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ABSTRACT

The roles of host genetics versus exposure and contact frequency in driving cross-species transmission remain the subject of de-
bate. Here, we used a multitaxon lemur collection at the Saint Louis Zoo in the United States as a model to gain insight into viral
transmission in a setting of high interspecies contact. Lemurs are a diverse and understudied group of primates that are highly
endangered. The speciation of lemurs, which are endemic to the island of Madagascar, occurred in geographic isolation apart
from that of continental African primates. Although evidence of endogenized viruses in lemur genomes exists, no exogenous
viruses of lemurs have been described to date. Here we identified two novel picornaviruses in fecal specimens of ring-tailed le-
murs (Lemur catta) and black-and-white ruffed lemurs (Varecia variegata). We found that the viruses were transmitted in a
species-specific manner (lesavirus 1 was detected only in ring-tailed lemurs, while lesavirus 2 was detected only in black-and-
white ruffed lemurs). Longitudinal sampling over a 1-year interval demonstrated ongoing infection in the collection. This was
supported by evidence of viral clearance in some animals and new infections in previously uninfected animals, including a set of
newly born triplets that acquired the infection. While the two virus strains were found to be cocirculating in a mixed-species
exhibit of ring-tailed lemurs, black-and-white ruffed lemurs, and black lemurs, there was no evidence of cross-species transmis-
sion. This suggests that despite high-intensity contact, host species barriers can prevent cross-species transmissions of these vi-
ruses.

IMPORTANCE

Up to 75% of emerging infectious diseases in humans today are the result of zoonotic transmission. However, a challenge in un-
derstanding transmission dynamics has been the limited models of cross-species transmission. Zoos provide a unique opportu-
nity to explore parameters defining viral transmission. We demonstrated that ongoing virus transmission in a mixed lemur spe-
cies exhibit was species specific. This suggests that despite high contact intensity, host species barriers contribute to protection
from cross-species transmission of these viruses. While the combinations of species might differ, most zoological parks world-
wide commonly feature mixed-species exhibits. Collectively, this report demonstrates a widely applicable approach toward un-
derstanding infectious disease transmission.

The origin of many emerging infectious diseases can be traced to
transmissions between humans and nonhuman animals. For

example, the severe acute respiratory syndrome (SARS) outbreak
resulted from the transmission of SARS coronavirus from civets to
humans, and the ongoing human immunodeficiency virus (HIV)-
AIDS pandemic originated from cross-species transmissions of
simian immunodeficiency virus (SIV) from chimpanzees and re-
lated primates (1, 2). Host genetic factors, such as cellular recep-
tors and immunity genes, can act as species barriers to viral trans-
mission (3–5). For RNA viruses, it has been proposed that host
barriers that share closer genetic similarities between species cor-
respond to the flattened fitness valley that viruses can traverse in
their adaptation to new hosts (4, 6). Consequently, species-spe-
cific barriers can be overcome by virus evolution through adaptive
mutations and neofunctionalization (7–10). Alternatively, it has
been argued that high contact rate is the key driver of virus emer-
gence (11–13). However, a major challenge to studying the dy-
namics of cross-species transmission has been the lack of models
in relevant settings. Hence, most studies have relied on prospec-
tive inference and reconstruction.

Zoological parks feature collections that house different ani-
mal species within an enclosure (i.e., mixed-species exhibits).
Mixed-species exhibits benefit both the animals and public visi-
tors by providing a more enriched environment and improving
the educational experience (14, 15). Mixed-species exhibits also

provide a practical solution to the problem of the limited space
available at most zoos. However, this creates an environment
where interspecies interactions may occur through physical con-
tact (16).

Lemurs, endemic to Madagascar, are prosimians that diverged
from other primates on the African mainland approximately 62
million years ago (17). Lemurs are highly diverse, in part because,
unlike African and Asian prosimians that are strictly nocturnal,
they evolved in the absence of anthropoid primates (monkeys and
apes), branching out to occupy the diurnal and nocturnal niches
of the island’s different ecosystems. There are only limited data
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regarding viruses that infect lemurs. Serological studies suggest
that lemurs have been exposed to pathogens similar to West Nile
virus and lentiviruses (18). Moreover, endogenous gammaher-
pesvirus, lentivirus, and spumavirus sequences have been identi-
fied in lemur genomes (19–23). However, there has been no direct
evidence to date of extant exogenous viruses in lemurs.

One Health has been defined as an initiative that aims to merge
animal and human health sciences to benefit both (24). Emerging
infectious diseases of animals and humans, along with the contin-
ued anthropogenic environmental stressors that challenge wildlife
and human health, have been the catalyst for the growing One
Health approach in the veterinary, medical, and environmental
fields (25). Within this framework, mixed-species exhibits pro-
vide a unique opportunity to examine viral transmission in a set-
ting of high interspecies contact. In this study, we demonstrated
the species-specific transmission of two novel picornaviruses in
lemurs housed in single-species and mixed-species exhibits at the
Saint Louis Zoo.

MATERIALS AND METHODS
Specimens. The study was approved by the Saint Louis Zoo’s Institutional
Animal Care and Use Committee. A total of 35 fecal specimens were collected
during September to October 2012 from ring-tailed lemurs (Lemur catta),
black lemurs (Eulemur macaco macaco), a blue-eyed black lemur (Eulemur
macaco flavifrons), mongoose lemurs (Eulemur mongoz), black-and-white
ruffed lemurs (Varecia variegata), and Coquerel’s sifakas (Propithecus co-
quereli). Details of the individual species in the collection are listed in
Table S1 in the supplemental material. A fecal specimen from 1 Coquerel’s
sifaka was not available at the time of collection. A second set of 33 fecal
specimens was collected in September 2013. One ring-tailed lemur and 3
black-and-white ruffed lemurs died since the 2012 collection. Samples
from 1 black-and-white ruffed lemur (transferred to another zoo) and 1
black lemur were not available at the time of the 2013 collection.

Sequencing. A subset of specimens from the 2012 collection was sub-
jected to unbiased next-generation sequencing. Fecal specimens were di-
luted in 6:1 in phosphate-buffered saline (PBS) and filtered through a
0.45-�m-pore-size membrane to minimize recovery of intact bacteria.
Total nucleic acid was extracted from the filtrate. The sequencing library
for the specimen from lemur Mis101308 was prepared using ScriptSeq
(Epicentre, Madison, WI, USA). Total nucleic acid extracted from the
specimen from lemur Nai108015 was subjected to random-priming
cDNA synthesis and amplification, and the sequencing library was gener-
ated using a standard TruSeq (Illumina, San Diego, CA, USA) protocol.
Libraries were sequenced on an Illumina MiSeq instrument. High-quality
reads with no detectable similarity to the reference human genome or
NCBI nucleotide database by BLASTn were analyzed by BLASTx align-
ment against the NCBI nonredundant (nr) protein database as previously
described (26), in order to identify divergent viral sequences. Contigs
were assembled from viral sequences using Newbler (27).

Amplification of complete genome. PCR primers were designed from
contigs assembled from Illumina sequences. The complete genome of
lesavirus 1 (the name we propose) was amplified by reverse transcription-
PCR (RT-PCR) in five overlapping fragments using a SuperScript III re-
verse transcriptase kit (Invitrogen, Grand Island, NY, USA), cloned using
a TOPO cloning kit (Invitrogen, Grand Island, NY, USA), and Sanger
sequenced as previously described (28). The following primers were used:
LV1-1F (5=-TCACATTAAGCCATGTTGCCTGCG-3=) with LV1-1r (5=-
CATCACCTGGGCTGAAGAATTGGTC-3=); LV1-2F (5=-CAAGTACAA
GTGAACGCAACACGC-3=) with LV1-2r (5=-GGAGGTGGTTCAGTCT
TCATAAGC-3=); LV1-3F (5=-TAGTTCAGATCCGTCTCTGGCTGC-
3=) with LV1-3r (5=-TGCAGCTACTTTCCTGGCTCAGAC-3=); LV1-4F
(5=-ACAGGTTCCTGGTTGTAGCCATCC-3=) with LV1-4r (5=-AACTC
CATGGGCACCAGCGCAATG-3=); and LV1-5F (5=-CTGCACCAGGCT
TCTGTGGTTCAC-3=) with LV1-5r (5=-TGGAATGGTTCCGTTGTCA

AAGTGG-3=). 5= Rapid amplification of cDNA ends (RACE) was
performed with LV1-5RACE1r (5=-CCATGAAGGGGCTGCTAACCCG-
3=); 3= RACE was performed with LV1-3RACE1F (5=-ATGACGAGGAG
TACACGCTGACTG-3=).

The complete genome of the lesavirus 2 was amplified by RT-PCR in
four overlapping fragments. The following primers were used: LV2-1F
(5=-GGAATTCCAGGGAGCCGGAGC-3=) with LV2-1r (5=-CATTTCGT
GGTCCAGTTGCACCTG-3=); LV2-2F (5=-CAGGTGCAACTGGACCA
CGAAATG-3=) with LV2-2r (5=-GCTGCCAGCATAGGGTCTGAAGC-
3=); LV2-3F (5=-TGACTCTCAGAGCAGCTTCAGACC-3=) with LV2-3r
(5=-GACATCCGTCGGGATTCTTGAACG-3=); and LV2-4F (5=-CAGCT
CTTAGCTGCAGAGACCCA-3=) with LV2-4r (5=-ACTGGCCCACTGT
GTACAGCCAG-3=). 5= RACE was performed with LV2-5RACE1r (5=-A
CCAAGCCATACTCATTCTGTAC-3=); 3= RACE was performed with
LV2-3RACE1F (5=-CACCTGCCCAGAAGGATGGAGATC-3=).

The VP1 sequence for LV1 was amplified from nucleic acid extracted
from fecal specimens collected in 2012 and 2013 from a ring-tailed lemur,
Mis101308, using primer set LV1-VP1F (5=-CAGGTGCTACAACACCC
ACTGATG-3=) and LV1-VP1r (5=-TGAACCACCAAGCAGAAACACTG
C-3=). LV2 VP1 was amplified from nucleic acid extracted from fecal
specimens collected in 2012 and 2013 from a black-and-white ruffed le-
mur, Mah951211, using primer set LV2-2F and LV2-2r.

PCR amplification of cytochrome B. Part of the mitochondrial cyto-
chrome B gene sequence was PCR amplified from total nucleic acid ex-
tracted from fecal specimens using an AccuPrime Taq DNA polymerase
kit (Invitrogen). The following primer set was used: LemurCytB400F (5=-
CCATGAGGACAAATATCMTTCTGAG-3=) and LemurCytB1032r (5=-
TTCRACGGGTTGVCCTCCRATTC-3=). PCR products were cloned and
sequenced.

Diversity analyses and phylogenetic methods. Amino acid sequences
of the full-length polyprotein from lesavirus 1 (KM396707), lesavirus 2
(KM396708), hunnivirus A1 (NC_018668), hunnivirus A2 (HM153767),
and porcine teschovirus 1 (NC_003985) were aligned by MUSCLE (29).
Diversity plots were generated with Simplot (30), employing sliding win-
dows of 250 amino acids in length and a step size of 10 amino acids, with
Kimura (2-parameter) correction.

Phylogenetic trees were constructed from alignments of the concate-
nated 2C3CD and P1 (VP4231) regions from the following picornavi-
ruses: enterovirus A (NC_001612), simian sapelovirus (NC_004451),
foot-and-mouth disease virus (NC_004004), cosavirus A (NC_012800),
equine rhinitis B virus (NC_003983), encephalomyocarditis virus (NC_001479),
Seneca valley virus (NC_011349), porcine teschovirus 1 (NC_003985),
hunnivirus A1 (NC_018668), hunnivirus A2 (HM153767), Aichi virus
(NC_001918), salivirus A (GQ253930), cadicivirus A (JN819202), me-
legrivirius A (HM751199), human parechovirus (FM178558), duck hep-
atitis A virus (NC_008250), hepatitis A virus (NC_001489), aquamavirus
A (EU142040), avian encephalomyelitis virus (NC_003990), mosavirus A
(JF973687), mischivirus A (JQ814851), gallivirus A (JQ691613), passeri-
virus A (GU182406), oscivirus A (GU182408), rosavirus A (JF973686),
avisivirus A (KC465954), and pasivirus A (KM259923). Phylogenies were
constructed with PhyML v3.0 (31) by the maximum-likelihood (ML)
method using the LG substitution model. A discrete � distribution of 4
rate categories was used to model heterogeneity among sites. Analyses
were performed at least twice, and support for ML trees was assessed by
1,000 nonparametric bootstraps. The best-fit model of protein evolution
was determined by ProtTest v 2.4 (32). Bayesian Markov chain Monte
Carlo (MCMC) inference (WAG � I � G � F) was performed with
BEAST v1.7.5 (33). A total of 10,000,000 MCMC states were run with a
25% burn-in period under a lognormal relaxed clock and Yule prior.
Convergence and mixing were assessed with Tracer v1.5 and AWTY (34,
35). The two methods yielded trees with similar topologies.

For the phylogenetic analysis of cytochrome B genes and lesavirus se-
quences obtained through the screening assay, nucleotide sequences were
aligned by Muscle (29) and primer sequences were trimmed from the align-
ment. A phylogeny was constructed by the neighbor-joining method using
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the Jukes-Cantor model of nucleotide substitution and maximum-likelihood
method. The two methods yielded similar phylogenies.

Diagnostic RT-PCR amplification. Standard precautions to avoid
end product contamination were taken for all PCR assays, including the
use of PCR hoods and maintaining separate areas for PCR setup and
analysis. Seven no-template negative controls were interspersed between
the actual samples. OneStep RT-PCR (Qiagen, Valencia, CA, USA) was
used to amplify 5 �l of extracted samples using the following PCR pro-
gram: 50°C for 35 min, 95°C for 15 min, and 40 cycles of 95°C for 30 s,
55°C for 30 s, and 72°C for 21 s, followed by 72°C for 10 min. A consensus-
degenerate primer pair, LVScreenF (5=-TTGTMACCTTYCTCAARGAT
GAGAC-3=) and LVScreenr (5=-GTGTAYTCCTCRTCATCCCAGATRT
G-3=), used to screen samples for the presence of lesavirus 1 and lesavirus
2, generated a 388-nucleotide (nt) amplicon from the 3D polymerase
(3Dpol) region, one of the most highly conserved regions of the genomes.
Products were visualized following electrophoresis on 1.25% agarose gels.
Amplicons were cloned and sequences verified.

Nucleotide sequence accession numbers. The sequences of the com-
plete genomes of lesavirus 1 and lesavirus 2, VP1 sequences, amplicons
obtained through screening, and cytochrome B amplicon sequences have
been entered into the GenBank database under accession numbers
KM396707 to KM396752.

RESULTS
Two novel picornaviruses in lemurs. Fecal specimens (35 from 6
taxa of lemurs at the Saint Louis Zoo) were collected for this study in
2012. The lemurs were housed in 9 single-species exhibits (ring-tailed
lemurs, black-and-white ruffed lemurs, Coquerel’s sifakas, mon-
goose lemurs, a blue-eyed black lemur, and black lemurs) and a
mixed-species exhibit (4 ring-tailed lemurs with 4 black-and-white
ruffed lemurs and 2 black lemurs in one exhibit) (Fig. 1A). As there
have been no known exogenous viruses of lemurs described to date,
we first sought to identify viruses associated with lemurs by perform-
ing unbiased deep sequencing on total nucleic acid samples extracted
from fecal specimens from a subset of lemurs.

From 3,349,958 total sequencing reads in a ring-tailed lemur
(Mis101308), we identified 20 reads that had limited sequence
identity to known picornaviruses. De novo assembly of the picor-
navirus-like sequence reads yielded five contiguous sequences
(contigs) that shared between 37% and 65% amino acid identity
to hunniviruses, picornaviruses previously identified from cattle
and sheep (36). Picornaviruses are single-stranded RNA viruses.
The genome of typical picornaviruses includes a single open read-
ing frame, flanked by untranslated regions at the 5= and 3= ends.
Using a combination of RT-PCR and RACE methods, the com-
plete genome of 7,687 nt was obtained and was verified to more
than 3� coverage by Sanger sequencing (Fig. 1B). This virus was
named lesavirus 1 (LV1; lemur stool-associated picornavirus 1).

Analyses of 579,108 reads from a black-and-white ruffed lemur
(Nai108015) identified 341 reads that assembled into 3 contigs with
limited sequence identity to picornaviruses (Fig. 1C). Sequence com-
parison demonstrated that the 3 contigs shared only 64.1% nucleo-
tide identity with LV1, suggesting that the viral sequences in each
specimen were distinct. Therefore, we sequenced the complete ge-
nome (7,593 nt) of the virus and named it lesavirus 2 (LV2; lemur
stool-associated picornavirus 2). Sliding window analysis demon-
strated that LV1 and LV2 were indeed distinct viruses, and limited
similarity to the next most closely related hunnivirus and porcine
teschovirus 1 species was observed throughout the genome (Fig. 1C).

We then examined the genomes for molecular features charac-
teristic of picornaviruses. The NPGP cleavage motif shown in the
2A protein was conserved in LV1 (N970PGP) and LV2 (N949PGP).

The putative 2C proteins had both the GXXGXGKS NTP bind-
ing motif (LV1, G1250RPGQGKS; LV2, G1231KPGQGKS) and the
DDLXQ helicase activity motif (LV1, D1299DLGQ; LV2, D1280DLGQ).
Additionally, the GXCG cysteine active site in the 3C protein
was also conserved (LV1, G1725FCG; LV2, G1698YCG). Finally,
the putative 3D protein maintains the YGDD active site (LV1,
Y2101GDD; LV2, Y2074GDD) and the KDELR (LV1, K1936DETR;
LV2, K1909DETR), FLKR (LV1, F2149LKR; LV2, F2122LKR), and
GGLPSG (LV1, G2063GLPSG; LV2, G2036GLPSG) motifs. Thus,
LV1 and LV2 encode conserved molecular hallmarks of picorna-
viruses.
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FIG 1 Identification of 2 novel picornaviruses in lemurs. (A) The species
allocation of the lemur exhibits at the time of the 2012 collection is shown. (B)
The diagram shows the complete genomes of lesavirus 1 (above) and lesavirus
2 (below) confirmed by RACE/RT-PCR. Contigs assembled from the Illumina
sequencing reads are indicated in gray. UTR, untranscribed region. (C) Diver-
sity plots of amino acid sequences are shown, comparing the lesavirus 1 poly-
protein to lesavirus 2 (red), hunniviruses (light blue and dark blue), and por-
cine teschovirus 1 (black).
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Lesavirus 1 and lesavirus 2 define a novel genus in the family
Picornaviridae. The Picornaviridae family consists of 26 genera
(37). We examined the evolutionary relationship of LV1 and LV2
in the family Picornaviridae. Phylogenetic trees were constructed
with Bayesian and maximum-likelihood methods using a concat-
enated amino acid alignment of 2C and 3CD genes that included

representative members from 26 picornavirus genera. Identical
topologies were obtained when reconstructed with Bayesian
and maximum-likelihood methods. The phylogenetic analyses
strongly supported the idea that LV1 and LV2 formed a mono-
phyletic clade and that they be placed sister to hunniviruses (Fig.
2A). These findings were also well supported by phylogenetic re-
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construction using the P1 (VP4321) region (Fig. 2B). This indi-
cated that LV1 and LV2 have an evolutionary history distinct from
those of other picornaviruses.

International Committee on Taxonomy of Viruses (ICTV)
guidelines for picornavirus species demarcation specify �70%
amino acid identities in the P1 and 2C3CD regions and within-
genus criteria as �40% in the P1 region, �40% in the P2 region,
and �50% in the P3 region (37, 38). The pairwise amino acid
identities of LV1 to LV2 in the P1, 2C3CD, P2, and P3 regions were
54.8%, 75.2%, 68.9%, and 72.8%, respectively (Table 1). While
the region 2C3CD data support the idea of LV1 and LV2 being the
same species, the P1 region had �70% identity, suggesting that
they are of different species. Nonetheless, this indicated that LV1
and LV2 should be placed within the same genus. We next per-
formed pairwise comparisons to hunniviruses and porcine tes-
chovirus 1, which were most similar to LV1 and LV2. Comparison
of LV1 and LV2 to hunniviruses in the P1, P2, and P3 regions gave
results that ranged from 39.0% to 42%, 35.0% to 36.2%, and
46.2% to 46.6%, respectively. Results of sequence comparison to
porcine teschovirus 1 ranged from 30.3% to 31.3%, from 36.5% to
37.9%, and from 40.5% to 40.9% in the P1, P2, and P3 regions,
respectively. Taking the data together, this indicated that LV1 and
LV2 define a novel picornavirus genus.

Lemur picornaviruses are highly prevalent and species spe-
cific. We examined the epidemiology of the two novel picornavi-
ruses in the lemur collection using longitudinally collected fecal
specimens. We designed and validated a consensus-degenerate
RT-PCR assay to amplify a 388-nt product from the 3Dpol region
of LV1 and LV2 (Fig. 3A). Thirty-five fecal specimens representing
6 lemur taxa (ring-tailed lemurs, black lemurs, a blue-eyed black
lemur, mongoose lemurs, black-and-white ruffed lemurs, and
Coquerel’s sifakas) collected from September and October 2012
were screened by the RT-PCR assay. Additionally, 33 fecal speci-
mens collected approximately a year later (September 2013) were
evaluated. In the period between the two samplings, 4 lemurs (3
black-and-white ruffed lemurs and 1 ring-tailed lemur) had died,
a triplet of black-and-white ruffed lemurs was born, and a black-
and-white ruffed lemur was transferred to a different zoo. To ver-
ify the species origin of the specimens, we sequenced the mito-
chondrial cytochrome B gene from nucleic acid extracted from the
fecal specimens. Mitochondrial gene sequences from lemur spe-
cies clustered into well-supported clades that matched the gener-
ally accepted phylogeny of lemurs (Fig. 3B).

LV1 was detected in 5 of 7 (71.4%) ring-tailed lemur fecal
specimens collected in 2012 and in 5 of 6 (83.3%) ring-tailed le-
mur specimens in the 2013 collection (Fig. 3C). LV1 was not de-
tected in black lemurs, a blue-eyed black lemur, mongoose le-
murs, black-and-white ruffed lemurs, or Coquerel’s sifakas. We
detected LV2 in 6 of 12 (50%) black-and-white ruffed lemurs in

the 2012 collection and in 7 of 11 (63.6%) black-and-white ruffed
lemurs in 2013 (Fig. 3C). We did not detect LV2 in ring-tailed
lemurs, black lemurs, a blue-eyed black lemur, mongoose lemurs,
or Coquerel’s sifakas. A phylogenetic tree constructed with all LV1
and LV2 sequences overlaid with each host species origin con-
firmed that all 10 specimens that were positive for LV1 were from
ring-tailed lemurs and that all 13 LV2-positive specimens were
from black-and-white ruffed lemurs (Fig. 3D). Picornaviruses
evolve rapidly due to the presence of the error-prone RNA-depen-
dent RNA polymerase. Therefore, we compared the VP1 se-
quences of LV1 from fecal specimens collected in 2012 and 2013
from the same ring-tailed lemur (Mis101308). A similar analysis
was done for the VP1 of LV2 from a black-and-white ruffed lemur
(Mah951211) whose results were positive at both time points. The
estimated mean rates of LV1 and LV2 VP1 evolution were approx-
imately 9.22 � 10�3 and 8.26 � 10�3 nucleotide substitutions per
site per year, respectively, within the range of previous estimates
for enteroviruses (39, 40).

We next examined the virus prevalence in the context of their
single-species or mixed-species housing. Examples of both new
infection and viral clearance were observed. In one single-species
exhibit, a previously LV2-positive black-and-white ruffed lemur
tested negative in 2013 (exhibit 3; see Table S1 in the supplemental
material). A set of black-and-white ruffed lemur triplets born after
the 2012 sampling and kept in a single-species exhibit were all
positive for LV2 at the 2013 testing. In the mixed-species exhibit
that housed 4 ring-tailed lemurs, 4 black-and-white ruffed lemurs,
and 2 black lemurs together for approximately 5 months, both
LV1 and LV2 were detected (Fig. 3E). Initially, in 2012, two ring-
tailed lemurs were positive for LV1 and one black-and-white
ruffed lemur was positive for LV2. In 2013, both LV1-positive
ring-tailed lemurs remained positive whereas an additional ring-
tailed lemur became infected with LV1. Both black lemurs re-
mained negative for LV1 and LV2. Approximately 2 months after
the first sampling, the four black-and-white ruffed lemurs were
transferred to a separate exhibit, after which one lemur was found
to have acquired LV2 in 2013 and the initially LV2-positive indi-
vidual died. These observations demonstrated that, even in a high-
contact mixed-species exhibit, the viruses were transmitted in a
species-specific manner.

A ring-tailed lemur (Geo101895) that was positive for LV1
in 2012 subsequently died prior to the 2013 sampling. Two
of the three black-and-white ruffed lemurs (Man105690 and
Bon101605) that died prior to the 2013 sampling were positive for
LV2 in 2012. An additional positive black-and-white ruffed lemur
(And113831) died after the 2013 evaluation. However, the causes
of death were different among the 5 lemurs—malignant neoplasia
(Geo101895), progressive neurological disease (Man105690,

TABLE 1 Pairwise amino acid comparison between lesavirus 1 and lesavirus 2

Virus type Genus
GenBank
accession no.

Size
(bp)

% G�C
content

Comparison to lesavirus 1 (% aa identity) Comparison to lesavirus 2 (% aa identity)

P1 P2 P3 2C 3CD 2C3CD P1 P2 P3 2C 3CD 2C3CD

Lesavirus 1 “Lesavirus” KM396707 7,687 46.0 54.8 68.9 72.8 76.1 74.7 75.2
Lesavirus 2 “Lesavirus” KM396708 7,593 45.0 54.8 68.9 72.8 76.1 74.7 75.2
Hunnivirus A1 Hunnivirus JQ941880 7,583 46.0 39.7 36.2 46.2 45.3 51.4 49.4 41.0 35.4 46.6 46.1 51.6 49.8
Hunnivirus A2 Hunnivirus HM153767 7,588 46.0 39.0 35.9 46.2 46.6 51.4 49.8 42.0 35 46.5 45.8 51.3 49.5
Porcine teschovirus 1 Teschovirus NC_003985 7,117 45.0 30.3 37.9 40.5 40.7 44.0 42.9 31.3 36.5 39.0 40.9 42.7 42.1
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FIG 3 Species-specific prevalence of lesavirus 1 and lesavirus 2. (A) RT-PCR analysis of lesavirus is shown for water (control) or representative specimens found
to be negative (Neg) for lesavirus 1 and lesavirus 2 (Gay88020) or positive for lesavirus 1 (Giz107097) or lesavirus 2 (Mah951211). The band corresponds to a
388-nt PCR product. (B) A maximum-likelihood phylogenetic tree constructed from partial cytochrome B sequences is shown. The alignment was based on
sequences from samples found to be positive for either lesavirus 1 (LV1) or lesavirus 2 (LV2) and from samples from representative individuals of other species.
Reference sequences from GenBank were included for L. catta (LCU53575), V. variegata (AB371089), and P. coquereli (AF285528). The phylogeny was
outgrouped to an aye-aye sequence (DMU53569). Branch labels indicate bootstrap proportion. Individuals in the mixed-species exhibit are marked with an
asterisk. E.m.macaco, Eulemur macaco macaco; E.m. flavifrons, Eulemur macaco flavifrons; E. mongoz, Eulemur mongoz; D. madagascariensis, Daubentonia
madagascariensis. (C) The prevalences of LV1 and LV2 in specimens collected in 2012 and 2013 are shown. (D) A phylogeny inferred from the nucleotide
sequences of all LV1 and LV2 strains that were screened in the experiments represented in panel C using the neighbor-joining method is shown. Virus sequences
are highlighted with the host species origin as either ring-tailed lemur (open boxes) or black-and-white ruffed lemur (gray boxes) as determined by the
cytochrome b genotype (see panel B). Virus sequences from individuals in the mixed-species exhibit are marked with an asterisk. (E) The prevalences of lemurs
in the mixed-species exhibit in 2012 and 2013 are shown. The exhibit consisted of 4 ring-tailed lemurs (circles), 4 black-and-white ruffed lemurs (squares), and
2 black lemurs (triangles). Boxes and squares representing individuals infected by LV1 (gray) and LV2 (black) are shaded. The black-and-white ruffed lemurs
were housed separately (Exhibit XI) in 2013. Two previously LV2-infected black-and-white ruffed lemurs died prior to the 2013 sampling (crossed squares).

Species-Specific Lemur Picornaviruses

April 2015 Volume 89 Number 7 jvi.asm.org 4007Journal of Virology

http://www.ncbi.nlm.nih.gov/nuccore?term=AB371089
http://www.ncbi.nlm.nih.gov/nuccore?term=AF285528
http://www.ncbi.nlm.nih.gov/nuccore?term=DMU53569
http://jvi.asm.org


Bon101605, and Jir105691), and suppurative meningoencephali-
tis (And113831) (see Table S1 in the supplemental material).

DISCUSSION

It is widely accepted that many emerging infectious diseases in
humans are the result of zoonotic transmissions. However, the
conditions that facilitate or prevent these transmissions are less
well understood. This poses an urgent challenge in predicting dis-
ease emergence. Here, we investigated the transmission of two
previously undescribed picornaviruses in lemurs at the Saint
Louis Zoo. We chose lemurs because their species diverged on
comparable evolutionary timescales to continental African pri-
mates, thus providing a parallel model for primate host genetic
divergence. For example, black-and-white ruffed lemurs and
ring-tailed lemurs diverged from their common ancestor approx-
imately 26 and 21 million years ago, respectively (41). This evolu-
tionary time scale is comparable to the divergence of the Ca-
tarrhini parvorder of primates that includes humans, gibbons,
great apes, and Old World monkeys. Using the housing organiza-
tion at the Saint Louis Zoo, we studied viral transmission in a
setting of high interspecies contact (mixed-species exhibit) and a
setting of minimal interspecies contact (single-species exhibit).
Mixed-species exhibits are common in most zoological parks
worldwide, and this report illustrates an approach that can be
widely applied to other zoo settings to study viral transmission.

The role of host genetic barriers in helping to prevent cross-
species transmission and viral adaptation and in determining
whether transmission between species is primarily driven by con-
tact intensity remains the subject of debate (4, 6, 13). In this study,
we found that both lemur picornaviruses were highly prevalent
and species specific in the lemur collection (Fig. 3C and D). LV1
was detected only in ring-tailed lemurs and LV2 only in black-
and-white ruffed lemurs; neither virus was detected in black le-
murs, mongoose lemurs, or Coquerel’s sifakas. In other studies,
enteroviruses and parechoviruses have been found cocirculating
between humans and nonhuman primates (42, 43). For example,
rhesus macaques and baboons in a multispecies cage at the Dhaka
Zoo harbored human enterovirus 112 (43). In contrast, we found
that the two lemur viruses were species specific despite cocirculat-
ing in an environment of high physical exposure and contact
within a mixed-species exhibit (Fig. 3E). A ring-tailed lemur and a
black-and white ruffed lemur in the mixed-species exhibit that
were previously negative were positive at the second sampling
time, demonstrating that infection could be newly acquired in the
exhibit during this time frame. Together, these observations sug-
gest that the lemur species have evolved host barriers to prevent
cross-species transmission of these viruses, possibly shaped by se-
lection to survive past pathogenic pressures (44). In addition to
understanding the host genetic determinants of species specificity,
future work can track the adaptive evolutionary trajectory in the
event of cross-species transmission and establishment in the new
host species.

All three lemur species in the mixed-species exhibit were fed
the same diet, suggesting that the presence of the viruses was not
simply the result of dietary ingestion. We are unable to exclude the
possibility that the viruses originated from other host sources at
the zoo, such as mice and insects that may be commonly encoun-
tered despite efforts to control their environment. Nonetheless,
regardless of the prior host origin, we have demonstrated that
both viruses can be detected in sequential samples in lemurs. Sam-

ples collected in 2012 and 2013 showed that the majority of the
lemurs that tested positive in 2012 remained positive 1 year later,
with viral clearance observed in only a minority of them. It is
possible that the viruses cause persistent infection or, alterna-
tively, that there may be clearance followed by reinfection. Addi-
tionally, black-and-white ruffed lemur triplets born after the ini-
tial sampling were found positive for LV2 in 2013, suggesting that
de novo virus infection occurred. The test results from the dam
(Lul105694) of the triplets were negative at both time points, sug-
gesting that the infections were the result of horizontal transmis-
sion. The host range of these picornaviruses remains to be exper-
imentally determined. This might be difficult to address in vivo, as
many lemur species, including the critically endangered black-
and-white ruffed lemur and endangered ring-tailed lemur, are
threatened with extinction and are the focus of multifaceted con-
servation efforts (45). However, our studies are noninvasive (fecal
collection) and could help assess the potential risk of viral infec-
tions on lemur survival.

No exogenous viruses had been described in lemurs prior to
this study. The discovery of the lemur picornaviruses raises im-
portant questions about infectious causes of morbidity and mor-
tality in lemurs. While we have detected viral nucleic acid in fecal
specimens, this finding may not reflect the site of disease or pro-
vide clues to the pathogenicity of the virus. For example, poliovi-
rus (a picornavirus) is shed in feces but causes neurologic disease.
While four of the five lemurs that died also tested positive for the
viruses at the prior evaluation, the causes of death were different
among the individuals. Further studies are necessary to determine
the potential pathogenicity of these lemur picornaviruses and to
better define the epidemiology of infection in captive and wild
lemurs.

According to ICTV guidelines for picornavirus taxonomy (37),
the criteria for species demarcation are �70% amino acid identity
in the P1 and 2C3CD regions and genera defined as sharing greater
than 40%, 40%, and 50% identity in the P1, P2, and P3 regions,
respectively. While the 2C3CD comparison of LPV1 and LPV2
falls within the species guidelines, indicating that they belong to
the same species, the P1 region identity is lower than the 70%
cutoff and indicates that LPV1 and LPV2 should be considered
separate species. Based on the P1 divergence and the observed
species specificity of infection, we propose that the two viruses are
distinct species. Regardless, there is consistent agreement in the
broader comparison of the P1, P2, and P3 regions, supporting the
suggestion that LV1 and LV2 should be classified within a novel
genus in the Picornaviridae family. Thus, we propose the name
“Lesavirus” for the novel genus.
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