA-mediated 

processes during fruit-set and development.

RGL1 and RGL2 are differentially expressed in pistils and fruits

DELLAs are involved in the control of fruit-set in Arabidopsis. The elimination of four of 

the five DELLA genes (GAI, RGA, RGL1 and RGL2) is sufficient to promote facultative 

parthenocarpy (Dorcey et al., 2009). To study further the role of each DELLA in fruit-set, 

we analyzed their mRNA levels in pistils and fruits by qRT-PCR. RGA and RGL1 were 

expressed at higher levels, while GAI and RGL2 were expressed at much lower levels 

(Figures 3a and S2a). Upon fertilization, the expression of GAI and RGL1 slightly increased, 

the expression of RGA decreased, while no changes in expression were observed for RGL2. 

We also examined the expression of the four DELLAs in hand-dissected pistils to uncover 

their spatial expression within the pistil. GAI and RGA were expressed similarly in ovules + 

funiculi and valves (Figures 3b and S2b), while RGL1 and RGL2 were preferentially 

expressed in valves and ovules + funiculi, respectively (Figure 3b), suggesting their tissue-

specific functions in GA-mediated signaling.

DELLAs co-localize with GID1s in ovules and developing seeds

Gibberellin receptors interact, in a GA-dependent manner, with the DELLA proteins, to 

alleviate DELLA repression on GA signaling. Although the kinetics of GID1-DELLA 

interaction have been the focus of several reports by in vitro assays (Nakajima et al., 2006; 

Iuchi et al., 2007 and Suzuki et al., 2009), the formation of such protein complexes is only 

possible by co-localization of GID1s and DELLAs both in time and space. Therefore, to 

determine which GID1-DELLA complex is mediating GA-dependent fruit-set events, it is 

important to analyze the tissue-specific expression patterns of DELLAs in pistils, and 
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compare them with those for the GID1s. Toward this goal, we generated promoter-GUS 

transcriptional fusion transgenic lines for GAI, RGA and RGL1 (see Experimental 

procedures for details). For the study of the spatial expression of RGL2, the line rgl2-5 was 

used (a translational GUS fusion, Lee et al., 2002; Figure 4).

While RGA and GAI were expressed throughout the pistil, RGLl and RGL2 showed more 

restricted expression patterns (Figure 4). RGA was detected at high levels in all tissues, but 

GAI expression showed high levels in valves, especially in mesocarp and endocarp cell 

layers, and in funiculi; weaker GAI expression was detected in ovules at anthesis. 

Interestingly, the expression patterns for GAI and RGA resembled those for GID1A. On the 

other hand, RGL1 was expressed mainly in the endocarp, and at lower levels in mesocarp 

and exocarp (Figure 4), as well as in funiculi at 2 dpa. It was not detected in ovules or seeds. 

In contrast to RGL1, RGL2 expression was detected in both ovules at anthesis and seeds, 

including funiculi, but it was totally absent in valves. RGL1 and RGL2 showed strikingly 

similar expression patterns to GID1C and GID1B, respectively.

Overall, the GID1 and DELLA expression patterns using GUS assays are consistent with the 

results of qRT-PCR analysis. The comparison of DELLA and GID1 expression patterns in 

different tissues allowed us to speculate spatial-specific GID1-DELLA interactions that 

mediate GA signaling (Figures 2 and 4). In ovules, GID1A and GID1B would potentially 

interact only with GAI, RGA and RGL2. In contrast, in valves, GID1A and GID1C would 

interact with GAI, RGA, and RGL1.

Mutation of GID1 genes results in maternal defects in fertility

In this study, we showed that GID1A and GID1C are expressed in valves, while GID1A and 

GID1B are expressed in ovules. These expression patterns suggest that GID1A and GID1C 

mediate GA-induced fruit growth, whereas GID1A and GID1B promote seed development. 

Consistent with GID1 expression patterns, the single gid1a and the double gid1a gid1b and 

gid1a gid1c mutants display compromised fertility (Griffiths et al., 2006). gid1a had some 

decrease in seed number and a slight reduction in fruit length. The double mutant gid1a 

gid1c showed a strong reduction in silique length with a little reduction of seed number. In 

contrast, the double mutant gid1a gid1b had much reduced seed number and silique length; 

this phenotype was attributed to the shortening of the stamen filament that reduced 

pollination (Griffiths et al., 2006; Iuchi et al., 2007; Plackett et al., 2011). Fruit growth and 

fertility is the result of the combinatory effect of male (pollen) and female (ovule and ovary) 

factors. Considering that GID1A and GID1B are expressed in ovules, the reduced seed 

number and silique length phenotype of the double gid1a gid1b could also result from 

reduced seed-set due to defects in the ovule. To test this possibility, we carried out an 

experiment in which pistils of emasculated WT (Col-0) and gid1 mutant flowers were hand 

pollinated with WT pollen. In this way, reduced fertility would only be a consequence of 

pistil defect. Fruits were harvested at maturity, just before pod opening, and pod length, seed 

number and the ratio between seed number and pod length for each individual fruit were 

determined (Figure 5a). Among the single mutants, only gid1a showed a slight reduction in 

silique length and seed content, which resulted in the seed/silique length ratio similar to WT. 

Double mutants showed different phenotypes (Figure 5a). Similarly to gid1a, gid1a gid1b 
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had a proportional but stronger reduction in both silique length and seed number that 

resulted in a ratio similar to WT. In contrast, gid1a gid1c showed the same seed number 

reduction as in gid1a but a strong reduction in silique length, which resulted in a significant 

increase of seed/length ratio, i.e., a higher seed density or increased packing phenotype in 

these fruits. gid1b gid1c did not show any defects. Almost identical results were obtained 

with self-pollinated pistils for the three gid1 double mutants (Figure S3), indicating that the 

phenotypes of gid1a gid1b and gid1a gid1c are mainly caused by maternal defects.

Elimination of two out of the three GA receptors in each double mutant combination may 

cause up-regulated expression of the remaining GID1 gene, which may alleviate reduced 

GA-response phenotype. Indeed, expression of GID1A in the double gid1b gid1c is 

enhanced in seedlings and pistils (Figure S4), which contributes to normal growth even in 

the absence of GID1B and GID1C activity. In contrast, no alteration of the expression of 

GID1B or GID1C was observed in either seedling or pistils of gid1a gid1c and gid1a gid1b, 

respectively.

There is a close correlation between the final fruit size and the seed number (Cox and Swain, 

2006; Dorcey et al., 2009). Therefore, a reduction in seed number with no alteration of the 

slope of the best fit line of the data (a measure of seed-dependent fruit growth) may reveal 

defects of seed-set, while a decrease in the slope may reflect impairment of pod elongation, 

which results in increased packing of seeds in the fruit. To distinguish between defects in 

seed-set and fruit elongation, we analyzed siliques from the double gid1 mutants manually 

pollinated with different amounts of WT pollen, and recorded final fruit length and seed 

number (Figure S5). The gid1a gid1b double mutant showed, as expected, a reduced seed 

number with no significant alteration of the seed number/fruit length ratio, indicating that 

the smaller fruit size is due to decreased seed-set. In contrast, gid1a gid1c showed a 

significant decrease in the slope, which suggested that this mutant has defects in pod 

elongation even in the presence of a significant number of seeds, possibly due to a reduced 

sensitivity to GAs. Again, gid1b gid1c behaved as the WT plant. Finally, without 

pollination, all three gid1 double mutants showed similar pistil length as WT (approximately 

4 mm).

Consistent with the expression patterns of GID1s in the fruit, the phenotypes observed for 

gid1a gid1b and gid1a gid1c reflect GA-insensitivity in ovules and valves that causes 

reduced seed-set and pod elongation, respectively. To determine if the gid1a gid1c pistil is 

indeed insensitive to GA treatment, the response of unfertilized pistils to GAs in double null 

mutants was recorded (Figure 5b). gid1a gid1b and gid1b gid1c showed normal GA 

response; in contrast, the gid1a gid1c pistils displayed little or no GA response. Therefore, 

the reduced fruit growth in gid1a gid1c is due to limited GA-mediated pod elongation.

In summary, our data suggest that the three GID1 GA receptors act partially redundantly in 

pistil development. The defects observed in the gid1 double mutants are due to GA 

perception defects in maternal tissues. The contribution of filament shortening to fertility in 

gid1a gid1b seems to be minor.
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Mutation of GID1 genes promotes alterations at the endocarp

The inner cell layers of the Arabidopsis silique, the endocarp, differentiate during fruit 

development to facilitate pod shattering and seed dispersal. During fruit development, the 

endocarp a, the adaxial cell layer facing the carpel space, is degraded, along with the 

lignification of the support cell layer, the endocarp b. We previously showed that both 

processes are mediated by GAs (Dorcey et al., 2009). Early degradation and lignification 

was observed in GA-treated unfertilized pistils, as well as in the DELLA quadruple mutant 

(gai-t6 rga-24 rgl1-1 rgl2-1). To determine which GA receptors participate in this process, 

we studied pod structure during fruit development in double gid1 mutants (Figure 6). 

Morphological analysis suggested that GID1A has a major role in the regulation of the 

differentiation of the inner cell layers of the fruit pod, followed by GID1C (Figure 6). 

Although the single gid1a mutant did not show significant alteration, double mutants gid1a 

gid1b and gid1a gid1c showed 1 and 2 days delay, respectively, in the degradation of 

endocarp a and the lignification of endocarp b. This correlates with the intensity and 

distribution of their expression: GID1A is highly expressed in pods, followed by GID1C 

(Figure 2b). Expression of GID1B is also detected, to a much lesser extent, in the endocarp 

b, as well as in the adaxial layer, the exocarp. Even though both GID1B and GID1C are 

expressed in the endocarp, degradation and lignification in gid1b gid1c was identical to that 

of the WT plants (Figure 6). The enhanced expression of GID1A in all tissues of this mutant 

may prevent detectable alterations of the process.

Expression of GA biosynthesis genes in ovules and seeds co-localize with GID1s

Differential spatial localization of GID1 proteins suggests that each GID1 may perceive 

GAs synthesized in, or transported to, different tissues within the pistil/fruit. Previously, we 

showed that most of the GA biosynthesis genes have a coordinated temporal expression 

patterns in ovules upon fertilization (Dorcey et al., 2009). In addition, GA20ox1 and 

GA20ox2, as well as GA3ox1, GA3ox3, and GA3ox4, have been shown by mutant analyses 

to have crucial roles in fruit-set and fertility (Hu et al., 2008; Rieu et al., 2008; Plackett et 

al., 2012). All four GA3ox genes are expressed in young developing seeds (Mitchum et al., 

2006; Hu et al., 2008). In addition, GA3ox1 contributes to bioactive GA synthesis in 

maternal tissues, including replum, funiculus and receptacle (Hu et al., 2008; Arnaud et al., 

2010). However, spatial and temporal expression of GA20oxs in ovules and developing 

seeds has not been reported previously. Therefore, we have studied the expression of 

GA20ox1 and GA20ox2 in ovules and seeds with translational fusion GUS lines (Figure 7). 

GA20ox1-GUS (Desgagne-Penix et al., 2005) was expressed only in the pollen and pollen 

tube (Figure 7a). Expression could also be detected in proximal site of the embryo sac just 

after fertilization. Interestingly, reciprocal crosses revealed that the GA20ox1-GUS activity 

came from the sperm cells rather than a de novo expression in the egg cell. Figure S6(a) 

shows that GA20ox1-GUS activity could be detected in both self-pollinated GUS reporter 

line and in WT plants pollinated with pollen from the GUS line, but GUS expression was 

absent when the GUS line was pollinated with WT pollen or in unfertilized pistils. 

Therefore, GUS activity in the GA20ox1-GUS was dependent on the male tissues; GA20ox1 

expression was only detected when pollen was from the GA20ox1-GUS line.
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GA20ox2-GUS (Frigerio et al., 2006) was expressed in both pollen tubes and seeds (Figure 

7b). At 1 dpa, GUS activity was detected in embryo sac, but at 2–3 dpa its expression shifted 

to the chalazal pole of the developing seed. This change in spatial expression may correlate 

with its differential expression in male and female tissues at different stages after 

fertilization. Indeed, as it was observed for the GA20ox1-GUS line, GA20ox2-GUS 

expression 1d after fertilization in the embryo sac corresponded to male tissue (pollen tube 

discharge in embryo upon plasmogamy; Figure S6b). On the other hand, expression in the 

chalaza at 2–3 dpa corresponded to the sporophytic female tissue, as this expression was 

detected only in the GA20ox2-GUS line, regardless the precedence of the pollen. In 

contrast, neither GA20ox1 nor GA20ox2 showed any expression in valve (Figure S6).

In summary, GUS assays confirm previous qRT-PCR data indicating that the GAs are 

mostly synthesized in the developing seeds by GA20ox and GA3ox. With the exception of 

GA3ox1 expression in receptacle, replum and funiculus, none of the GA3ox or GA20ox 

genes were expressed in the valves. The strong expression of GID1A and GID1C in valves 

and their function in GA-induced pod elongation imply that GAs perceived in valves are 

transported mainly from the seed.

DISCUSSION

Differential expression of GID1s in ovules and valves

By qRT-PCR analysis, we observed that all three GID1s are expressed in pistils, with 

GID1A expressed at higher levels, followed by GID1B and GID1C. The predominant 

expression for GID1A reveals its major role in GA perception through the plant, including 

pistils and fruits. Within pistils, GID1s show differential spatial distribution as indicated by 

our results of qRT-PCR analysis and expression study using GID1-GUS transgenic lines. In 

valves, GID1A and GID1C participate in GA perception, while in the ovules GA perception 

is carried out by GID1A and GID1B, but not GID1C. Therefore, distinct GID1 combinations 

perceive GAs synthesized in, or transported to, specific tissues of the pistil to regulate 

growth and development of the seeds and the surrounding pod. Interestingly, most of the 

GA20ox and GA3ox genes that control the final steps of GA biosynthesis are only expressed 

in the developing seeds, but not in the fruit (Hu et al., 2008; Dorcey et al., 2009; this study). 

The only exception is GA3ox1, which is not expressed in young seeds, but is expressed in 

the replum, funiculus and receptacle of the fruit (Hu et al., 2008). None of the GA20ox or 

GA3ox genes are expressed in the valves (Hu et al., 2008; Arnaud et al., 2010; Plackett et 

al., 2012). Therefore, the bioactive GAs in the valve for promoting fruit elongation are 

likely transported from the developing seeds and/or from other surrounding tissues (replum, 

funiculus and receptacle). How bioactive GAs are transported to the valve remains an open 

question.

GID1s and DELLAs are co-expressed in pistils during fruit-set

Gibberellin signaling occurs through the GA-dependent interaction of GID1 and DELLA 

proteins (Sun, 2011). Our spatial expression analysis of DELLAs and GID1s suggests that 

certain GID1 and DELLA combinations interact in vivo to trigger the GA response in pistils. 

GID1A along with RGA, and GAI to a lesser extent, are expressed throughout the pistil. We 
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propose that GID1A–GAI and GID1A–RGA interactions account for most of the GA-

mediated processes in both valve and ovules. In addition, GID1B–RGL2 interaction can also 

occur in ovules, and GID1C–RGL1 interaction may take place in valves. The latter two 

interactions may account for tissue-specific GA-mediated processes during fruit-set and 

development, such as fertility and seed development for GID1B–RGL2 and fruit growth for 

GID1C–RGL1.

In addition to these co-expression patterns, differential affinity of GID1s towards the 

DELLAs may also modulate their interactions (Nakajima et al., 2006; Suzuki et al., 2009). 

For example, in vitro binding assays have revealed a strong affinity of RGA–GID1B, 

RGL2–GID1A, and GAI–GID1B proteins (Suzuki et al., 2009), each pair being co-

expressed in ovules/seeds (this study). On the other hand, in addition to RGA–GID1B 

interaction, RGL1 can strongly interact with GID1A and GID1C, all of these combinations 

being expressed in the valves. The same in vitro assay revealed that RGL1 and RGL2 

interact with very low affinity to GID1B and GID1C, respectively (Suzuki et al., 2009). 

Interestingly, RGL1–GID1B and RGL2–GID1C are not co-expressed in pistils, which may 

reflect co-evolution of GID1 and DELLA that results in distinct expression patterns and 

binding affinity. Figure 8 represents the possible GID1 and DELLA interactions in pistils, 

based on spatial gene expression and mutant phenotype analysis. Based on this model, we 

analyzed the silique phenotypes (seed number and pod length) of the triple mutants rga gai 

rgl2 and rga gai rgl1, but did not find significant differences comparing to the WT plants. 

This could be explained by the presence of GA and GID1s in these mutants. To test the 

specific roles of different DELLAs in ovule development and pod elongation, expression of 

gain-of-function rga gai rgl2 versus gain-of-function rga gai rgl1 using their endogenous 

promoters will be necessary.

GID1s have partial redundant function in fertility and fruit growth

Our study showed that the expression patterns of GID1s in developing fruit correlate well 

with the phenotypes of gid1 mutants. Lacking functional GID1A, which is expressed in 

nearly all pistil tissues, caused a slight reduction in fertility. Removing both GID1A and 

GID1B that are expressed in ovules resulted in reduced fertility. In contrast, mutations in 

both GID1A and GID1C that are expressed in the valves led to reduced fruit length.

The reduced silique length and low seed yield were previously correlated with shortening of 

the stamen filament, which decreased pollination (Griffiths et al., 2006; Iuchi et al., 2007). 

This is in agreement with the similar expression levels of both GID1A and GID1B in 

filaments (Suzuki et al., 2009). However, we found that the double mutant gid1a gid1b, 

which does not have GID1 activity in ovules, showed reduced seed-set even when fertilized 

by WT pollen. These results indicate that the reduced seed-set of the gid1a gid1b mutant is 

due to defects in maternal tissues, likely because of the absence of the main GA receptors in 

the ovule (GID1A and GID1B). GID1C expression is not detected in either ovules or 

funiculi, and it is not induced in the double mutant gid1a gid1b. It is intriguing that despite 

the lack of functional GA receptors in seeds, the double mutant gid1a gid1b still produces a 

significant number of seeds, suggesting the presence of a GA or GID1-independent pathway 
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in promoting seed-set. However, this hypothesis is difficult to be verified because neither the 

GA-deficient mutant ga1 nor the triple gid1a gid1b gid1c mutant produces fertile flowers.

In contrast to gid1a gid1b, gid1a gid1c produced shorter silique with little reduction in seed 

number, even when pollinated with WT pollen, indicating that this phenotype is also due to 

maternal defects. The reduced fruit length in this gid1 double mutant is caused by limited 

GA perception in the silique pod. The double gid1b gid1c mutant did not show any fruit 

defects, indicating that GID1A activity is sufficient for GA perception in the pistil. In 

addition, GID1A expression in gid1b gid1c was slightly enhanced in seedlings and pistils 

(Figure S4), which further contributes to normal growth. Interestingly, expression of GID1B 

or GID1C was not induced in either seedling or pistils of gid1a gid1c and gid1a gid1b, 

respectively. Previous study showed that expression of GID1A and GID1B (but not GID1C) 

is controlled by the DELLA-dependent feedback mechanism (Griffiths et al., 2006). The up-

regulation of GID1A in gid1b gid1c may be consequence of this feedback mechanism. 

However, GID1B was not up-regulated in seedlings or pistils of gid1a gid1c. Interestingly, 

up-regulation of GID1B in gid1a gid1c was described in floral buds, although none of the 

double mutants showed up-regulation of any of the GID1s in the inflorescence stem (Suzuki 

et al., 2009). All together, these data suggest that the feedback mechanism may be affected 

by developmental processes.

In summary, our study revealed that GID1A in combination with GID1B and GID1C 

controls seed-set and fruit growth, respectively. The distribution of GA receptors in valves, 

along with the lack of expression of late-stage GA biosynthesis genes, strongly suggests GA 

transportation from the seeds to promote fruit growth. Finally, the co-expression of GID1s 

and DELLAs in different tissues of the pistil suggests specific roles of each GID1–DELLA 

combination in the GA-dependent fruit-set and development. Detailed analysis of this 

interaction and the study of their specific roles in each tissue would be necessary to dissect 

and understand the GA-mediated molecular mechanisms taking place in pistils and fruits.

EXPERIMENTAL PROCEDURES

Plant material and fruit-set assays

Arabidopsis thaliana plants are in the Col-0 background. gid1a-1 (SALK_142767), gid1b-1 

(SM_3_30227), and gid1c-1 (SALK_023529) were described by Griffiths et al. (2006). 

These lines will be mentioned in this report as gid1a, gid1b, and, gid1c, respectively. 

Double mutants gid1a-1 gid1b-1, gid1a-1 gid1c-1, and gid1b-1 gid1c-1 were generated by 

genetic cross and confirmed by genotyping, using the oligos listed in Table S1.

Seeds were surface-sterilized in EtOH and plated onto ½MS (Murashige and Skoog, 1962) 

media, kept at 4°C for 4 days, and transferred to a growth chamber at 22°C in long day 

photoperiod (16 h/8 h) for 10 days. Seedlings were then transferred to soil (a mix of peat 

moss, vermiculite and perlite, 2:1:1) and grown to maturity in a growth chamber at 22°C in 

long day photoperiod (16 h/8 h).

Fertility was scored using two different approaches: auto-pollinated fruits or fruits from 

emasculated flowers fully pollinated with WT pollen. Fruits were collected at maturity (12 
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days post-anthesis, dpa), seed number was counted and silique length was measured with a 

digital caliper. Ratio (seed number versus length) was determined. Parthenocarpy was 

assayed by application of GA3 to unfertilized pistils. Flowers were emasculated 1 day before 

anthesis and treated the next day with 330 μM GA3 (Fluka, http://www.sigmaaldrich.com/) in 

0.01% (v/v) Tween-80, pH 7. Fruit and pistils were harvested 10 days after treatment, and 

scanned to measure final length with ImageJ software (Abramoff et al., 2004). Experiments 

were repeated three times with similar results.

Generation of transcriptional DELLA–GUS gene fusions and plant transformation

Transcriptional DELLA–GUS gene fusions were constructed for RGA, GAI and RGL1 

genes. RGA gene fusions were made in binary vector pOCA28. pRGA:GUS contains 

approximately 7.7 kb of the RGA promoter region upstream of the ATG start site fused to 

the GUS reporter gene. GAI and RGL1 gene fusions were generated using vector pBI101.1. 

pGAI:GUS contains approximately 4 kb of the GAI promoter region upstream of the 

translational start site fused to the GUS reporter gene. pRGL1:GUS contains approximately 

4 kb of the RGL1 promoter region upstream of the translational start site fused to the GUS 

reporter gene. For the pRGL2: GUS fusion, the rgl2-5 allele (Lee et al., 2002) was used. 

Detailed procedures for making the DELLA–GUS gene fusion constructs are described in 

Methods S1, using oligos listed in the Table S2. Plant transformations using DELLA–GUS 

plasmids and isolation of homozygous transgenic lines that contain a single insertion site 

were conducted as previously described (Hu et al., 2008).

Gene expression analysis by qRT-PCR

Pistils and fruits were harvested at different time points. For the dissection assay, ovules and 

valves of 1, 2, and 3 dpa unfertilized pistils (from emasculated flowers) were hand-dissected 

using acupuncture needles under a stereomicroscope. In addition, whole unfertilized pistils 

of 0 dpa were also harvested as reference. Total RNA was extracted using the RNeasy Plant 

Mini Kit (Qiagen, http://www.qiagen.com/). Genomic DNA was eliminated with 50 units of 

DNase I (Qiagen) for 15 min at room temperature. cDNA was synthesized using the 

SuperScript First-Strand Synthesis System for RT-PCR (Invitrogen, http://

www.invitrogen.com/). qRT-PCR was carried out using the SYBR® GREEN PCR Master 

Mix (Applied Biosystems, http://www.lifetechnologies.com/) in an ABI PRISM 7000 

Sequence Detection System (Applied Biosystems), essentially as described in Dorcey et al. 

(2009).

For the quantification of gene expression, cDNAs for each gene were cloned in pGEM-T 

Easy vector (Promega, http://www.promega.com/), using oligos listed in the Table S3. 

Absolute expression values were calculated basically as described in Whelan et al. (2003). 

Standard curves were generated using serial dilutions of purified plasmid DNA for each 

gene, ranging from 10−7 to 10−10. The copy number of plasmid in each dilution was 

calculated based on the molecular weight and the initial concentration of each construct 

(Whelan et al., 2003). Log10 of copy number of each transcript were calculated from the 

standard curve and the value of the threshold cycle (Ct) from the qRT-PCR data. The 

number of copies of each gene was normalized using the number of copies of ubiquitin10 

(UBQ10, At4 g05320; Czechowski et al., 2005) in each sample. Primers (Table S1) were 
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designed with the Primer Express™ v2.0 software (Applied Biosystems) and tested for 

efficiency.

Scanning electron microscopy (SEM)

Samples were harvested, mounted on the specimen holder of a CT-1000C cryo-transfer 

system (Oxford Instruments, www.oxford-instruments.com), interfaced with a JEOL 

JSM-5410 scanning electron microscope, and frozen in liquid N2. Samples were fractured, 

and sublimated at −85°C. Finally, samples were observed at incident electron energy of 10 

kV with ×10 to ×100 magnification.

β-Glucuronidase (GUS) histochemical assay and histological procedures

The pGA20ox1:GA20ox1-GUS (Hay et al., 2002) and pGA20ox2:GA20ox2-GUS (Frigerio 

et al., 2006) transgenic Arabidopsis lines were provided by Dr Hedden (Rothamsted 

Research Center). The pGID1A:GID1A-GUS, pGID1B:GID1B-GUS and pGID1C:GID1C-

GUS transgenic lines (Suzuki et al., 2009) were provided by Dr Nakajima (University of 

Tokyo). GUS assay and histological procedures were basically as previously described 

(Carbonell-Bejerano et al., 2010). K3Fe(CN)6 and K4Fe(CN)6, concentrations were adjusted 

for each line to obtain optimal signal (5 mM for pGID1A:GID1AGUS and pGID1B:GID1B-

GUS, 10 mM for pGID1C:GID1C-GUS, 0.2 mM for pGA20ox:GA20ox-GUS, 5 mM for 

pGAI:GUS and pRGA:GUS; 2 mM for pRGL1:GUS, and 4 mM for rgl2-5). For the detection 

of GUS activity in thin resin sections, after staining with X-GlcA, samples were dehydrated 

in a series of 20, 35, and 50% (v/v) ethanol, post-fixed for 30 min in FAE (50% [v/v] 

ethanol, 5% [v/v] formaldehyde, 10% [v/v] acetic acid), and further dehydrated to 100% 

(v/v) EtOH and embedded in Technovit 7100 resin.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
GID1 genes are differentially expressed in pistils and fruits.

(a) Time-course of GID1 expression during unfertilized pistil and early fruit development. 

Expression is represented as the copies of cDNA per 103 copies of UBQ10.

(b) GID1 expression in ovules + funiculi (O + F) and valve (V) of hand-dissected 

unfertilized pistils at 1, 2, and 3 dpa. Expression was normalized to UBQ10 and to the 

expression in the whole pistil at anthesis. Open and closed triangles indicate preferential 

expression of GID1B in ovules and GID1C in valves, respectively. Each experiment was 

repeated twice using independent samples with similar results (Figure S1). Data are the 

mean ± standard deviation (SD) of a single representative experiment. dpa, days post-

anthesis.
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Figure 2. 
GID1 expression is differentially localized in tissues of pistils and fruits.

GID1 expression was analyzed using translational fusion lines pGID1:GID1-GUS (Suzuki et 

al., 2009).

(a) Expression in whole pistils at anthesis. Pistils were slightly squeezed between slide and 

coverslip to differentiate expression in valves and ovules. Scale bar represents 500 μm.

(b) Expression in cross-sections of pistils (left panels) and ovules (right panels) at anthesis. 

o, ovule; r, replum; s, septum-transmitting track; v, valve, ex, exocarp, me, mesocarp, en, 

endocarp. mi, micropyle; es, embryo sac; cha, chalaza. Scale bar represents 50 μm.
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Figure 3. 
DELLA genes are differentially expressed in pistils and fruits.

(a) Time-course of DELLA expression during unfertilized pistil and early fruit development. 

Expression is represented as the copies of cDNA per 105 copies of UBQ10.

(b) DELLA expression in ovules + funiculi (O + F) and valve (V) of hand-dissected 

unfertilized pistils at 1 and 2 dpa. Expression was normalized to UBQ10 and to the 

expression in the whole pistil at anthesis. Open and closed triangles indicate preferential 

expression of RGL2 in ovules and RGL1 in valves, respectively. Each experiment was 

repeated twice using independent samples with similar results (Figure S2). Data are the 

mean ± standard deviation (SD) of a single representative experiment. dpa, day post-

anthesis.
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Figure 4. 
DELLA expression is differentially localized in tissues of pistils and fruits.

DELLA expression was analyzed using transcriptional fusion lines pGAI:GUS, pRGA:GUS, 

and pRGL1:GUS (see Experimental procedures), and mutant line rgl2-5 for RGL2.

(a) DELLA expression in whole pistils at anthesis. Scale bar represents 500 μm.

(b) Expression in cross-sections of pistils and ovules at anthesis (left and middle panels), and 

seeds at 1 or 2 dpa (right panels). o, ovule; r, replum; s, septum-transmitting track; v, valve, 

en, endocarp; mi, micropyle; es, embryo sac; cha, chalaza. Scale bar represents 50 μm.
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Figure 5. 
GID1s control female fertility and pod elongation.

(a) Maternal effect of the gid1 null mutations. Flowers of gid1 mutants and wild-type (WT) 

were emasculated 1 day before anthesis and hand pollinated at anthesis with WT pollen. 

Mature fruits were individually harvested, and fruit length and seed number were measured. 

Ratio (seed number versus length) was determined. Values were normalized to the WT.

(b) Gibberellin (GA) response of unfertilized pistils of the gid1 null mutants as measured by 

relative pistil length in comparison to untreated WT pistils. Flowers of GID1 mutants and 

WT were emasculated 1 day before anthesis; half of the pistils were treated at anthesis with 

300 μM GA3 (+GA3), and the other half were treated with mock solution (−GA3). Fruit or 

pistil length was measured at 10 dpa. Mean and standard deviation (SD) were calculated 

from at least 50 pistils/fruits per treatment. The experiment was repeated three times with 

similar results. Significant differences (Student’s t-test analysis) between the WT and 

mutants are marked with asterisks (**P-value < 0.001).

Gallego-Giraldo et al. Page 19

Plant J. Author manuscript; available in PMC 2015 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
The gid1 null mutants show morphological alterations in fruit structure.

(a) Delayed degradation of endocarp a in double gid1a gid1b and gid1a gid1c mutants. 

Transverse cryosections of fruits at 7, 8 and 10 dpa of wild-type (WT) and double mutants 

are shown. In the left top image, the different tissues are labeled: ex, exocarp; me, mesocarp; 

en-b, endocarp b; en-a, endocarp a. Presence or degradation of en-a are indicated by an 

arrowhead or asterisk, respectively. Scale bar represents 50 μm.

(b) Delayed lignification of en-b and degradation of en-a in double gid1a gid1c mutant. 

Transversal sections of fruits at 9 dpa of WT and the double gid1 mutants are shown. 

Presence of end-a and delayed lignification of end-b in gid1a gid1c mutant is indicated by 

an arrow head; degradation of en-a and strong lignification of en-b in WT and in gid1a 

gid1b and gid1b gid1c mutant is indicated by an asterisk. Scale bar represents 50 μm.
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Figure 7. 
Expression of gibberellin (GA) biosynthesis genes is located in seeds shortly upon 

fertilization.

(a) Expression of GA20ox1-GUS (Desgagne-Penix et al., 2005) in seeds at 1 dpa.

(b) Expression of GA20ox2-GUS (Frigerio et al., 2006) in seeds at 1, 2 or 3 dpa. ch, 

chalaza; e, embryo; es, embryo sac; f, funiculus; m, micropyle; pt, pollen tube. Scale bar 

represents 40 μm.
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Figure 8. 
Model of gibberellin (GA) biosynthesis, perception and signaling in seeds and valves of 

pistils/fruits.

Bioactive GAs, mainly GA4, are synthesized in developing seeds by GA20ox and GA3ox 

activities. In ovules/seeds GAs are perceived by GID1A and GID1B, which interact with 

RGA, GAI, and RGL2 to promote seed-specific GA signaling. GAs are also transported to 

the valve and perceived by GID1A and GID1C, which interact with RGA, GAI, and RGL1, 

to promote GA-specific valve responses (mainly pod growth and degradation of endocarp a). 

Proteins with tissue-specific expression are underlined.
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